Causes and Effects of the Worldwide Decline in Pollinators and Corrective Measures

Total Page:16

File Type:pdf, Size:1020Kb

Causes and Effects of the Worldwide Decline in Pollinators and Corrective Measures Causes and effects of the worldwide decline in pollinators and corrective measures by Madeleine Chagnon for the Quebec Regional Office Of the Canadian Wildlife Federation December 2008 This document can be reproduced only in whole for purposes of disseminating information. Any duplication of this document, itself thereof, is contingent upon proper citation of the author and owner as follows: Chagnon, M. 2008. Causes and effects of the worldwide decline in pollinators and corrective measures. Canadian Wildlife Federation. Quebec Regional Office. Canadian Wildlife federation. Quebec Regional Office. ii Table of Contents 1. POLLINATION ................................................................................................................................................................................1 1.1 Flowers and Their Pollinators.............................................................................................................................................1 1.2 Wild, Native, Exotic or Introduced Pollinators ..............................................................................................................1 1.2.1 Wild Pollinators and Native Pollinators ..................................................................................................................1 1.2.2 Introduced Pollinators .................................................................................................................................................2 1.3 Bees ...........................................................................................................................................................................................2 1.3.1 Solitary Bees....................................................................................................................................................................2 1.3.2 Social and/or Gregarious Bees ....................................................................................................................................2 1.4 Food Preferences ....................................................................................................................................................................3 1.4.1 Pollinator Efficiency: Pollen or Nectar? ..................................................................................................................3 1.4.2 Foraging Types...............................................................................................................................................................3 1.4.3 Foraging Behaviour.......................................................................................................................................................4 1.5 Pollination of Plants..............................................................................................................................................................4 1.5.1 Types of Pollination of Flowering Plants .................................................................................................................4 1.5.2 Types of Sexual Reproduction in Flowering Plants................................................................................................4 2. THE WORLDWIDE DECLINE OF POLLINATORS....................................................................................................................4 2.1 The Loss of Honey Bee Colonies........................................................................................................................................5 2.2 The Decline of Wild Pollinators.........................................................................................................................................6 2.2.1 Estimation of the Severity of the Decline.................................................................................................................6 2.2.2 Examples of Local Studies: Contradictory Conclusions ......................................................................................7 2.3 Repercussions on Plant-Pollinator Interactions ..............................................................................................................7 2.4 Genetic Variation...................................................................................................................................................................7 2.5 Estimation of Decline by Means of Pollination Deficit.................................................................................................8 3. POLLINATOR VALUE AND SERVICES........................................................................................................................................8 3.1 Monetary Value of Crop Pollination.................................................................................................................................8 3.2 Worldwide Evaluation of Pollination................................................................................................................................9 3.3 Estimation of the Pollination Value for Some Important Productions in Canada............................................... 10 3.3.1 Fruit Tree Crops......................................................................................................................................................... 10 3.3.2 Berry Crops.................................................................................................................................................................. 14 3.3.3 Curcubitaceae Crops ................................................................................................................................................. 15 3.4 Estimation of the Pollination Value for Some Worldwide Productions That Improve our Daily Lives.......... 16 3.4.1 Stimulants.................................................................................................................................................................... 16 3.4.2 Other Crops ................................................................................................................................................................ 16 3.5 Value of Native Pollinators............................................................................................................................................... 16 3.5.1 Reinforcing Local Populations of Native Species ................................................................................................ 17 3.5.2 Wild Pollinators in Quebec’s Agroecosystems..................................................................................................... 17 3.5.3 Management of Native Pollinators......................................................................................................................... 17 3.6 Ecological Value of Pollinators in Natural Environments.......................................................................................... 20 3.6.1 Value of Ecosystemic Services .................................................................................................................................. 20 3.6.2 Ecological Value.......................................................................................................................................................... 20 3.6.3 Importance for Biodiversity-Rich Environments (Hot Spots)......................................................................... 21 Canadian Wildlife federation. Quebec Regional Office. iii 3.6.4 Intrinsic Value of Pollinators................................................................................................................................... 21 4. POSSIBLE CAUSES OF THE DECLINE OF NATIVE AND INTRODUCED POLLINATORS............................................... 21 4.1 Pesticides............................................................................................................................................................................... 22 4.1.1 Use of Pesticides in Quebec, Canada and Elsewhere in the World. ................................................................ 22 4.1.2 New Molecules............................................................................................................................................................ 23 4.1.3 Transgenic Crops (GMOs)...................................................................................................................................... 24 4.2 Fragmentation and Habitat Loss..................................................................................................................................... 25 4.2.1 Impacts of Agriculture............................................................................................................................................... 25 4.2.2 Importance of Floral Resources............................................................................................................................... 27 4.2.3 Urbanization ............................................................................................................................................................... 28 4.2.4 Habitat Loss Associated with Recreational Activities ........................................................................................ 29 4.3 Exotic Species....................................................................................................................................................................... 29 4.3.1 Honey Bee...................................................................................................................................................................
