SHIFTING SCALES and PASSÉ PARADIGMS: Alternative Spatio-Temporal Perspectives on Environmental Heterogeneity and Plant Community Assembly

Total Page:16

File Type:pdf, Size:1020Kb

SHIFTING SCALES and PASSÉ PARADIGMS: Alternative Spatio-Temporal Perspectives on Environmental Heterogeneity and Plant Community Assembly SHIFTING SCALES AND PASSÉ PARADIGMS: alternative spatio-temporal perspectives on environmental heterogeneity and plant community assembly Andrew D. Letten Centre for Ecosystem Science School of Biological, Earth and Environmental Science UNSW Australia Thesis Submitted for the Degree of Doctor of Philosophy July 2015 ii PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Letten First name: Andrew Other name/s: David Abbreviation for degree as given in the University calendar: PhD School: Biological, Earth, and Environmental Sciences Faculty: Science Title: Shifting scales and passe paradigms: alternative spatio-temporal perspectives on environmental heterogeneity and plant community assembly Abstract 350 words maximum: (PLEASE TYPE) Environmental heterogeneity has been a focal point of ecological research for decades and yet we have tended to stick to comparatively formulaic interpretations of its dimensionality. In this thesis I explore alternative perspectives on the relationship between heterogeneity and plant community assembly in both spatial and temporal dimensions. Beginning with perhaps the most basic property of an ecological community, its taxonomic diversity, in Chapter 2 I investigate the explanatory power of fine-scale spatial heterogeneity in temporal climate variability. Consistent with coexistence theory, the results of this study indicate that climate variability can be a better predictor of richness than more commonly used climatic averages, and highlight the need for ecologists to expand their purview beyond absolutes and averages. Turning to multivariate distance-based descriptors of community structure, in Chapters 3 and 4, I consider the under-explored role of temporal scale and variability on inference in community phylogenetic and trait-dispersion studies. Given a classic Brownian model of trait evolution, in Chapter 3, I show that the expected functional displacement of any two taxa is most parsimoniously represented as a linear function of time's square root. On this basis I argue that existing methods overweight deep time relative to recent time. Taking into account this methodological adjustment, in Chapter 4, I use standard phylogenetic and functional-trait metrics to evaluate the temporal stability of community structure through succession in a fire-prone heathland. Contrary to widely-held assumptions, community structure did not become increasingly functionally and phylogenetically dispersed with time. This contributes to an emerging body of evidence indicating that limits to the similarity of coexisting species are rarely observed at fine-scales. In Chapter 5, I adopt a model-based approach to the analysis of species co-occurrence patterns in response to fine-scale spatial environmental heterogeneity. This study confirms the vital role of hydrological niches for the maintenance of within-community plant diversity. Two primary conclusions emerge from the thematically broad investigations within the thesis: subtle shifts in the scales at which spatial and temporal heterogeneity are examined can yield new insights into community assembly; and reliable mapping of processes from patterns requires the continuous scrutiny of paradigmatic assumptions. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). 21/07/15 …………………………………………………………… ……………………………………..……………… ……….……………………...…….… Signature Witness Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS Copyright Statement I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International. I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation. Signed Date 21/07/15 Authenticity Statement I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format. Signed Date 21/07/15 Originality Statement I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. Signed Date 21/07/15 To Ash et al. Acknowledgements For what has been an incredibly rewarding and wonderfully challenging 45 months I have several people to thank, several times over. David, for being a superb supervisor, whose unstinting zen and benevolent wisdom are a template for academic mentorship. Richard and Will, who both played the role of unofficial supervisors and always left their doors ajar. Sharon, whose gravitational pull kept me (and everyone else) in orbit. Dan, Mick and John for providing valuable advice along the way. Steve and Bill who as panel members took a much appreciated interest in my progression. Cam who provided valuable insights into my original project proposal. Various other fantastic UNSW folk that have contributed to the fun, including in no particular order: Sam, Sylvia, Eve, Mitch, Nick, Evan, Jo, Chris, Ben, Anna, Chantel, Francis, David and the Ecostats crew, Angela, Haba, Rhiannnon and the rest of the Big Ecology lab. The brilliant academics of the UCT Botany Dept, and in particular Jeremy and Tony who as honours supervisors made me think differently, in a really good way. My patient parents who have supported me unconditionally in my every pursuit. My generous brother who amongst many other things has done his best to keep me in fashion. My wonderful wife Shan, a mention in the acknowledgements of my thesis almost makes a mockery of your contribution; you rock like Kilimanjaro. Finally, I thank my amazing little Ash Mae, who makes me stop and smell the roses (and the nappies). viii “Space and Time! Two minor omissions that no one is likely to notice” Isaac Newton in The System of the World by Neal Stephenson Abstract Although environmental heterogeneity has been a focal point of ecological re- search for decades, we have tended to stick to comparatively formulaic inter- pretations of its dimensionality. In this thesis I explore alternative perspectives on the relationship between heterogeneity and plant community assembly in both spatial and temporal dimensions. Beginning with perhaps the most basic property of an ecological community, its taxonomic diversity, in Chapter 2 I investigate the explanatory power of fine-scale spatial heterogeneity in temporal climate variability. Consistent with coexistence theory, the results of this study indicate that climate variability can be a better predictor of richness than more commonly used climatic averages, and highlight the need for ecologists to expand their purview beyond absolutes and averages. Turning to multivariate distance- based descriptors of community structure, in Chapters 3 and 4, I consider the under-explored role of temporal scale and variability on inference in community phylogenetic and trait-dispersion studies. Given a classic Brownian model of trait evolution, in Chapter 3, I show that the expected functional displacement of any two taxa is most parsimoniously represented as a linear function of time’s square root. On this basis I argue that existing methods overweight deep time relative to recent time.
