Module 1: Trial Design

Total Page:16

File Type:pdf, Size:1020Kb

Module 1: Trial Design MODULE 1: TRIAL DESIGN ©WHO/Christopher Black 15 1. INTRODUCTION The overarching goal of this toolkit is to facilitate where most children with HIV live (1). To generate the treatment of children with HIV with the most the timely data about modern ARV drugs needed efficacious medications. The selection of the for children in the fast-changing landscape of right drugs and formulations given priority for the ARV drug pipeline and dynamic treatment development is based on target product profiles guidelines, clinical trials must be strategic, (see the module on target product profiles). forward-thinking and efficient in implementation. Nevertheless, before an agent can be approved for use by regulatory bodies or included in national and global guidelines, data about dosing, 1.1 General considerations for HIV drug safety and efficacy must be considered adequate trials involving children in the intended population of children. This module reviews issues in selecting a clinical trial Clinical trials for drug development are classically design to generate the necessary data about a divided into four phases: I to IV (Fig. 1.1). After candidate antiretroviral (ARV) drug for children preclinical study in the laboratory, a drug is as quickly and efficiently as possible. generally first tested in humans in Phase I trials that generate key safety and pharmacokinetic The development and evaluation of ARV drugs and pharmacodynamic data for small numbers for children has historically been slow, with some of participants. Phase I trials are generally dose- agents being approved for children as long as finding trials that might aim to establish the a decade after they were approved for adults maximally tolerated dose for adults or identify (1,2). The limited number of agents with age- the dosing for children that yields exposure appropriate ARV drug dosing and formulations for equivalent to that of adults. Phase II trials children has remained a key barrier to simplifying, confirm safety and explore efficacy to facilitate harmonizing and implementing WHO treatment decisions about further development. Phase III guidelines in low- and middle-income countries, trials are pivotal trials that confirm safety and Figure 1.1. Phases of clinical trials Preclinical Phase I Phase II Phase III Phase IV Pharmacology Evaluate short- Confirm safety Establish efficacy Evaluate long- (pharmacokitetic term safety Explore efficacy versus standard term safety and and care effectiveness Generate Hundreds of pharmacodynamic) pharmacokinetic participants Confirm safety Diverse groups, data and including those Demonstrate the Acceptability Toxicity pharmacodynamic excluded from benefits of the Hundreds to data for humans early trials In vitro and in vivo new treatment thousands of studies in animal Tens of participants Support additional models participants indications Support licensing Identify the safe Identify optimal and change starting dose for dose for a larger practice trials in humans trial 16 establish efficacy among a larger number of submit plans to study the agent among children participants; Phase III data are generally required or request a waiver (3,4). The EMA calls a plan for for regulatory approval of a new drug for adults. study among children a paediatric investigation Phase IV trials generate data on long-term safety plan and the FDA calls it a paediatric study and/or efficacy for a new drug after it has been plan. Stringent regulatory authorities require licensed in real-world conditions across different a paediatric investigation plan or paediatric populations. Developing drugs for children and study plan for every new drug being developed treatment optimization trials often combine for adults that is considered to be relevant features of different phases, commonly blending for children. Paediatric investigation plans Phases I and II and Phases II and III. or paediatric study plans are required to be submitted early in drug development (3,4) Clinical drug trials can also be classified into two and must be established before filing for the broad categories: regulatory and strategy trials. marketing authorization (Fig. 1.2 and the module Regulatory trials are conducted for licensing on regulatory filing). Trials for developing and applications that seek approval by stringent evaluating drugs for children are usually started regulatory authorities and may include features once trials involving adults show substantial of Phase I–III trials (dose-finding, safety and evidence of the efficacy and safety of the drug efficacy), depending on the extent to which of interest. Waivers are difficult to obtain but can the relevant data from adult studies can be be granted if an agent is not thought to have a extrapolated (see below). These trials generally role in care for children and/or because it would focus on pharmacokinetics and safety and use be logistically impossible to study (such as finding age-appropriate drug formulations for children eligible child participants being too difficult). already tested in adults for bioequivalence with In determining which data are needed to support the adult formulations. regulatory approval of an agent for use among To secure approval for an agent for adults, children, it is critical to first ask what data can be stringent regulatory authorities such as the extrapolated from adult trials and what data must United States Food and Drug Administration be generated de novo in trials involving children. (FDA) or European Medicines