Recommended publications
  • Great Barrington Pollinator Action Plan Connecting Habitat & Community
    Great Barrington Pollinator Action Plan Connecting Habitat & Community The Great Barrington Pollinator Action Plan is an educational toolkit for identifying, prioritizing, and implementing pollinator habitat on sites across Great Barrington. While its analyses are specific to the town, its recommendations are broad enough to be used almost anywhere in the northeast United States. Anyone with access to a piece of land or sidewalk strip can use this plan. Through a collaborative effort, reaching across experiences, social strata, and ecosystems, the citizens of Great Barrington hope to establish a thriving, diverse, pollinator-friendly network, and inspire other communities to do so, too. Winter 2018 Evan Abramson • Elan Bills • Renee Ruhl Table of Contents Executive Summary 3 Introduction 4 History & Context 6 Why Pollinators? 9 Environmental Conditions 22 Local Views 31 Opportunities in Great Barrington 33 Considerations in Planning a Pollinator Network 55 Toolkit 58 Resources 78 References 82 body Virginia Fringetree, Chionanthus virginicus (top) and the endangered rusty-patched bumble bee, Bombus affinis (bottom). Photographs courtesy Helen Lowe Metzman and USGS Bee Inventory and Monitoring Lab. 2 POLLINATOR ACTION PLAN Executive Summary: Life as We Know It Our responsibility is to species, not to specimens; to commu- Threats are also present: among them, the potential for nities, not to individuals. continued expansion of human development into the intact natural spaces that pollinators need. Pesticide use, —Sara Stein, Noah’s Garden particularly in large scale agriculture, is decimating pol- There is a worldwide phenomenon taking place, and it linator communities. Global climate change has shown to affects every element of life as we know it.
    [Show full text]
  • The Pollination Deficit Towards Supply Chain Resilience in the Face of Pollinator Decline
    The pollination deficit Towards supply chain resilience in the face of pollinator decline Acknowledgements This resource is an output of the Cambridge Conservation Initiative (CCI), supported by the Arcadia Fund. We are grateful for the inputs of all the companies, interviewees and workshop attendees who contributed their time and expertise. Particular thanks go to Dr Alexandra-Maria Klein and Dr Virginie Boreux, to Mars, The Jordans & Ryvita Company, Sustainable Agriculture Network and The Body Shop for inputting into this report. Thanks also to Dr Chloe Montes for her work in shaping this project and to Professor Simon Potts and Dr Tom Breeze. Project partners The University of Cambridge Institute for Sustainability Leadership (CISL) www.cisl.cam.ac.uk The University of Cambridge Institute for Sustainability Leadership empowers business and policy leaders to make the necessary adjustments to their organisations, industries and economic systems in light of this challenge. By bringing together multidisciplinary researchers with influential business and policy practitioners across the globe, we foster an exchange of ideas across traditional boundaries to generate new solutions- oriented thinking. Fauna & Flora International (FFI) www.fauna-flora.org Fauna & Flora International (FFI) protects threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and that take account of human needs. Operating in more than 50 countries worldwide, FFI saves species from extinction and habitats from destruction, while improving the livelihoods of local people. Founded in 1903, FFI is the world’s longest established international conservation body and a registered charity. UN Environment World Conservation Monitoring Centre (UNEP-WCMC) www.unep-wcmc.org UNEP-WCMC is the specialist biodiversity assessment arm of United Nations Environment, the world’s foremost intergovernmental environmental organisation.