Recommended publications
  • Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Coastal Upland Swamps in the Sydney Basin Bioregion : Draft
    1 COASTAL UPLAND SWAMPS IN THE SYDNEY BASIN BIOREGION: DRAFT 2 DESCRIPTION 3 4 Description 5 The Coastal Upland Swamps in the Sydney Basin Bioregion includes a range of vegetation and 6 fauna associated with periodically waterlogged soils on the Hawkesbury sandstone plateaus. 7 Vegetation types include open graminoid heath, sedgeland and tall scrub. This ecological 8 community, proposed for national listing under the Commonwealth Environment Protection 9 and Biodiversity Conservation Act 1999, is based on the NSW listed community of the same 10 name. Information regarding the NSW ecological community can be found at: 11 http://www.environment.nsw.gov.au/determinations/coastaluplandswampfd.htm 12 13 Name of the ecological community 14 Coastal Upland Swamps in the Sydney Basin Bioregion 15 16 Location and physical environment 17 The Coastal Upland Swamps in the Sydney Basin Bioregion ecological community is endemic 18 to NSW, within the eastern Sydney Basin. 19 In the south the community occurs on the Woronora plateau, in the north it occurs on the 20 Somersby-Hornsby plateaus. The southern part of this distribution is separated from the north 21 by an area of non-sandstone substrates, less rainfall and lower elevation, and by the urban 22 development of Sydney. 23 Geology 24 The community occurs primarily on impermeable sandstone plateaus in the headwater valleys 25 of streams and on sandstone benches with abundant seepage moisture (Buchanan, 1980; 26 Young, 1986; Keith and Myerscough, 1993; Keith et al. 2006 in NSW Scientific Committee, 27 2012). They are occasionally associated with weathered shale lenses and ironstone (Buchanan, 28 1980; Keith 1994 in NSW Scientific Committee, 2012).
    [Show full text]
  • Native Plants of Sydney Harbour National Park: Historical Records and Species Lists, and Their Value for Conservation Monitoring
    Native plants of Sydney Harbour National Park: historical records and species lists, and their value for conservation monitoring Doug Benson National Herbarium of New South Wales, Royal Botanic Gardens, Mrs Macquaries Rd, Sydney 2000 AUSTRALIA [email protected] Abstract: Sydney Harbour National Park (lat 33° 53’S; long 151° 13’E), protects significant vegetation on the harbour foreshores close to Sydney City CBD; its floristic abundance and landscape beauty has been acknowledged since the writings of the First Fleet in 1788. Surprisingly, although historical plant collections were made as early as1802, and localised surveys have listed species for parts of the Park since the 1960s, a detailed survey of the flora of whole Park is still needed. This paper provides the first definitive list of the c.400 native flora species for Sydney Harbour National Park (total area 390 ha) showing occurrence on the seven terrestrial sub-regions or precincts (North Head, South Head, Dobroyd Head, Middle Head, Chowder Head, Bradleys Head and Nielsen Park). The list is based on historical species lists, records from the NSW Office of Environment and Heritage (formerly Dept of Environment, Climate Change and Water) Atlas, National Herbarium of New South Wales specimen details, and some additional fieldwork. 131 species have only been recorded from a single precinct site and many are not substantiated with a recent herbarium specimen (though there are historical specimens from the general area for many). Species reported in the sources but for which no current or historic specimen exists are listed separately as being of questionable/non-local status.