Agency (EMA) Fig. 1.3 summarizes FDA guidance on this topic. require pharmaceutical companies to either Depending on evidence-based assumptions on Fig. 1.2. Timing of the development pathway for HIV drugs for children Adult drug development Marketing authorization for adults Preclinical Phase 1 Phase 2 Phase 3 Phase 4 Submit paediatric investigation Yes Clinical trials among children Is the drug plan or paediatric Deferral if neededa relevant for HIV study plan among children? No Apply for waiver aAdditional efficacy and safety data for adults are needed before initiating studies among children. Source: reprinted from The Lancet Oncology, 14, Vassal G, Zwaan CM, Ashley D, Le Deley MC, Hargrave D, Blanc P et al., New drugs for children and adolescents with cancer: the need for novel development pathways, e117–24, Copyright (2013), with permission from Elsevier. (5) 17 the appropriateness of extrapolating efficacy from treatment and exposure–response relationships adult trials, the regulatory trials can differ in design, are similar for children and adults, and efficacy ranging from non-comparative studies evaluating evidence from adult Phase III trials can therefore pharmacokinetics and safety (extrapolation be extrapolated to children. In other words, Phase possible) to a randomized controlled trial, I/II pharmacokinetic and safety non-comparative evaluating pharmacokinetics, safety and efficacy trials are generally considered sufficient to support (no extrapolation possible). Some agents, such regulatory approval of ARV drugs for children if as immunomodulatory agents designed for cure the same exposure as for adults can be achieved. strategies, may rely on mechanisms that cannot be reasonably extrapolated to children; these agents In contrast to regulatory trials, strategy trials are require more study, probably including evidence of used to evaluate various treatment approaches, efficacy for children, to be approved. Nevertheless, such as the sequence of regimens for first-, for studies of most ARV drugs that target the second- and third-line therapy, treatment viral life cycle among children, it is generally simplification and use of more pragmatic dosing accepted that progression of HIV, response to compared with the standard of care and focus on Fig. 1.3. Algorithm for planning and extrapolating studies for children Do children have similar (1) disease progression and (2) response to treatment to adults? No to either Yes to both Do children have similar exposure response to adults? No Yes Is there pharmacodynamic measurement to predict efficacy in children? No Yes No extrapolation Partial extrapolation Full extrapolation Conduct among Conduct among children: Conduct among children: children: 1. Pharmacokinetic and pharmacodynamic 1. Pharmacokinetic studies 1. Studies to studies to establish exposure response among aimed at achieving establish dosing children for pharmacodynamic measurement exposure similar to that for adults 2. Safety and efficacy 2. Pharmacokinetic studies to achieve target studies at the exposure based on exposure response 2. Safety studies among identified dose(s) children at the 3. Safety studies among children at the identified dose(s) identified dose(s) Sources: adapted from General clinical pharmacology considerations for pediatric studies for drugs and biological products: guidance for industry 2014 (4) and Dunne et al. (6). 18 effectiveness (efficacy in the real world). Strategy possible. Strategy trials are usually Phases III–IV trials aim to optimize drug delivery and uptake, and use randomized controlled designs, although to improve safety, adherence, acceptability or single-arm designs can be also used when a quality of life and to explore potentially better randomized controlled trial is not feasible and the treatment options for children with coinfections. assumptions for thresholds for success or failure These trials can nest pharmacokinetic substudies can be prespecified (12). to evaluate dosing differing from the licensed dosing, such as once-daily
Recommended publications
  • Adaptive Clinical Trials: an Introduction
    Adaptive clinical trials: an introduction What are the advantages and disadvantages of adaptive clinical trial designs? How and why were Introduction adaptive clinical Adaptive clinical trial design is trials developed? becoming a hot topic in healthcare research, with some researchers In 2004, the FDA published a report arguing that adaptive trials have the on the problems faced by the potential to get new drugs to market scientific community in developing quicker. In this article, we explain new medical treatments.2 The what adaptive trials are and why they report highlighted that the pace of were developed, and we explore both innovation in biomedical science is the advantages of adaptive designs outstripping the rate of advances and the concerns being raised by in the available technologies and some in the healthcare community. tools for evaluating new treatments. Outdated tools are being used to assess new treatments and there What are adaptive is a critical need to improve the effectiveness and efficiency of clinical trials? clinical trials.2 The current process for developing Adaptive clinical trials enable new treatments is expensive, takes researchers to change an aspect a long time and in some cases, the of a trial design at an interim development process has to be assessment, while controlling stopped after significant amounts the rate of type 1 errors.1 Interim of time and resources have been assessments can help to determine invested.2 In 2006, the FDA published whether a trial design is the most a “Critical Path Opportunities