    [Show full text]
  • Crop Pollination Management Needs Flower‐Visitor Monitoring and Target Values
    Received: 30 July 2019 | Accepted: 21 December 2019 DOI: 10.1111/1365-2664.13574 PRACTITIONER'S PERSPECTIVE Crop pollination management needs flower-visitor monitoring and target values Lucas A. Garibaldi1,2 | Agustín Sáez3 | Marcelo A. Aizen3 | Thijs Fijen4 | Ignasi Bartomeus5 1Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Abstract Universidad Nacional de Río Negro, San 1. Despite the crucial importance of biotic pollination for many crops, land managers Carlos de Bariloche, Argentina rarely monitor the levels of crop pollination needed to guide farming decisions. 2Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo 2. The few existing pollination recommendations focus on a particular number of Rural, Consejo Nacional de Investigaciones honeybee or bumblebee hives per crop area, but these guidelines do not accu- Científicas y Técnicas, San Carlos de Bariloche, Argentina rately predict the actual pollination services that crops receive. 3Grupo de Ecología de la Polinización, 3. We argue that pollination management for pollinator-dependent crops should be INIBIOMA, CONICET—Universidad Nacional del Comahue, San Carlos de Bariloche, based on direct measures of pollinator activity. We describe a protocol to quickly Argentina perform such a task by monitoring flower visitation rates. 4 Plant Ecology and Nature Conservation 4. We provide target values of visitation rates for crop yield maximization for several Group, Wageningen University, Wageningen, The Netherlands important crops by considering the number of visits per flower needed to ensure 5Department of Integrative Ecology, full ovule fertilization. If visitation rates are well below or above these target val- Estación Biológica de Doñana, EBD-CSIC, ues, corrective measures should be taken.
    [Show full text]
  • Bees, Lies and Evidence-Based Policy
    WORLD VIEW A personal take on events Bees, lies and evidence-based policy Misinformation forms an inevitable part of public debate, but scientists should always focus on informing the decision-makers, advises Lynn Dicks. aving bees is a fashionable cause. Bees are under pressure from in the UK farming press is that, without them, UK wheat yields could disease and habitat loss, but another insidious threat has come to decline by up to 20%. This is a disingenuous interpretation of an indus- the fore recently. Concern in conservation and scientific circles try-funded report, and the EU is not proposing to ban neonicotinoid Sover a group of agricultural insecticides has now reached the policy use in wheat anyway, because wheat is not a crop attractive to bees. arena. Next week, an expert committee of the European Union (EU) As a scientist involved in this debate, I find this misinformation will vote on a proposed two-year ban on some uses of clothianidin, deeply frustrating. Yet I also see that lies and exaggeration on both thiamethoxam and imidacloprid. These are neonicotinoids, systemic sides are a necessary part of the democratic process to trigger rapid insecticides carried inside plant tissues. Although they protect leaves policy change. It is simply impossible to interest millions of members of and stems from attack by aphids and other pests, they have subtle toxic the public, or the farming press, with carefully reasoned explanations. effects on bees, substantially reducing their foraging efficiency and And politicians respond to public opinion much more readily than ability to raise young.