    [Show full text]
  • The 1770 Landscape of Botany Bay, the Plants Collected by Banks and Solander and Rehabilitation of Natural Vegetation at Kurnell
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main Backdrop to encounter: the 1770 landscape of Botany Bay, the plants collected by Banks and Solander and rehabilitation of natural vegetation at Kurnell Doug Benson1 and Georgina Eldershaw2 1Botanic Gardens Trust, Mrs Macquaries Rd Sydney 2000 AUSTRALIA email [email protected] 2Parks & Wildlife Division, Dept of Environment and Conservation (NSW), PO Box 375 Kurnell NSW 2231 AUSTRALIA email [email protected] Abstract: The first scientific observations on the flora of eastern Australia were made at Botany Bay in April–May 1770. We discuss the landscapes of Botany Bay and particularly of the historic landing place at Kurnell (lat 34˚ 00’ S, long 151˚ 13’ E) (about 16 km south of central Sydney), as described in the journals of Lieutenant James Cook and Joseph Banks on the Endeavour voyage in 1770. We list 132 plant species that were collected at Botany Bay by Banks and Daniel Solander, the first scientific collections of Australian flora. The list is based on a critical assessment of unpublished lists compiled by authors who had access to the collection of the British Museum (now Natural History Museum), together with species from material at National Herbarium of New South Wales that has not been previously available. The list includes Bidens pilosa which has been previously regarded as an introduced species. In 1770 the Europeans set foot on Aboriginal land of the Dharawal people. Since that time the landscape has been altered in response to a succession of different land-uses; farming and grazing, commemorative tree planting, parkland planting, and pleasure ground and tourist visitation.
    [Show full text]
  • Ecology of Pyrmont Peninsula 1788 - 2008
    Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Sydney, 2010. Ecology of Pyrmont peninsula iii Executive summary City Council’s ‘Sustainable Sydney 2030’ initiative ‘is a vision for the sustainable development of the City for the next 20 years and beyond’. It has a largely anthropocentric basis, that is ‘viewing and interpreting everything in terms of human experience and values’(Macquarie Dictionary, 2005). The perspective taken here is that Council’s initiative, vital though it is, should be underpinned by an ecocentric ethic to succeed. This latter was defined by Aldo Leopold in 1949, 60 years ago, as ‘a philosophy that recognizes[sic] that the ecosphere, rather than any individual organism[notably humans] is the source and support of all life and as such advises a holistic and eco-centric approach to government, industry, and individual’(http://dictionary.babylon.com). Some relevant considerations are set out in Part 1: General Introduction. In this report, Pyrmont peninsula - that is the communities of Pyrmont and Ultimo – is considered as a microcosm of the City of Sydney, indeed of urban areas globally. An extensive series of early views of the peninsula are presented to help the reader better visualise this place as it was early in European settlement (Part 2: Early views of Pyrmont peninsula). The physical geography of Pyrmont peninsula has been transformed since European settlement, and Part 3: Physical geography of Pyrmont peninsula describes the geology, soils, topography, shoreline and drainage as they would most likely have appeared to the first Europeans to set foot there.
    [Show full text]
  • 4 Chapter Four Recovery of the CO2 Sink in A
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Carbon dynamics in restiad peatlands across different timescales A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Sciences at The University of Waikato by Joshua Lee Ratcliffe 2019 I would like to dedicate this thesis to my friend and former mentor; Dr. Richard Payne who died in an avalanche on the 26th of May 2019 while attempting to climb an un-named peak upon Nanda Devi mountain. Abstract Peatlands contain one of the largest terrestrial carbon stores on the planet, and one which is known to interact with climate and global biogeochemical cycling of nutrients. Peatlands maintain their carbon primarily through a high and stable water table which restricts decomposition, and large amounts of carbon can be lost upon drying. However, peatlands are also characterised by non-linear responses to external forcing with a complex array of internal feedbacks which tend to dominate ecosystem response over long-timescales and may amplify or dampen external influences.
