The Role of Exosomes in Lysosomal Storage Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oral Ambroxol Increases Brain Glucocerebrosidase Activity in a Nonhuman Primate
Received: 17 November 2016 | Revised: 24 January 2017 | Accepted: 12 February 2017 DOI 10.1002/syn.21967 SHORT COMMUNICATION Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate Anna Migdalska-Richards1 | Wai Kin D. Ko2 | Qin Li2,3 | Erwan Bezard2,3,4,5 | Anthony H. V. Schapira1 1Department of Clinical Neurosciences, Institute of Neurology, University College Abstract London, NW3 2PF, United Kingdom Mutations in the glucocerebrosidase 1 (GBA1) gene are related to both Parkinson disease (PD) and 2Motac Neuroscience, Manchester, United Gaucher disease (GD). In both cases, the condition is associated with deficiency of glucocerebrosi- Kingdom dase (GCase), the enzyme encoded by GBA1. Ambroxol is a small molecule chaperone that has 3 Institute of Laboratory Animal Sciences, been shown in mice to cross the blood-brain barrier, increase GCase activity and reduce alpha- China Academy of Medical Sciences, Beijing synuclein protein levels. In this study, we analyze the effect of ambroxol treatment on GCase City, People’s Republic of China activity in healthy nonhuman primates. We show that daily administration of ambroxol results in 4University de Bordeaux, Institut des Maladies Neurodeg en eratives, UMR 5293, increased brain GCase activity. Our work further indicates that ambroxol should be investigated as Bordeaux F-33000, France a novel therapy for both PD and neuronopathic GD in humans. 5CNRS, Institut des Maladies Neurodeg en eratives, UMR 5293, Bordeaux F-33000, France KEYWORDS Correspondence ambroxol, glucocerebrosidase, -
Down Regulation of Membrane-Bound Neu3 Constitutes a New
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows IJC International Journal of Cancer Down regulation of membrane-bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells Chandan Mandal1, Cristina Tringali2, Susmita Mondal1, Luigi Anastasia2, Sarmila Chandra3, Bruno Venerando2 and Chitra Mandal1 1 Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt of India, 4, Raja S. C. Mullick Road, Kolkata 700032, India 2 Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, and IRCCS Policlinico San Donato, San Donato, Milan, Italy 3 Department of Hematology, Kothari Medical Centre, Kolkata 700027, India Membrane-linked sialidase Neu3 is a key enzyme for the extralysosomal catabolism of gangliosides. In this respect, it regulates pivotal cell surface events, including trans-membrane signaling, and plays an essential role in carcinogenesis. In this report, we demonstrated that acute lymphoblastic leukemia (ALL), lymphoblasts (primary cells from patients and cell lines) are characterized by a marked down-regulation of Neu3 in terms of both gene expression (230 to 40%) and enzymatic activity toward ganglioside GD1a (225.6 to 30.6%), when compared with cells from healthy controls. Induced overexpression of Neu3 in the ALL-cell line, MOLT-4, led to a significant increase of ceramide (166%) and to a parallel decrease of lactosylceramide (255%). These events strongly guided lymphoblasts to apoptosis, as we assessed by the decrease in Bcl2/ Bax ratio, the accumulation of Neu3 transfected cells in the sub G0–G1 phase of the cell cycle, the enhanced annexin-V positivity, the higher cleavage of procaspase-3. -
Oxidative Stress, a New Hallmark in the Pathophysiology of Lafora Progressive Myoclonus Epilepsy Carlos Romá-Mateo *, Carmen Ag
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy Carlos Romá-Mateo1,2*, Carmen Aguado3,4*, José Luis García-Giménez1,2,3*, Erwin 3,4 3,5 1,2,3# Knecht , Pascual Sanz , Federico V. Pallardó 1 FIHCUV-INCLIVA. Valencia. Spain 2 Dept. Physiology. School of Medicine and Dentistry. University of Valencia. Valencia. Spain 3 CIBERER. Centro de Investigación Biomédica en Red de Enfermedades Raras. Valencia. Spain. 4 Centro de Investigación Príncipe Felipe. Valencia. Spain. 