    [Show full text]
  • Protocol for Using Pollinators in Hybrid Vegetable Seed Production an Outline for Improving Pollinator Effectiveness FEBRUARY 2018
    Protocol for using pollinators in hybrid vegetable seed production An outline for improving pollinator effectiveness FEBRUARY 2018 APPROVED BY ISF Working Group Vegetable Seed Production EDITTED BY The listed pollination researchers : Avi GABAI - Hazera, Israel Bernard E. VAISSIÈRE - Institut National de la Recherche Agronomique, UR406 Abeilles et Environnement, 84914 Avignon cedex, France Tjeerd BLACQUIÈRE - Wageningen Plant Research, Wageningen University & Research, Netherlands Breno M. FREITAS - Departamento de Zootecnia, Universidade Federal do Ceará, Brazil Mike ALLSOPP - Plant Protection Research, Agricultural Research Council, Stellenbosch, South Africa Stan CHABERT - Association Nationale des Agriculteurs Multiplicateurs de Semences Oléagineuses, 17700 Saint Pierre d'Amilly, France Arnon DAG - Plant Sciences, Agricultural Research Organization, Ministry of Agriculture, Israel Protocol for using pollinators in hybrid vegetable seed production 2 1. INTRODUCTION Pollination in hybrid vegetable seed production is the transfer of pollen from the anthers of the male fertile flowers to the stigma of the male sterile (female) flowers. The pollination phase has a significant impact on final seed yield and quality. In many vegetable crops, such as onion (Allium cepa), carrot (Daucus carota), cabbage (Brassica oleracea), cauliflower (B. oleracea) and radish (Raphanus sativus), pollination is performed mainly by honey bees (Apis mellifera). However, although it is the main managed pollinator, there are other wild and managed pollinators that can be of significant commercial value. Pollination quality is expressed as the quantity of pollen moved to the female flower; this depends on the pollinators’ activity and their mobility between the flowers of the two lines. 2. OBJECTIVES This document details the essential points in using pollinators for commercial hybrid seed production: Honey bee hive management and colony (populated beehive) strength regulations.
    [Show full text]
  • Precision Pollinator Management: Strategies for Supporting Pollinators on Your Crop $240,355,000 $144,207,000 $52,137,000 $31,371,000
    Precision Pollinator Management: Strategies for supporting pollinators on your crop $240,355,000 $144,207,000 $52,137,000 $31,371,000 New York crops dependent on pollination Values from: New York State Agricultural Overview. 2014, USDA $2,800,000 $3,042,000 $20,493,000 $12,640,000 $10,091,000 $7,520,000 $3,472,000 Both wild native bees and honey bees are crucial to agricultural production Wild bee Honey bee 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 1. Lewis & Smith 1969, Russo et al 2017, Petersen et al 2013, O’Neill et al, 20??, Winfree et al 2008. Pesticide Management • Growers should follow integrated pest & disease management practices • scouting early and often • Use disease risk models • Spray between late afternoon and very early morning • Select fungicides with lower risk rankings • Grower should consider increasing natural habitat floral diversity within 250 meters of crop • Growers and beekeepers need to communicate more Make and effort to meet local beekeepers • Make pollination contracts • Grower communicates with beekeeper when intending to spray • Beekeeper lets growers know when they put their hives nearby (1-2 miles radius. • Beekeeper educates grower • Grower educates beekeeper Habitat Management 1. Provide a diversity of wild foraging plants species 2. Push for 3-5 species blooming at all times across season • At least before and after crop bloom • At least 30-100 meters from crop margin 3. Provide safe nesting sites for native bees 30-100 meters from crop margin (away from drift) 4. Mow small areas on margins to provide bareground for the ground-nesting species – Manage 1/3 area each year.
