An Update on Novel Mechanisms of Primary Aldosteronism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crispra Screening with Real World Evidence Identifies Potassium Channels As Neuronal Entry Factors and Druggable Targets for SARS-Cov-2
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.01.450475; this version posted July 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CRISPRa screening with real world evidence identifies potassium channels as neuronal entry factors and druggable targets for SARS-CoV-2 Authors: Chengkun Wang1,†, Ravi K. Dinesh1,†,*, Yuanhao Qu1,2,3,†, Arjun Rustagi4,†, Henry Cousins1,5,‡, James Zengel6,‡, Yinglong Guo7,‡, Taryn Hall7,‡, Aimee Beck4, Luke Tso7, EliF Tokar ErdemiC7, Kae Tanudtanud7, Sheng Ren7, Kathy Tzy-Hwa Tzeng7, Aaron Wilk4,5, Mengdi Wang8, Jan Carette2,6, Russ Altman2,4,9,*, Catherine A. Blish4,5,10,*, Le Cong1,2,3,* Affiliations: 1Department oF Pathology, StanFord University School oF Medicine, StanFord, CA, USA 2Department oF Genetics, StanFord University School oF Medicine, StanFord, CA, USA 3Cancer Biology Program, StanFord University School oF Medicine, StanFord, CA, USA 4Department oF Medicine, StanFord University School oF Medicine, StanFord, CA, USA 5Medical Scientist Training Program, StanFord University School oF Medicine, StanFord, CA, USA 6Department oF Microbiology and Immunology, StanFord University School oF Medicine, StanFord, CA, USA 7Research and Development at UnitedHealth Group, Minneapolis, MN, USA 8Center For Statistics and Machine Learning, Department oF Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA 9Department oF Bioengineering, StanFord University, StanFord, CA, USA 10Chan Zuckerberg Biohub, San Francisco, CA, USA *Correspondence to: [email protected] (R.K.D.); [email protected] (R.A.); [email protected] (C.A.B.); [email protected] (L.C.) † These authors contributed equally to this work. -
Age-Dependent Myocardial Transcriptomic Changes in the Rat
Revista Română de Medicină de Laborator Vol. 22, Nr. 1, Martie, 2014 9 Research article DOI: 10.2478/rrlm-2014-0001 Age-dependent myocardial transcriptomic changes in the rat. Novel insights into atrial and ventricular arrhythmias pathogenesis Modificări transcriptomice dependente de vârstă în miocardul de șobolan. Noi aspecte referitoare la patogeneza aritmiilor atriale și ventriculare Alina Scridon1,2, Emmanuelle Fouilloux-Meugnier3, Emmanuelle Loizon3, Marcel Perian1, Sophie Rome3, Claude Julien2, Christian Barrès2, Philippe Chevalier2,4 1.Physiology Department, University of Medicine and Pharmacy of Tîrgu Mureș, 540139, Tîrgu Mureș, Romania 2. Unité de Neurocardiologie, EA4612, Université Lyon 1, F-69008, Lyon, France 3. Unité 1060 INSERM CarMen, Université Lyon 1, F-69008, Lyon, France 4. Hospices Civils de Lyon, Hôpital Louis Pradel, Service de Rythmologie, 69500, Bron, France Abstract Background: Aging is associated with significantly increased prevalence of cardiac arrhythmias, but tran- scriptional events that underlie this process remain to be established. To gain deeper insight into molecular mech- anisms of aging-related cardiac arrhythmias, we performed mRNA expression analysis comparing atrial and ven- tricular myocardium from Wistar-Kyoto (WKY) rats of different ages. Methods: Atrial and ventricular sampling was performed in 3 groups (n=4 each) of young (14-week-old), adult (25-week-old), and aging (47-week-old) WKY rats. mRNA expressions of 89 genes involved in cardiac arrhythmogenicity were investigated using TaqMan Low Density Array analysis. Results: Of the 89 studied genes, 40 and 64 genes presented steady atrial and ventricu- lar expressions, respectively. All genes differentially expressed within the atria of WKY rats were up-regulated with advancing age, mainly the genes encoding for various K+, Ca2+, Na+ channels, and type 6 collagen. -
The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype. -
Pharmacogenomics of Drug-Induced Conditions
Pharmacogenomics of Drug-Induced Conditions Dan M. Roden, M.D. Professor of Medicine and Pharmacology Director, Oates Institute for Experimental Therapeutics Assistant Vice-Chancellor for Personalized Medicine Vanderbilt University School of Medicine !1 An “idiosyncratic” drug response AR, 78 year old male • Coronary artery disease; 13 years s/p bypass surgery • 2 days after starting dofetilide (potent IKr blocker)… No personal or family history of syncope, sudden death • KCNQ1 variant leading to R583C identified • In vitro: ↓IKs • Not found in >400 ethnically-matched controls • ∴this is likely subclinical congenital Long QT Syndrome !2 Another face of the congenital long QT syndrome !3 Father’s