5 IBV-CSIC. Instituto de Biomedicina de Valencia. Consejo Superior de Investigaciones Científicas. Valencia. Spain. * These authors contributed equally to this work # Corresponding author: Dr. Federico V. Pallardó Dept. Physiology, School of Medicine and Dentistry, University of Valencia. E46010-Valencia, Spain. Fax. +34963864642 [email protected] 2 ABSTRACT Lafora Disease (LD, OMIM 254780, ORPHA501) is a devastating neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in most cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin, a phosphatase with dual specificity that is involved in the dephosphorylation of glycogen, and malin, an E3-ubiquitin ligase involved in the polyubiquitination of proteins related with glycogen metabolism. Thus, it has been reported that laforin and malin form a functional complex that acts as a key regulator of glycogen metabolism and that also plays a crucial role in protein homeostasis (proteostasis). In relationship with this last function, it has been shown that cells are more sensitive to ER-stress and show defects in proteasome and autophagy activities in the absence of a functional laforin-malin complex. -
CTNS Molecular Genetics Profile in a Persian Nephropathic Cystinosis Population
n e f r o l o g i a 2 0 1 7;3 7(3):301–310 Revista de la Sociedad Española de Nefrología www.revistanefrologia.com Original article CTNS molecular genetics profile in a Persian nephropathic cystinosis population a b a a Farideh Ghazi , Rozita Hosseini , Mansoureh Akouchekian , Shahram Teimourian , a b c,d a,b,c,d,∗ Zohreh Ataei Kachoei , Hassan Otukesh , William A. Gahl , Babak Behnam a Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran b Department of Pediatrics, Faculty of Medicine, Ali Asghar Children Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran c Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA d NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA a r t i c l e i n f o a b s t r a c t Article history: Purpose: In this report, we document the CTNS gene mutations of 28 Iranian patients with Received 26 May 2016 nephropathic cystinosis age 1–17 years. All presented initially with severe failure to thrive, Accepted 22 November 2016 polyuria, and polydipsia. Available online 24 February 2017 Methods: Cystinosis was primarily diagnosed by a pediatric nephrologist and then referred to the Iran University of Medical Sciences genetics clinic for consultation and molecular Keywords: analysis, which involved polymerase chain reaction (PCR) amplification to determine the Cystinosis presence or absence of the 57-kb founder deletion in CTNS, followed by direct sequencing CTNS of the coding exons of CTNS. -
Supplemental Material Placed on This Supplemental Material Which Has Been Supplied by the Author(S) J Med Genet
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Med Genet Supplement Supplementary Table S1: GENE MEAN GENE NAME OMIM SYMBOL COVERAGE CAKUT CAKUT ADTKD ADTKD aHUS/TMA aHUS/TMA TUBULOPATHIES TUBULOPATHIES Glomerulopathies Glomerulopathies Polycystic kidneys / Ciliopathies Ciliopathies / kidneys Polycystic METABOLIC DISORDERS AND OTHERS OTHERS AND DISORDERS METABOLIC x x ACE angiotensin-I converting enzyme 106180 139 x ACTN4 actinin-4 604638 119 x ADAMTS13 von Willebrand cleaving protease 604134 154 x ADCY10 adenylate cyclase 10 605205 81 x x AGT angiotensinogen 106150 157 x x AGTR1 angiotensin II receptor, type 1 106165 131 x AGXT alanine-glyoxylate aminotransferase 604285 173 x AHI1 Abelson helper integration site 1 608894 100 x ALG13 asparagine-linked glycosylation 13 300776 232 x x ALG9 alpha-1,2-mannosyltransferase 606941 165 centrosome and basal body associated x ALMS1 606844 132 protein 1 x x APOA1 apolipoprotein A-1 107680 55 x APOE lipoprotein glomerulopathy 107741 77 x APOL1 apolipoprotein L-1 603743 98 x x APRT adenine phosphoribosyltransferase 102600 165 x ARHGAP24 Rho GTPase-Activation protein 24 610586 215 x ARL13B ADP-ribosylation factor-like 13B 608922 195 x x ARL6 ADP-ribosylation factor-like 6 608845 215 ATPase, H+ transporting, lysosomal V0, x ATP6V0A4 605239 90 subunit a4 ATPase, H+ transporting, lysosomal x x ATP6V1B1 192132 163 56/58, V1, subunit B1 x ATXN10 ataxin -
GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. -
Genetics and Epigenetics in Parkinson´S Disease
