The Filtration Rate, Oxygen Consumption and Biomass of The

Total Page:16

File Type:pdf, Size:1020Kb

The Filtration Rate, Oxygen Consumption and Biomass of The Edith Cowan University Research Online Theses : Honours Theses 1996 The Filtration Rate, Oxygen Consumption and Biomass of the Introduced Polychaete Sabella Spallanzanii Gmelin Within Cockburn Sound : Can it Control Phytoplankton Levels and is it an Efficient Filtereeder? F Geordie Clapin Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Marine Biology Commons Recommended Citation Clapin, G. (1996). The Filtration Rate, Oxygen Consumption and Biomass of the Introduced Polychaete Sabella Spallanzanii Gmelin Within Cockburn Sound : Can it Control Phytoplankton Levels and is it an Efficient Filter Feeder?. https://ro.ecu.edu.au/theses_hons/321 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/321 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. USE OF THESIS The Use of Thesis statement is not included in this version of the thesis. The filtration rate, oxygen consumption and biomass of the introduced polychaete Sabella spallanzanii Gmelin withir. Cockburn Sound: can it control phytoplankton levels and is it an efficient filter feeder? THESIS for the Degree of Bachelor of Science HONOURS Geordie Clapin Stndent No. 1996 Department of Environmental Management Edith Cowan University, Joondalup. Supervisors: Dr Paul Lavery Edith Cowan University and Dr Sjaak Lemmens CSIRO TABLE OF CONTENTS COPYRIGHT CLAUSE TABLE OF CONTENTS ..................................................................................................... 11 LIST OF FIGURES ............................................................................................................. VI LIST OF TABLES ............................................................................................................. VII ABSTRACT •..•••••.••.••.••.••...•••••...•••••••.••.•...••.•..........................•.......•........•••...•.•• VIII DECLARATION ................................................................................................................. IX ACKNOWLEDGEMENTS .................................................................................................. x INTRODUCTION •....................•...•••........•••.....•••........•.•......•.••.••....••••••••.••••••••••••.. 1 Background .................................................................................................................... I Significance and purpose of the study .............................................................................. 2 Components of the study ................................................................................................. 4 Aims ............................................................................................................................... 5 Review of literature ......................................................................................................... 6 Structure of the thesis ..................................................................................................... 9 Description of the study site: Cockburn Sound ............................................................... I 0 BIOMASS IN COCKBURN SOUND ................................................................... 13 INTRODUCTION .............................................................................................................. 13 Aims ............................................................................................................................. 13 METHODS ........................................................................................................................ I4 Study site ...................................................................................................................... 14 Preliminary sampling and detennination of sample size ....................... ,.......................... 15 Preliminary investigation to detennine an appropriate measure of biomass ..................... 16 Sampling design, collection and processing .................................................................... 18 Area of Sabella spal/anzanii coverage .......................................................................... I 9 Statistical analyses ........................................................................................................ 20 RESULTS .......................................................................................................................... 20 DISCUSSION .................................................................................................................... 25 Distribution of Sabella spallanzanii biomass within Cockburn Sound ............................ 25 Seasonal changes in biomass and worm size .................................................................. 27 FILTRATION RATE ............................................................................................ 29 INTRODUCTION .............................................................................................................. 29 Evidence of effects of temperature and algal cell concentration on filtration rate ............. 29 Aims and hypothesis ..................................................................................................... 31 Definition ofTenns ....................................................................................................... 31 Literature on filtration rate methodology ........................................................................ 32 MEIHODS ........................................................................................................................ 35 Experimental design ...................................................................................................... 35 Collection and care of specimens ................................................................................... 36 Phytoplankton selection and rearing ............................................................................... 36 P re IUJ1.JJl3lY. .mvestJgatJon . .............................................................................................. 36 Experimental apparatus, set-up and testing .................................................................... 37 Procedure ..................................................................................................................... 38 Calculation of filtration rate .......................................................................................... 39 Statistical analyses ........................................................................................................ 41 RESULTS .......................................................................................................................... 42 Effect of temperature .................................................................................................... 42 Effect of algal cell concentration ................................................................................... 43 Effect of body and crown size ....................................................................................... 44 DISCUSSION .................................................................................................................... 4 7 Effect of temperature .................................................................................................... 47 Effect of algal cell concentration ................................................................................... 4K Effect ofbody and cro\Vfl size ....................................................................................... 50 OXYGEN CONSUMPTION •....•.••••...••..•••...•.••..•••••.•..........••.•••..•.•......•...•..•..••••... 52 INTRODUCTION .............................................................................................................. 52 Aims and hypothesis ..................................................................................................... 53 METHODS ........................................................................................................................ 53 The methodology of measuring oxygen consumption ...................................................... 53 Experimental design ...................................................................................................... 55 Collection and care of speciinens ..................................................................................