ECG !4 Mother’s ECG !5 9-year-old sister’s ECG !6 Family tree Aunt, cousin, niece with 402 426 syncope 462 405 439 428 (RBBB) 436 428 492 411 419 404 • One episode of syncope, age 20 • Multiple ER visits for acute allergic reactions à epinephrine without incident !7 Mother’s ECG post-exercise !8 Identifying a mutation in KCNQ1 mothersister …YI G FLGLI… …YI D FLGLI… G269D !9 Family tree Aunt, cousin, niece with 402 426 syncope 462 405 439 428 (RBBB) 436 428 492 411 419 404 Incomplete penetrance !10 Grandfather’s ECG !11 Defining the “drug-induced long QT syndrome” • Marked QT prolongation and typical pause-dependent torsades de pointes with drug challenge, both resolving with drug withdrawal • Variants: • Marked QT prolongation (e.g. >520 or 550 or 600 msec), recognized and drug withdrawn (no torsades) • pause-dependent polymorphic VT after administration -
Table 2. Significant
Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S. -
Potassium Channels in Epilepsy
Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Potassium Channels in Epilepsy Ru¨diger Ko¨hling and Jakob Wolfart Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany Correspondence: [email protected] This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dy- namic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With 80 potassium channel types, of which 10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. INTRODUCTION TO POTASSIUM evolutionary appearance of voltage-gated so- CHANNELS dium (Nav)andcalcium (Cav)channels, Kchan- nels are further diversified in relation to their otassium (K) channels are related to epilepsy newer function, namely, keeping neuronal exci- Psyndromes on many different levels, ranging tation within limits (Anderson and Greenberg from direct control of neuronal excitability and 2001; Hille 2001). -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
The Metabotropic Glutamate Receptor Mglur1 Regulates the Voltage-Gated Potassium Channel Kv1.2 Through Agonist-Dependent and Agonist-Independent Mechanisms
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2019 The etM abotropic glutamate receptor mGluR1 regulates the voltage-gated potassium channel Kv1.2 through agonist-dependent and agonist- independent mechanisms Sharath Chandra Madasu University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Cell Biology Commons, Neuroscience and Neurobiology Commons, and the Pharmacology Commons Recommended Citation Madasu, Sharath Chandra, "The eM tabotropic glutamate receptor mGluR1 regulates the voltage-gated potassium channel Kv1.2 through agonist-dependent and agonist-independent mechanisms" (2019). Graduate College Dissertations and Theses. 982. https://scholarworks.uvm.edu/graddis/982 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. THE METABOTROPIC GLUTAMATE RECEPTOR MGLUR1 REGULATES THE VOLTAGE-GATED POTASSIUM CHANNEL KV1.2 THROUGH AGONIST-DEPENDENT AND AGONIST-INDEPENDENT MECHANISMS. A Dissertation Presented by Sharath Chandra Madasu to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Cellular Molecular and Biomedical Science January, 2019 Defense Date: September 27, 2018 Dissertation Examination Committee: Anthony D. Morielli, PhD., Advisor John Green, PhD., Chairperson Karen Lounsbury, Ph.D. Benedek Erdos, PhD. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT The voltage gated potassium channel Kv1.2 plays a key role in the central nervous system and mutations in Kv1.2 cause neurological disorders such as epilepsies and ataxias. -
Interplay Between Gating and Block of Ligand-Gated Ion Channels
brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes. -
Is the Early Left-Right Axis Like a Plant, a Kidney, Or a Neuron? the Integration of Physiological Signals in Embryonic Asymmetry
Birth Defects Research (Part C) 78:191–223 (2006) REVIEW Is the Early Left-Right Axis like a Plant, a Kidney, or a Neuron? The Integration of Physiological Signals in Embryonic Asymmetry Michael Levin* Embryonic morphogenesis occurs along three orthogonal axes. While the Developmental noise often patterning of the anterior-posterior and dorsal-ventral axes has been results in pseudorandom character- increasingly well-characterized, the left-right (LR) axis has only relatively istics and minor stochastic devia- recently begun to be understood at the molecular level. The mechanisms tions known as fluctuating asymme- that ensure invariant LR asymmetry of the heart, viscera, and brain involve try (Klingenberg and McIntyre, fundamental aspects of cell biology, biophysics, and evolutionary biology, 1998); however, the most interest- and are important not only for basic science but also for