    [Show full text]
  • Meta Analyses – Pros and Cons
    Meta analyses – pros and cons Emily S Sena, PhD Centre for Clinical Brain Sciences, University of Edinburgh @camarades_ CAMARADES: Bringing evidence to translational medicine CAMARADES • Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies • Look systematically across the modelling of a range of conditions • Data Repository – 30 Diseases – 40 Projects – 25,000 studies – from over 400,000 animals CAMARADES: Bringing evidence to translational medicine Why do we do meta-analysis of animal studies? • Animal models are generally performed to inform human health but when should you be convinced to move to the next step? • Systematic reviews & meta-analyses: – assess the quality and range of evidence – identify gaps in the field – quantify relative utility of outcome measures – inform power/sample size calculations – assess for publication bias – try to explain discrepancies between preclinical and clinical trial results – inform clinical trial design CAMARADES: Bringing evidence to translational medicine Systematic review and meta-analysis • Pros – What have we learnt about…….. • Translation? • Quality? • The 3Rs? • Cons – What are the limitations? • As good as the data that goes in? • Rapidly outdated • The Impact CAMARADES: Bringing evidence to translational medicine Systematic review and meta-analysis • Pros – What have we learnt about…….. • Translation? • Quality? • The 3Rs? • Cons – What are the limitations? • As good as the data that goes in? • Rapidly outdated • The Impact CAMARADES: Bringing evidence
    [Show full text]
  • Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification
    in vivo 28: 1005-1012 (2014) Review Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification MARCO RASTRELLI1, SAVERIA TROPEA1, CARLO RICCARDO ROSSI2 and MAURO ALAIBAC3 1Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV- IRCCS, Padova, Italy; 2Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCCS and Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; 3Dermatology Unit, University of Padova, Padova, Italy Abstract. This article reviews epidemiology, risk factors, Epidemiology pathogenesis and diagnosis of melanoma. Data on melanoma from the majority of countries show a rapid At the start of 21st century, melanoma remains a potentially increase of the incidence of this cancer, with a slowing of fatal malignancy. At a time when the incidence of many the rate of incidence in the period 1990-2000. Males are tumor types is decreasing, melanoma incidence continues to approximately 1.5-times more likely to develop melanoma increase (1). Although most patients have localized disease than females, while according to other studies, the different at the time of the diagnosis and are treated by surgical prevalence in both sexes must be analyzed in relation with excision of the primary tumor, many patients develop age: the incidence rate of melanoma is grater in women metastases (2). than men until they reach the age of 40 years, however, by The incidence of malignant melanoma has been increasing 75 years of age, the incidence is almost 3-times as high in worldwide, resulting in an important socio-economic men versus women. The most important and potentially problem. From being a rare cancer one century ago, the modifiable environmental risk factor for developing average lifetime risk for melanoma has now reached 1 in 50 malignant melanoma is the exposure to ultraviolet (UV) in many Western populations (3).
    [Show full text]
  • Adaptive Enrichment Designs in Clinical Trials
    Annual Review of Statistics and Its Application Adaptive Enrichment Designs in Clinical Trials Peter F. Thall Department of Biostatistics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA; email: [email protected] Annu. Rev. Stat. Appl. 2021. 8:393–411 Keywords The Annual Review of Statistics and Its Application is adaptive signature design, Bayesian design, biomarker, clinical trial, group online at statistics.annualreviews.org sequential design, precision medicine, subset selection, targeted therapy, https://doi.org/10.1146/annurev-statistics-040720- variable selection 032818 Copyright © 2021 by Annual Reviews. Abstract All rights reserved Adaptive enrichment designs for clinical trials may include rules that use in- terim data to identify treatment-sensitive patient subgroups, select or com- pare treatments, or change entry criteria. A common setting is a trial to Annu. Rev. Stat. Appl. 2021.8:393-411. Downloaded from www.annualreviews.org compare a new biologically targeted agent to standard therapy. An enrich- ment design’s structure depends on its goals, how it accounts for patient heterogeneity and treatment effects, and practical constraints. This article Access provided by University of Texas - M.D. Anderson Cancer Center on 03/10/21. For personal use only. first covers basic concepts, including treatment-biomarker interaction, pre- cision medicine, selection bias, and sequentially adaptive decision making, and briefly describes some different types of enrichment. Numerical illus- trations are provided for qualitatively different cases involving treatment- biomarker interactions. Reviews are given of adaptive signature designs; a Bayesian design that uses a random partition to identify treatment-sensitive biomarker subgroups and assign treatments; and designs that enrich superior treatment sample sizes overall or within subgroups, make subgroup-specific decisions, or include outcome-adaptive randomization.