Recommended publications
  • Some Quantitative Aspects of Feeding in Sabellid and Serpulid Fan Worms
    J. mar. bioI. Ass. U.K. (I957) 36, 309-316 309 Printed in Great Britain SOME QUANTITATIVE ASPECTS OF FEEDING IN SABELLID AND SERPULID FAN WORMS By R. PHILLIPS DALES Bedford College, University of London INTRODUCTION It is apparent, from J0rgensen's recent review (1955) of quantitative aspects of filter feeding in invertebrates, that virtually nothing is known of the rate of filtering in polychaete suspension feeders, of which the sabellid and serpulid fan worms are perhaps the most important. There seems to be little variation in the filter-feeding mechanism in different sabellid and serpulid polychaetes. The most detailed account of the feeding mechanism of these worms is that of Sabella published by Nicol (1930) with a resume of earlier work on sabellids and serpulids. Some in• formation on feeding and the anatomy of the crown in other genera may be found in the works of Soulier, 1891 (Serpula, Hydroides, Protula, Branchi• omma, Spirographis and Myxicola), Johansson, 1927 (Serpula and Pomato• ceros) and Thomas, 1940 (Pomatoceros). That the crown arises as a paired structure from the prostomium was shown by Wilson (1936) in Branchiomma. In adults, the crown may retain a clearly divided form, as in many serpulids such as Pomatoceros, or form an almost continuous single cone as in Myxicola or Salmacina. It is not, however, the purpose of the present paper to describe these variations in morphology, but to present some quantitative data on the filtering process. The species investigated were those which could be ob• tained in sufficient quantity at Plymouth. The results of experiments on the sabellids, Myxicola infundibulum (Renier) and Sabella pavonina Savigny, and on the serpulids, Pomatoceros triqueter (L.), Hydroides norvegica (Gunnerus), Spirorbis borealis Daudin, and Salmacina dysteri (Huxley) are presented here.
    [Show full text]
  • Phylogenetic Relationships of Serpulidae (Annelida: Polychaeta) Based on 18S Rdna Sequence Data, and Implications for Opercular Evolution Janina Lehrkea,Ã, Harry A
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 195–206 www.elsevier.de/ode Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution Janina Lehrkea,Ã, Harry A. ten Hoveb, Tara A. Macdonaldc, Thomas Bartolomaeusa, Christoph Bleidorna,1 aInstitute for Zoology, Animal Systematics and Evolution, Freie Universitaet Berlin, Koenigin-Luise-Street 1-3, 14195 Berlin, Germany bZoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cBamfield Marine Sciences Centre, Bamfield, British Columbia, Canada, V0R 1B0 Received 19 December 2005; accepted 2 June 2006 Abstract Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well- supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula- clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation. r 2007 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Serpulidae; Phylogeny; Operculum; 18S rRNA gene; Annelida; Polychaeta Introduction distinctive calcareous tubes and bilobed tentacular crowns, each with numerous radioles that bear shorter Serpulids are common members of marine hard- secondary branches (pinnules) on the inner side.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Mapping and Distribution of Sabella Spallanzanii in Port Phillip Bay Final