    [Show full text]
  • Re-Imagining Agriculture Department, 269-932-7004
    from the President Engage! ngage—my simple chal- Providing the world of 2050 with ample safe and nutri- lenge to you this year is to tious food under the ever-increasing pressures of climate make a mark where you change, water limitations, and population growth will be a E are. ASABE is comprised monumental challenge that requires engagement of ASABE of outstanding engineers and scien- members with their colleagues and thought leaders from tists who are helping the world with around the world. Inside this issue, you will find perspectives their work. Whether you are design- on the topic by contributors ranging from farmers to futurists. ing a part to make precision agri- The challenges of food security are daunting, but I can think culture more effective, evaluating of no other profession that’s better equipped or better quali- the kinetics of cell growth to better fied to tackle them. I hope you are as inspired as I am by understand a biological process, these articles. exploring ways to extend knowl- As I close, I would like to thank Donna Hull, ASABE’s edge on grain storage to partners recently retired Director of Publications. For 34 years, around the world, or working in another of the many areas that Donna worked to enhance our publications, from Resource ASABE represents on equally important tasks, you are making to our refereed journals. These publications are a key part of an impact. As an ASABE member, you also have an opportu- our communication to the world, and their quality reflects nity to help make your Society as strong as it can be.
    [Show full text]
  • Insect Declines in the Anthropocene
    EN65CH23_Wagner ARjats.cls December 19, 2019 12:24 Annual Review of Entomology Insect Declines in the Anthropocene David L. Wagner Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA; email: [email protected] Annu. Rev. Entomol. 2020. 65:457–80 Keywords First published as a Review in Advance on insect decline, agricultural intensi!cation, climate change, drought, October 14, 2019 precipitation extremes, bees, pollinator decline, vertebrate insectivores The Annual Review of Entomology is online at ento.annualreviews.org Abstract https://doi.org/10.1146/annurev-ento-011019- Insect declines are being reported worldwide for "ying, ground, and aquatic 025151 lineages. Most reports come from western and northern Europe, where the Copyright © 2020 by Annual Reviews. insect fauna is well-studied and there are considerable demographic data for All rights reserved many taxonomically disparate lineages. Additional cases of faunal losses have been noted from Asia, North America, the Arctic, the Neotropics, and else- where. While this review addresses both species loss and population declines, its emphasis is on the latter. Declines of abundant species can be especially worrisome, given that they anchor trophic interactions and shoulder many Access provided by 73.198.242.105 on 01/29/20. For personal use only. of the essential ecosystem services of their respective communities. A review of the factors believed to be responsible for observed collapses and those Annu. Rev. Entomol. 2020.65:457-480. Downloaded from www.annualreviews.org perceived to be especially threatening to insects form the core of this treat- ment. In addition to widely recognized threats to insect biodiversity, e.g., habitat destruction, agricultural intensi!cation (including pesticide use), cli- mate change, and invasive species, this assessment highlights a few less com- monly considered factors such as atmospheric nitri!cation from the burning of fossil fuels and the effects of droughts and changing precipitation patterns.
    [Show full text]
  • Time-Delayed Biodiversity Feedbacks and the Sustainability of Social-Ecological Systems
    bioRxiv preprint doi: https://doi.org/10.1101/112730; this version posted March 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems A.-S. Lafuitea,∗, M. Loreaua aCentre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France Abstract The sustainability of coupled social-ecological systems (SESs) hinges on their long-term ecological dynamics. Land conversion generates extinction and functioning debts, i.e. a time-delayed loss of species and associated ecosystem services. Sustainability theory, however, has not so far considered the long-term consequences of these ecological debts on SESs. We investigate this question using a dynamical model that couples human demography, technological change and biodiversity. Human population growth drives land conversion, which in turn reduces biodiversity-dependent ecosystem services to agricultural production (ecological feedback). Technological change brings about a demographic transition leading to a population equilibrium. When the ecological feedback is delayed in time, some SESs experience population overshoots followed by large reductions in biodiversity, human population size and well-being, which we call environmental crises. Using a sustainability criterion that captures the vulnerability of an SES to such crises, we show that some of the characteristics common to modern SESs (e.g. high production efficiency and labor intensity, concave- down ecological relationships) are detrimental to their long-term sustainability.