    [Show full text]
  • Use of in Vivo and in Vitro Models to Guide Dose Selection for Neonatal Infections
    Use of In Vivo and In Vitro Models to Guide Dose Selection for Neonatal Infections Professor William Hope Antimicrobial Pharmacodynamics & Therapeutics University of Liverpool September 2016 Disclosures • William Hope has received research funding from Pfizer, Gilead, Astellas, AiCuris, Amplyx, Spero Therapeutics and F2G, and acted as a consultant and/or given talks for Pfizer, Basilea, Astellas, F2G, Nordic Pharma, Medicines Company, Amplyx, Mayne Pharma, Spero Therapeutics, Auspherix, Cardeas and Pulmocide. First of all BIOMARKER OUTCOME OF CLINICAL DOSE INTEREST/IMPORTANCE •Decline in Log10CFU/mL •Linked to an outcome of clinical interest •Survival 7 6 5 4 CFU/g) CNS 10 3 Effect (log 2 1 0 0.01 0.1 1 10 100 1000 Total doseDose 5FC (mg/kg) PHARMACOKINETICS PHARMACODYNAMICS Concept of Expensive Failure COST Derisking White Powder Preclinical Program Clinical Program Concept from Trevor Mundell & Gates Foundation And this… Normal Therapeutics Drug A, Dose A1 versus Drug B, Dose B1 Pharmacodynamics is the Bedrock of ALL Therapeutics…it sits here without being seen One of the reasons simple scaling does not work is the fact pharmacodynamics are different Which means the conditions that govern exposure response relationships in neonates need to be carefully considered …Ignore these at your peril Summary of Preclinical Pharmacodynamic Studies for Neonates** • Hope el al JID 2008 – Micafungin for neonates – Primary question of HCME – Rabbit model with hematogenous dissemination • Warn et al AAC 2010 – Anidulafungin for neonates – Primary question
    [Show full text]
  • Adaptive Designs in Clinical Trials: Why Use Them, and How to Run and Report Them Philip Pallmann1* , Alun W
    Pallmann et al. BMC Medicine (2018) 16:29 https://doi.org/10.1186/s12916-018-1017-7 CORRESPONDENCE Open Access Adaptive designs in clinical trials: why use them, and how to run and report them Philip Pallmann1* , Alun W. Bedding2, Babak Choodari-Oskooei3, Munyaradzi Dimairo4,LauraFlight5, Lisa V. Hampson1,6, Jane Holmes7, Adrian P. Mander8, Lang’o Odondi7, Matthew R. Sydes3,SofíaS.Villar8, James M. S. Wason8,9, Christopher J. Weir10, Graham M. Wheeler8,11, Christina Yap12 and Thomas Jaki1 Abstract Adaptive designs can make clinical trials more flexible by utilising results accumulating in the trial to modify the trial’s course in accordance with pre-specified rules. Trials with an adaptive design are often more efficient, informative and ethical than trials with a traditional fixed design since they often make better use of resources such as time and money, and might require fewer participants. Adaptive designs can be applied across all phases of clinical research, from early-phase dose escalation to confirmatory trials. The pace of the uptake of adaptive designs in clinical research, however, has remained well behind that of the statistical literature introducing new methods and highlighting their potential advantages. We speculate that one factor contributing to this is that the full range of adaptations available to trial designs, as well as their goals, advantages and limitations, remains unfamiliar to many parts of the clinical community. Additionally, the term adaptive design has been misleadingly used as an all-encompassing label to refer to certain methods that could be deemed controversial or that have been inadequately implemented. We believe that even if the planning and analysis of a trial is undertaken by an expert statistician, it is essential that the investigators understand the implications of using an adaptive design, for example, what the practical challenges are, what can (and cannot) be inferred from the results of such a trial, and how to report and communicate the results.