    Mapping and distribution of Sabellaspallanzanii in Port Phillip Bay Final Report to Fisheries Research and Development Corporation (FRDC Project 94/164) G..D. Parry, M.M. Lockett, D.P. Crookes, N. Coleman and M.A. Sinclair May 1996 Mapping and distribution of Sabellaspallanzanii in Port Phillip Bay Final Report to Fisheries Research and Development Corporation (FRDC Project 94/164) G.D. Parry1, M. Lockett1, D. P. Crookes1, N. Coleman1 and M. Sinclair2 May 1996 1Victorian Fisheries Research Institute Departmentof Conservation and Natural Resources PO Box 114, Queenscliff,Victoria 3225 2Departmentof Ecology and Evolutionary Biology Monash University Clayton Victoria 3068 Contents Page Technical and non-technical summary 2 Introduction 3 Background 3 Need 4 Objectives 4 Methods 5 Results 5 Benefits 5 Intellectual Property 6 Further Development 6 Staff 6 Final cost 7 Distribution 7 Acknow ledgments 8 References 8 Technical and Non-technical Summary • The sabellid polychaete Sabella spallanzanii, a native to the Mediterranean, established in Port Phillip Bay in the late 1980s. Initially it was found only in Corio Bay, but during the past fiveyears it has spread so that it now occurs throughout the western half of Port Phillip Bay. • Densities of Sabella in many parts of the bay remain low but densities are usually higher (up to 13/m2 ) in deeper water and they extend into shallower depths in calmer regions. • Sabella larvae probably require a 'hard' surface (shell fragment, rock, seaweed, mollusc or sea squirt) for initial attachment, but subsequently they may use their own tube as an anchor in soft sediment . • Changes to fish communities following the establishment of Sabella were analysed using multidimensional scaling and BACI (Before, After, Control, Impact) design analyses of variance.
    [Show full text]
  • Phylogeography of the Invasive Polychaete Sabella Spallanzanii (Sabellidae) Based on the Nucleotide Sequence of Internal Transcribed Spacer 2 (ITS2) of Nuclear Rdna
    MARINE ECOLOGY PROGRESS SERIES Vol. 215: 169–177, 2001 Published May 31 Mar Ecol Prog Ser Phylogeography of the invasive polychaete Sabella spallanzanii (Sabellidae) based on the nucleotide sequence of internal transcribed spacer 2 (ITS2) of nuclear rDNA F. P. Patti*, M. C. Gambi Stazione Zoologica ‘A. Dohrn’, Laboratorio di Ecologia del Benthos, 80077 Ischia (Napoli), Italy ABSTRACT: Genetic relationships between different populations of the invasive species Sabella spallanzanii (Gmelin, 1791) (Polychaeta, Sabellidae) are investigated through the use of the internal transcribed spacer 2 (ITS2) of the nuclear ribosomal DNA (285 bp). Samples were taken from South Australian waters (3 populations), the Mediterranean Sea (8 populations) and the French Atlantic coast (1 population). The ITS2 sequences were analyzed using both maximum parsimony and unweighted pair-group mean analysis (UPGMA) algorithms; results showed genetic disjunction between the Australian and the Mediterranean populations. Within the Mediterranean populations, 3 different sub-groups, corresponding to different sub-basins, could be clearly detected (Northwest- ern, Central and Eastern basins). The Atlantic population showed strong differences with the Mediterranean and Australian populations, but did not allow the identification of the source of intro- duction from Europe to Australia. Data also suggest the occurrence of a reduced genetic variability of the Australian populations, probably due to the ‘founder effect’ of one introduction, either via ballast waters or hull fouling. The recent description of the life cycle and larval development of S. spallan- zanii in the Mediterranean Sea, with a long pelagic larval phase and a post-settlement stage of meta- morphosis (approx. 25 d), supports the hypothesis of introduction via ballast waters (larval pool).