the biomedicine of a wide range of birth defects and human genetic syndromes. The LR axis ing phenomenon is invariant (i.e., links biomolecular chirality to embryonic development and ultimately to consistently biased) differences behavior and cognition, revealing feedback loops and conserved functional between the left and right sides. For modules occurring as widely as plants and mammals. This review focuses brevity, as well as because these on the unique and fascinating physiological aspects of LR patterning in a are likely to be secondary to embry- number of vertebrate and invertebrate species, discusses several profound onic asymmetries, this review mechanistic analogies between biological regulation in diverse systems largely neglects behavioral/sensory (specifically proposing a nonciliary parallel between kidney cells and the LR asymmetries (Harnad, 1977; axis based on subcellular regulation of ion transporter targeting), high- Bisazza et al., 1998). -
Control Qpatch Htx Multi-Hole
41577_Poster 170x110.qxd:Poster 170x110 07/04/10 8:52 Side 1 SOPHION BIOSCIENCE A/S SOPHION BIOSCIENCE, INC. SOPHION JAPAN Baltorpvej 154 675 US Highway One 1716-6, Shimmachi ENHANCING THROUGHPUT WITH MULTIPLE DK-2750 Ballerup North Brunswick, NJ 08902 Takasaki-shi, Gumma 370-1301 DENMARK USA JAPAN [email protected] Phone: +1 732 745 0221 Phone: +81 274 50 8388 CELL LINES PER WELL WITH THE QPATCH HTX www.sophion.com www.sophion.com www.sophion.com HERVØR LYKKE OLSEN l DORTHE NIELSEN l MORTEN SUNESEN QPATCH HTX MULTI-HOLE: TEMPORAL CURRENT QPATCH HTX MULTI-HOLE: PHARMACOLOGICAL SEPARATION BASED ON DISCRETE RECORDING SEPARATION BASED ON ION CHANNEL INHIBITORS TIME WINDOWS KvLQT1/minK (KCNQ1/KCNE1) INTRODUCTION Kv1.5 (KCNA5) ABRaw traces (A) and Hill plot (B) for XE991. ABC hERG and Nav1.5 blocked by E-4031 and The QPatch HTX automated patch clamp technology was developed to 1) increase throughput in ion channel drug TTX, respectively. screening by parallel operation of 48 multi-hole patch clamp sites, each comprising 10 individual patch clamp holes, in a single measurements site on a QPlate X, and 2) diminish problems with low-expressing cell lines. Thus, parallel recording from 10 cells represents a 10-fold signal amplification, and it increases the success rate at each site substantially. To further increase throughput we explored the possibility of simultaneous recording of a number of ion channel currents. IC50 (μM) XE991 Two or three cell lines, each expressing a specific ion channel, were applied at each site simultaneously. The ion channel Measured Literature currents were separated temporally or pharmacologically by proper choices of voltage protocols or ion channel KvLQT1 3.5±1.0 (n=12) 1-6 (Ref. -
Molecular Biology of Neuronal Voltage-Gated Calcium Channels
EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 30, No 3, 123-130, September 1998 Molecular biology of neuronal voltage-gated calcium channels Hemin Chin and is capable of directing expression of calcium channel activity in heterologous expression systems. In the central Genetics Research Branch, Division of Basic and Clinical Neuroscience Research, nervous system (CNS), VGCCs are expressed by five National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, distinct a1 subunit genes (α1A, α1B, α1C, α1D and α1E), U.S.A. which exhibit further variations due to alternative splicing of the primary RNA transcripts. The α1C and, α1D su b u n i t Accepted 3 August 1998 genes encode dihydropyridine (DHP)-sensitive L-type channels, while the three other α1 subunit genes (α1A, α1B and α1E) give rise to DHP-insensitive P/Q-, N- and R-type channels, respectively. The α2 and δ s u b u n i t proteins are produced by proteolytic cleavage of a larger precursor produced by the single α2-δ gene (Table 1). Introduction Three alternatively spliced variants of the α2 subunit are expressed in a tissue-specific manner. Two variants Calcium ions are important intracellular messengers have been isolated from the brain and skeletal muscle mediating a number of neuronal functions including neuro- (Kim et al., 1992; Williams et al., 1992), and a distinct transmitter release, neurosecretion, neuronal excitation, third splice variant which is expressed in glial cells has survival of eurons, and regulation of gene expression. been recently identified (Puro et al., 1996). In addition to The entry of calcium across the plasmamembrane in the gene encoding the skeletal muscle β subunit, three response to membrane depolarization or activation of 1 other β subunit genes (β2, β3 and β4) have been isolated neurotransmitter receptors represents a major pathway thus far.