    [Show full text]
  • Adaptive Design: a Review of the Technical, Statistical, and Regulatory Aspects of Implementation in a Clinical Trial
    Adaptive Design: A Review of the Technical, Statistical, and Regulatory Aspects of Implementation in a Clinical Trial 1,2 1 Franck Pires Cerqueira, MSc , Angelo Miguel Cardoso Jesus, PhD , and Maria Dulce 2 Cotrim, PhD 1 Polytechnic Institute of Porto School of Health, Department of Pharmacy Porto, Portugal 2 Pharmacy Faculty of the University of Coimbra, Department of Pharmacology Coimbra, Portugal Abstract Background: In an adaptive trial, the researcher may have the option of responding to interim safety and efficacy data in a number of ways, including narrowing the study focus or increasing the number of subjects, balancing treatment allocation or different forms of randomization based on responses of subjects prior to treatment. This research aims at compiling the technical, statistical, and regulatory implications of the employment of adaptive design in a clinical trial. Methods: Review of adaptive design clinical trials in Medline, PubMed, EU Clinical Trials Register, and ClinicalTrials.gov. Phase I and seamless phase I/II trials were excluded. We selected variables extracted from trials that included basic study characteristics, adaptive design features, size and use of inde- pendent data-monitoring committees (DMCs), and blinded interim analysis. Results: The research retrieved 336 results, from which 78 were selected for analysis. Sixty-seven were published articles, and 11 were guidelines, papers, and regulatory bills. The most prevalent type of adaptation was the seamless phase II/III design 23.1%, followed by adaptive dose progression 19.2%, pick the winner / drop the loser 16.7%, sample size re-estimation 10.3%, change in the study objective 9.0%, adaptive sequential design 9.0%, adaptive randomization 6.4%, biomarker adaptive design 3.8%, and endpoint adaptation 2.6%.
    [Show full text]
  • Role and Limitations of Epidemiology in Establishing a Causal Association Eduardo L
    Seminars in Cancer Biology 14 (2004) 413–426 Role and limitations of epidemiology in establishing a causal association Eduardo L. Franco a,∗, Pelayo Correa b, Regina M. Santella c, Xifeng Wu d, Steven N. Goodman e, Gloria M. Petersen f a Departments of Epidemiology and Oncology, McGill University, 546 Pine Avenue West, Montreal, QC, Canada H2W1S6 b Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, USA c Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA d Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA e Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA f Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA Abstract Cancer risk assessment is one of the most visible and controversial endeavors of epidemiology. Epidemiologic approaches are among the most influential of all disciplines that inform policy decisions to reduce cancer risk. The adoption of epidemiologic reasoning to define causal criteria beyond the realm of mechanistic concepts of cause-effect relationships in disease etiology has placed greater reliance on controlled observations of cancer risk as a function of putative exposures in populations. The advent of molecular epidemiology further expanded the field to allow more accurate exposure assessment, improved understanding of intermediate endpoints, and enhanced risk prediction by incorporating the knowledge on genetic susceptibility. We examine herein the role and limitations of epidemiology as a discipline concerned with the identification of carcinogens in the physical, chemical, and biological environment. We reviewed two examples of the application of epidemiologic approaches to aid in the discovery of the causative factors of two very important malignant diseases worldwide, stomach and cervical cancers.
    [Show full text]
  • (GIVIMP) for the Development and Implementation of in Vitro Methods for 829 Regulatory Use in Human Safety Assessment
    1 2 Draft GUIDANCE DOCUMENT ON GOOD IN VITRO METHOD PRACTICES (GIVIMP) 3 FOR THE DEVELOPMENT AND IMPLEMENTATION OF IN VITRO METHODS FOR 4 REGULATORY USE IN HUMAN SAFETY ASSESSMENT 5 6 FOREWORD 7 8 A guidance document on Good In Vitro Method Practices (GIVIMP) for the development and 9 implementation of in vitro methods for regulatory use in human safety assessment was 10 identified as a high priority requirement. The aim is to reduce the uncertainties in cell and 11 tissue-based in vitro method derived predictions by applying all necessary good scientific, 12 technical and quality practices from in vitro method development to in vitro method 13 implementation for regulatory use. 14 The draft guidance is coordinated by the European validation body EURL ECVAM and has 15 been accepted on the work plan of the OECD test guideline programme since April 2015 as a 16 joint activity between the Working Group on Good Laboratory Practice (GLP) and the 17 Working Group of the National Coordinators of the Test Guidelines Programme (WNT). 18 The draft document prepared by the principal co-authors has been sent in September 2016 to 19 all 37 members of the European Union Network of Laboratories for the Validation of 20 Alternative Methods (EU-NETVAL1) and has been subsequently discussed at the EU- 21 NETVAL meeting on the 10th of October 2016. 22 By November/December 2016 the comments of the OECD Working Group on GLP and 23 nominated experts of the OECD WNT will be forwarded to EURL ECVAM who will 24 incorporate these and prepare an updated version.