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Biodiversity Conservation and Habitat Management
    CONTENTS BIODIVERSITY CONSERVATION AND HABITAT MANAGEMENT Biodiversity Conservation and Habitat Management - Volume 1 No. of Pages: 458 ISBN: 978-1-905839-20-9 (eBook) ISBN: 978-1-84826-920-0 (Print Volume) Biodiversity Conservation and Habitat Management - Volume 2 No. of Pages: 428 ISBN: 978-1-905839-21-6 (eBook) ISBN: 978-1-84826-921-7 (Print Volume) For more information of e-book and Print Volume(s) order, please click here Or contact : [email protected] ©Encyclopedia of Life Support Systems (EOLSS) BIODIVERSITY CONSERVATION AND HABITAT MANAGEMENT CONTENTS Preface xv VOLUME I Biodiversity Conservation and Habitat Management : An Overview 1 Francesca Gherardi, Dipartimento di Biologia Animale e Genetica, Università di Firenze, Italy Claudia Corti, California Academy of Sciences, San Francisco CA, U.S.A. Manuela Gualtieri, Dipartimento di Scienze Zootecniche, Università di Firenze, Italy 1. Introduction: the amount of biological diversity 2. Diversity in ecosystems 2.1. African wildlife systems 2.2. Australian arid grazing systems 3. Measures of biodiversity 3.1. Species richness 3.2. Shortcuts to monitoring biodiversity: indicators, umbrellas, flagships, keystones, and functional groups 4. Biodiversity loss: the great extinction spasm 5. Causes of biodiversity loss: the “evil quartet” 5.1. Over-harvesting by humans 5.2. Habitat destruction and fragmentation 5.3. Impacts of introduced species 5.4. Chains of extinction 6. Why conserve biodiversity? 7. Conservation biology: the science of scarcity 8. Evaluating the status of a species: extinct until proven extant 9. What is to be done? Conservation options 9.1. Increasing our knowledge 9.2. Restore habitats and manage them 9.3.
    [Show full text]
  • Allozyme Variation in the Marine Fanworm Sabella Spallanzanii: Comparison of Native European and Introduced Australian Populations
    MARINE ECOLOGY PROGRESS SERIES Vol. 152: 131-143, 1997 Published June 26 Mar Ecol Prog Ser 1 Allozyme variation in the marine fanworm Sabella spallanzanii: comparison of native European and introduced Australian populations Jane Andrew, Robert D. Ward* CSIRO Division of Marine Research, GPO Box 1538, Hobart. Tasmania 7001, Australia ABSTRACT. Three Austral~an(Cockburn Sound, Western Australia, Adelaide, South Australia. Port Ph~llipBay, Victoria) and four European (Roscoff, Atlantic; Alicante, Carteau, and Marseille, all from the Mediterranean Sea) populations of Sabella spallanzanii were exam~nedfor variation at 23 allozyme loci. Levels of genetlc variation were high, with average heterozygosities per locus ranging from 0.20 to 0.21 for the Australian collections, and from 0.23 to 0.27 for the European collections. The 3 Australian collections were genetically very closely related to one another, with no stat~st~callysignificant differ- ences at any of the 15 variable locl. This suggests either an introduction to one port, with a subsequent spread to other areas, or separate introductions with subsequent extensive gene flow. The 4 European collections showed I~m~ted,but significant, d~fferent~ationamong themselves at 10 of 18 variable loc~ Much of the: heterogeneity reflected differences betlveen the Roscoff (Atlantic) collection and the 3 Mediterranean collect~ons.The Koscoff collect~onwas Iess variable, In terms of both heterozygos~ty and mean numbers of allelrs, than the hiled~terraneancollections The Australian collect~onswere more closely rclated to the Xlrditerranean collections (mean Nei distance = 0.040) than to the Roscoff collection (mean Nei distance = 0.084). If a Mediterranean origin is assumed, then the introduction to Australia was accompanied by the loss of about 18% of the original variation.