    [Show full text]
  • During Temporal Heathland Succession Phylogenetic and Functional
    Downloaded from rspb.royalsocietypublishing.org on November 5, 2014 Phylogenetic and functional dissimilarity does not increase during temporal heathland succession Andrew D. Letten, David A. Keith and Mark G. Tozer Proc. R. Soc. B 2014 281, 20142102, published 5 November 2014 Supplementary data "Data Supplement" http://rspb.royalsocietypublishing.org/content/suppl/2014/11/04/rspb.2014.2102.DC1.h tml References This article cites 48 articles, 2 of which can be accessed free http://rspb.royalsocietypublishing.org/content/281/1797/20142102.full.html#ref-list-1 Subject collections Articles on similar topics can be found in the following collections ecology (1804 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Proc. R. Soc. B go to: http://rspb.royalsocietypublishing.org/subscriptions Downloaded from rspb.royalsocietypublishing.org on November 5, 2014 Phylogenetic and functional dissimilarity does not increase during temporal heathland succession rspb.royalsocietypublishing.org Andrew D. Letten1, David A. Keith1,2,3 and Mark G. Tozer2 1Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, New South Wales 2052, Australia 2NSW Office of Environment and Heritage, Hurstville, New South Wales 2220, Australia 3Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Fenner School of the Research Environment Australian National University, Canberra, Australian Capital Territory 2601, Australia Cite this article: Letten AD, Keith DA, Tozer Succession has been a focal point of ecological research for over a century, but MG. 2014 Phylogenetic and functional thus far has been poorly explored through the lens of modern phylogenetic and trait-based approaches to community assembly.
    [Show full text]
  • Reinstatement and Revision of the Genus Chaetospora (Cyperaceae: Schoeneae)
    Volume 23: 95–112 ELOPEA Publication date: 2 July 2020 T dx.doi.org/10.7751/telopea14345 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Reinstatement and revision of the genus Chaetospora (Cyperaceae: Schoeneae) Russell L. Barrett1,3, Karen L. Wilson1 and Jeremy J. Bruhl2 1National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, Mrs Macquaries Road, Sydney, New South Wales 2000, Australia 2Botany, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia 3Author for Correspondence: [email protected] Abstract Three species are recognised within the reinstated and recircumscribed genus Chaetospora R.Br. Chaetospora is lectotypified on C. curvifolia R.Br. A new combination, Chaetospora subbulbosa (Benth.) K.L.Wilson & R.L.Barrett, is made for Schoenus subbulbosus Benth. Lectotypes are selected for Chaetospora aurata Nees, Chaetospora curvifolia R.Br., Chaetospora turbinata R.Br., Elynanthus capitatus Nees, Schoenus subbulbosus Benth., Schoenus subg. Pseudomesomelaena Kük. and Schoenus sect. Sphaerocephali Benth. Two species are endemic to south-western Australia, while the third is endemic to south-eastern Australia. Full descriptions, illustrations and a key to species are provided. All species have anatomy indicative of C3 photosynthesis. Introduction Chaetospora R.Br. is here reinstated as a segregate from Schoenus L., with a novel circumscription. Schoenus is a nearly globally-distributed genus exhibiting a significant range of morphological variation (Rye et al. 1987; Sharpe 1989; Wilson 1993, 1994a,b; Bruhl 1995; Goetghebeur 1998; Wheeler and Graham 2002; Wilson et al.
    [Show full text]
  • Co-Extinction of Mutualistic Species – an Analysis of Ornithophilous Angiosperms in New Zealand
    DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES CO-EXTINCTION OF MUTUALISTIC SPECIES An analysis of ornithophilous angiosperms in New Zealand Sandra Palmqvist Degree project for Master of Science (120 hec) with a major in Environmental Science ES2500 Examination Course in Environmental Science, 30 hec Second cycle Semester/year: Spring 2021 Supervisor: Søren Faurby - Department of Biological & Environmental Sciences Examiner: Johan Uddling - Department of Biological & Environmental Sciences “Tui. Adult feeding on flax nectar, showing pollen rubbing onto forehead. Dunedin, December 2008. Image © Craig McKenzie by Craig McKenzie.” http://nzbirdsonline.org.nz/sites/all/files/1200543Tui2.jpg Table of Contents Abstract: Co-extinction of mutualistic species – An analysis of ornithophilous angiosperms in New Zealand ..................................................................................................... 1 Populärvetenskaplig sammanfattning: Samutrotning av mutualistiska arter – En analys av fågelpollinerade angiospermer i New Zealand ................................................................... 3 1. Introduction ............................................................................................................................... 5 2. Material and methods ............................................................................................................... 7 2.1 List of plant species, flower colours and conservation status ....................................... 7 2.1.1 Flower Colours .............................................................................................................
    [Show full text]
  • Biodiversity Summary: Wimmera, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Border Rivers-Gwydir, New South Wales
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]