    [Show full text]
  • Adaptive Platform Trials
    Corrected: Author Correction PERSPECTIVES For example, APTs require considerable OPINION pretrial evaluation through simulation to assess the consequences of patient selection Adaptive platform trials: definition, and stratification, organization of study arms, within- trial adaptations, overarching statistical modelling and miscellaneous design, conduct and reporting issues such as modelling for drift in the standard of care used as a control over time. considerations In addition, once APTs are operational, transparent reporting of APT results requires The Adaptive Platform Trials Coalition accommodation for the fact that estimates of efficacy are typically derived from a model Abstract | Researchers, clinicians, policymakers and patients are increasingly that uses information from parts of the interested in questions about therapeutic interventions that are difficult or costly APT that are ongoing, and may be blinded. to answer with traditional, free- standing, parallel- group randomized controlled As several groups are launching APTs, trials (RCTs). Examples include scenarios in which there is a desire to compare the Adaptive Platform Trials Coalition was multiple interventions, to generate separate effect estimates across subgroups of formed to generate standardized definitions, share best practices, discuss common design patients with distinct but related conditions or clinical features, or to minimize features and address oversight and reporting. downtime between trials. In response, researchers have proposed new RCT designs This paper is based on the findings from such as adaptive platform trials (APTs), which are able to study multiple the first meeting of this coalition, held in interventions in a disease or condition in a perpetual manner, with interventions Boston, Massachusetts in May 2017, with entering and leaving the platform on the basis of a predefined decision algorithm.
    [Show full text]
  • Statistical Methods in Clinical Trial Design Yu Du
    Statistical Methods in Clinical Trial Design by Yu Du A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore, Maryland March, 2018 c Yu Du 2018 All rights reserved Abstract Numerous human medical problems or diseases have been aided by the devel- opment of effective treatments such as drugs and medical devices. Clinical trials are an integral part of the development process, determining the safety and effi- cacy of the new proposed treatment, as required by the Food and Drug Admin- istration of the United States. A reliable, efficient and cost-effective way of con- ducting the clinical trials is important for advancing useful treatments/devices to market and screening out the useless ones, thus benefiting public health in a timely manner. I developed several statistical methods and applications toward this pur- pose, ranging from early, small scale Phase I studies to late, large scale Phase III studies in clinical trials. In Phase I studies, I establish a general framework for a multi-stage adaptive design where I jointly model a continuous efficacy outcome and continuous toxi- city endpoints from multiple treatment cycles, unlike the traditional method that only considers a binary toxicity endpoint (joint work with Mayo Clinic). Extensive simulations confirmed that the design had a high probability of making the correct ii ABSTRACT dose selection and good overdose control. To our best knowledge, this proposed Phase I dual-endpoint dose-finding design is the first to incorporate multiple cy- cles of toxicities and a continuous efficacy outcome.
    [Show full text]
  • Transforming Clinical Trials with Digital Tech, and What That Means for the Patient
    ■ SCRIP 100 SPONSORED BY: Transforming Clinical Trials With Digital Tech, And What That Means For The Patient Many stakeholders within the pharma and biotech industries are management systems, safety systems and data repositories. A witnessing radical shifts taking place in how clinical trials are central data storage location provides sponsors and sites access conceived, designed and conducted. This transformation relies in real time, and increases productivity by allowing information heavily on applying the power of digital technologies. to be quickly shared and managed in a secure fashion. As new technologies emerge, they will converge through networks Additionally, the continuous streaming of data to cloud-based plat- and cloud-based platforms to create a new digital health care ecosys- forms could accelerate clinical trials and decrease protocol amend- tem. Collectively, they will have a greater impact on clinical trials than ments, resulting in reduced clinical trial costs. Also, sponsors can use any one technology would achieve separately. At the center of this cloud-based platforms for data submission to regulatory agencies, ecosystem is the patient, demonstrated by the uptick in personalized which has the potential to accelerate drug development, streamline therapies and a growing emphasis on patient-reported outcomes. regulatory review and enhance regulatory decision-making.2 While the mean projected return on new drug research and devel- DEMOCRATIZATION OF AI, DATA AND ALGORITHMS opment (R&D) investments by a dozen large cap biopharma firms fell from 10.1% in 2010 to 1.9% in 2018,1 an opportunity remains The influx of big data is fueling algorithms that are the building blocks for emerging digital technologies to improve R&D productivity.
    [Show full text]