Genetics and epigenetics in Parkinson´s disease. Luis Navarro Sánchez. Thesis supervisor: Jordi Pérez Tur. Unitat de Genètica Molecular, Institut de Biomedicina de València, CSIC. Doctoral studies: Biotechnology. Facultat de Ciències Biològiques, Universitat de València. Tras preguntas y más preguntas y miedo y nervios y ansiedad y más ansiedad y bloqueos y periodos depresivos y tristeza y mucha, pero mucha, mierda… acabas. Tarde y reventado, pero acabas. Y lo único que quieres es pasar página y que esto no te pase más nunca. ¿Y? Pues que te surgen más preguntas y más miedo y más nervios…. Y te das cuenta de que vives en un puto bucle científico que se está comiendo tu vida. ¿Y? No lo sé, estoy en ello. Terapia y medicación, supongo. Aunque la autodestrucción y los realities son muy apetecibles. En primer lugar, las formalidades. Gracias Jordi por dejarme que trabajara en la UGM. A estas alturas, creo que los dos nos habremos planteado muchas veces si fue una buena decisión, pero ya da igual. A continuación, el momento pasteleo, aunque si no sé dar un abrazo, no penséis que esto me va a salir fluido. Y menos aún, estando sobrio. Y que no se me enfade nadie si no he puesto su nombre o si no he escrito un parrafazo lacrimógeno y azucarado exaltando la belleza de nuestra relación. Si dejo que leas esto, significa que también eres importante para mí. Lo mejor de todo este tiempo sois, de calle, vosotros y vosotras: Bea, Carolina, Eva, Fer, LauraA, LauraG, María, Marta, Pili, Silvia, Vicente/Andreu y VicenteH. -
Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling
UC Davis UC Davis Previously Published Works Title Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling. Permalink https://escholarship.org/uc/item/0nk8n7xb Journal Scientific reports, 6(1) ISSN 2045-2322 Authors Arabyan, Narine Park, Dayoung Foutouhi, Soraya et al. Publication Date 2016-07-08 DOI 10.1038/srep29525 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling Received: 09 February 2016 Narine Arabyan1, Dayoung Park2, Soraya Foutouhi1, Allison M. Weis1, Bihua C. Huang1, Accepted: 17 June 2016 Cynthia C. Williams2, Prerak Desai1,†, Jigna Shah1,‡, Richard Jeannotte1,3,§, Nguyet Kong1, Published: 08 July 2016 Carlito B. Lebrilla2,4 & Bart C. Weimer1 Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p < 0.05) alter infection. During infection, Salmonella used its two GHs sialidase nanH and amylase malS for internalization by targeting different glycan structures. The host glycans were altered during Salmonella association via the induction of N-glycan biosynthesis pathways leading to modification of host glycans by increasing fucosylation and mannose content, while decreasing sialylation. -
CTNS Gene Cystinosin, Lysosomal Cystine Transporter
CTNS gene cystinosin, lysosomal cystine transporter Normal Function The CTNS gene provides instructions for making a protein called cystinosin. This protein is located in the membrane of lysosomes, which are compartments in the cell that digest and recycle materials. Proteins digested inside lysosomes are broken down into smaller building blocks, called amino acids. The amino acids are then moved out of lysosomes by transport proteins. Cystinosin is a transport protein that specifically moves the amino acid cystine out of the lysosome. Health Conditions Related to Genetic Changes Cystinosis More than 80 different mutations that are responsible for causing cystinosis have been identified in the CTNS gene. The most common mutation is a deletion of a large part of the CTNS gene (sometimes referred to as the 57-kb deletion), resulting in the complete loss of cystinosin. This deletion is responsible for approximately 50 percent of cystinosis cases in people of European descent. Other mutations result in the production of an abnormally short protein that cannot carry out its normal transport function. Mutations that change very small regions of the CTNS gene may allow the transporter protein to retain some of its usual activity, resulting in a milder form of cystinosis. Other Names for This Gene • CTNS-LSB • CTNS_HUMAN • Cystinosis • PQLC4 Additional Information & Resources Tests Listed in the Genetic Testing Registry • Tests of CTNS (https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term=1497[geneid]) Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) 1 Scientific Articles on PubMed • PubMed (https://pubmed.ncbi.nlm.nih.gov/?term=%28CTNS%5BTIAB%5D%29+O R+%28Cystinosis%5BTIAB%5D%29+AND+%28Genes%5BMH%5D%29+AND+eng lish%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp% 5D) Catalog of Genes and Diseases from OMIM • CYSTINOSIN (https://omim.org/entry/606272) Research Resources • ClinVar (https://www.ncbi.nlm.nih.gov/clinvar?term=CTNS[gene]) • NCBI Gene (https://www.ncbi.nlm.nih.gov/gene/1497) References • Anikster Y, Shotelersuk V, Gahl WA. -