    [Show full text]
  • The Effect of Climate Change on Pollinators and the Implications for Global Agriculture
    The Effect of Climate Change on Pollinators and the Implications for Global Agriculture A Case Study in the H.J. Andrews Experimental Forest, Oregon Anna Young Yale College ‘16 Senior Essay in Environmental Studies Advisor: Jeffrey Park April 2016 Table of Contents Abstract ......................................................................................................................................... 3 I. Introduction .......................................................................................................................... 4 Importance of pollinators for global agriculture .............................................................. 5 The effect of climate change on plant-pollinator networks ............................................. 8 II. Methods ............................................................................................................................... 16 Study Site ....................................................................................................................... 16 Analysis of climate data ................................................................................................. 18 Plant and pollinator data collection ................................................................................ 19 Calculation of estimates for flowering phenology ......................................................... 23 Analysis of flowering phenology ................................................................................... 26 Analysis of pollinator phenology
    [Show full text]
  • Safeguarding Pollinators and Their Values to Human Well-Being Simon G
    REVIEW doi:10.1038/nature20588 Safeguarding pollinators and their values to human well-being Simon G. Potts1, Vera Imperatriz-Fonseca2, Hien T. Ngo3, Marcelo A. Aizen4, Jacobus C. Biesmeijer5,6, Thomas D. Breeze1, Lynn V. Dicks7, Lucas A. Garibaldi8, Rosemary Hill9, Josef Settele10,11 & Adam J. Vanbergen12 Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services. ollinators are inextricably linked to human well-being through Diversity of values of pollinators and pollination the maintenance of ecosystem health and function, wild plant Pollinators provide numerous benefits to humans, such as securing a relia- Preproduction, crop production and food security. Pollination, ble and diverse seed and fruit supply, sustaining populations of wild plants the transfer of pollen between the male and female parts of flowers that underpin biodiversity and ecosystem function, producing honey and that enables fertilization and reproduction, can be achieved by wind other beekeeping products, and supporting cultural values. Much of the and water, but the majority of the global cultivated and wild plants recent international focus on pollination services has been on the benefits depend on pollination by animals.
    [Show full text]
  • Beyond the Decline of Wild Bees: Optimizing Conservation Measures and Bringing Together the Actors
    insects Review Beyond the Decline of Wild Bees: Optimizing Conservation Measures and Bringing Together the Actors Maxime Drossart * and Maxence Gérard * Laboratory of Zoology, Research Institute for Biosciences, University of Mons (UMONS), Place du Parc 20, B-7000 Mons, Belgium * Correspondence: [email protected] (M.D.); [email protected] (M.G.) Received: 3 September 2020; Accepted: 18 September 2020; Published: 22 September 2020 Simple Summary: Wild bees represent the main group of pollinators in Europe, being responsible for the reproduction of numerous flowering plants. However, like a non-negligible part of biodiversity, this group has been facing a global decline mostly induced by numerous human factors over the last decades. Overall, even if all the questions are not solved concerning the causes of their decline, we are beyond the precautionary principle because the decline factors are roughly known, identified and at least partially quantified. Experts are now calling for effective actions to promote wild bee diversity and the enhancement of environmental quality. In this review, we present a general and up-to-date assessment of the conservation methods, as well as their efficiency and the current projects that try to fill the gaps and optimize the conservation measures. This publication aims to be a needed catalyst to implement concrete and qualitative conservation actions for wild bees. Abstract: Wild bees are facing a global decline mostly induced by numerous human factors for the last decades. In parallel, public interest for their conservation increased considerably, namely through numerous scientific studies relayed in the media. In spite of this broad interest, a lack of knowledge and understanding of the subject is blatant and reveals a gap between awareness and understanding.
    [Show full text]