Neuraminidase Inhibitor Zanamivir Ameliorates Collagen-Induced Arthritis
International Journal of Molecular Sciences Article Neuraminidase Inhibitor Zanamivir Ameliorates Collagen-Induced Arthritis Bettina Sehnert 1,*, Juliane Mietz 1, Rita Rzepka 1, Stefanie Buchholz 1, Andrea Maul-Pavicic 1, Sandra Schaffer 1, Falk Nimmerjahn 2 and Reinhard E. Voll 1,* 1 Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; [email protected] (J.M.); [email protected] (R.R.); [email protected] (S.B.); [email protected] (A.M.-P.); [email protected] (S.S.) 2 Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; [email protected] * Correspondence: [email protected] (B.S.); [email protected] (R.E.V.); Tel.: +49-761-270-71021 (B.S.); +49-761-270-34490 (R.E.V.) Abstract: Altered sialylation patterns play a role in chronic autoimmune diseases such as rheumatoid arthritis (RA). Recent studies have shown the pro-inflammatory activities of immunoglobulins (Igs) with desialylated sugar moieties. The role of neuraminidases (NEUs), enzymes which are responsible for the cleavage of terminal sialic acids (SA) from sialoglycoconjugates, is not fully understood in RA. We investigated the impact of zanamivir, an inhibitor of the influenza virus neuraminidase, and mammalian NEU2/3 on clinical outcomes in experimental arthritides studies. The severity of arthritis was monitored and IgG titers were measured by ELISA. (2,6)-linked SA was determined on IgG by ELISA and on cell surfaces by flow cytometry. Zanamivir at a dose of 100 mg/kg (zana- Citation: Sehnert, B.; Mietz, J.; 100) significantly ameliorated collagen-induced arthritis (CIA), whereas zana-100 was ineffective Rzepka, R.; Buchholz, S.; in serum transfer-induced arthritis. -
The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. -
Its Place Among Other Genetic Causes of Renal Disease
J Am Soc Nephrol 13: S126–S129, 2002 Anderson-Fabry Disease: Its Place among Other Genetic Causes of Renal Disease JEAN-PIERRE GRU¨ NFELD,* DOMINIQUE CHAUVEAU,* and MICHELINE LE´ VY† *Service of Nephrology, Hoˆpital Necker, Paris, France; †INSERM U 535, Baˆtiment Gregory Pincus, Kremlin- Biceˆtre, France. In the last two decades, decisive advances have been made in Nephropathic cystinosis, first described in 1903, is an auto- the field of human genetics, including renal genetics. The somal recessive disorder characterized by the intra-lysosomal responsible genes have been mapped and then identified in accumulation of cystine. It is caused by a defect in the transport most monogenic renal disorders by using positional cloning of cystine out of the lysosome, a process mediated by a carrier and/or candidate gene approaches. These approaches have that remained unidentified for several decades. However, an been extremely efficient since the number of identified genetic important management step was devised in 1976, before the diseases has increased exponentially over the last 5 years. The biochemical defect was characterized in 1982. Indeed cysteam- data derived from the Human Genome Project will enable a ine, an aminothiol, reacts with cystine to form cysteine-cys- more rapid identification of the genes involved in the remain- teamine mixed disulfide that can readily exit the cystinotic ing “orphan” inherited renal diseases, provided their pheno- lysosome. This drug, if used early and in high doses, retards the types are well characterized. We have entered the post-gene progression of cystinosis in affected subjects by reducing intra- era. What is/are the function(s) of these genes? What are the lysosomal cystine concentrations.