    [Show full text]
  • Chaetal Loss and Replacement in Pseudopotamilla Reniformis (Sabellida, Annelida)
    Invertebrate Biology 133(3): 261–273. © 2014, The American Microscopical Society, Inc. DOI: 10.1111/ivb.12061 Chaetal loss and replacement in Pseudopotamilla reniformis (Sabellida, Annelida) Glafira D. Kolbasova,1,a Alexander B. Tzetlin,2 and Elena K. Kupriyanova3 1 Department of Invertebrate Zoology, Moscow State University, Moscow 119991, Russia 2 Pertsov White Sea Biological Station, Moscow State University, Moscow 119991, Russia 3 The Australian Museum, Sydney, New South Wales 2010, Australia Abstract. Chaetae are continually being replaced during the life of a polychaete, but the process of chaetal degeneration during replacement is still poorly known. Chaetal loss occurs either one at a time through special degenerative sites, or all chaetae in a chaetal sac are lost simultaneously in the absence of degenerative sites. Old chaetae can be either resorbed inside the coelom or shed. This study describes chaetal degradation, loss, and sub- sequent replacement during experimentally induced regeneration in the sabellid polychaete Pseudopotamilla reniformis. During post-traumatic regeneration in P. reniformis, abdominal- type chaetae fall from the chaetal sac simultaneously without degenerative sites, and are replaced by thoracic-type chaetae. Chaetal sac degradation occurs in three main stages: (1) formation of numerous lysosomes and small electron-transparent vesicles in follicle cell cytoplasm; (2) disintegration of follicular cell membranes; and (3) disintegration of follicular cell cytoplasm. Description of changes during parapodial transformation allows identifica- tion of signs of degradation that can serve as histological indicators of chaetal degeneration in a wide range of polychaetes. Our study suggests that chaetal degeneration and loss in polychaetes can occur either with degenerative sites or without them, depending on the type of chaetal replacement.
    [Show full text]
  • A3a.2 BENTHOS A3a.2.1 Introduction A3a.2.2 UK Context
    Offshore Energy SEA A3a.2 BENTHOS A3a.2.1 Introduction Available information relating to the benthos of the UKCS has been reviewed in successive SEAs – where appropriate in terms of three divisions; offshore, nearshore (to approximately 5km) from shore, and intertidal (littoral). These distinctions also correspond broadly to differences in survey methods and the coverage of both individual studies and regional programmes. In recent years there have been a number of additional data compilations and analyses, notably the Marine Natural Area profile (Jones et al. 2004) by English Nature (now Natural England), the UKSeaMap marine landscape classification (Connor et al. 2006) and the Mapping European Seabed Habitats (MESH) programme (MESH Partnership 2008), and some additional acquisition of data. Similarly, there have been developments in terms of conservation with OSPAR establishing a list of threatened and/or declining species and habitats in the North-East Atlantic, revisions to the UK Biodiversity Action Plan, and site designations. Increasing attention has also been focused on the assessment of changes in benthic community structure and function, in relation to the effects of regional climate change. A3a.2.2 UK context Over a period of nearly one hundred years, the biology of the seabed has been studied in the context of fisheries ecology and, latterly, in relation to biogeographical patterns of species distribution. More recently, numerous smaller spatial scale investigations of the seabed have been carried out, concerned primarily with environmental monitoring of various industrial activities (e.g. oil and gas developments, aggregate extraction, and sewage sludge dumping. Benthic communities identified by various authors show consistency at a high level, and strong correlation with habitat (or substrate) type.
    [Show full text]
  • Joko Pamungkas" CACING Lalit DAN KEINDAHANNYA
    Oseana, Volume XXXVI, Nomor 2, Tahun 2011: 21-29 ISSN 0216- 1877 CACING LAlIT DAN KEINDAHANNYA Oleh Joko Pamungkas" ABSTRACT MARINE WORMS AND THEIR BEAUTY. Many people generally assume that a worm is always ugly. Nonetheless, particular species of polychaete marine worms (Annelida) belonging to the family Serpulidae and Sabel/idae reveal something different. They are showy, beautiful and attractive. Moreover, they are unlike a worm. For many years, these species of seaworms have been fascinating many divers. For their unique shape, these animals are well known as jan worm't'peacock worm'Z'feather-duster worm' (Sabella pavonina Savigny, 1822) and 'christmas-tree worm' iSpirobranchus giganteus Pallas, 1766). PENDAHULUAN bahwa hewan yang dijumpai tersebut adalah seekor cacing. Hal ini karena morfologi eaeing Apa yang terbersit dalam benak tersebut jauh bcrbeda dengan wujud eacing kita manakala kata "cacing ' disebut? yang biasa dijurnpai di darat. Membayangkannya, asosiasi kita biasanya Cacing yang dimaksud ialab cacing laut langsung tertuju pada makhluk buruk rupa yang Polikaeta (Filum Annelida) dari jenis Sabella hidup di tcmpat-tempat kotor, Bentuknya yang pavonina Sevigny, 1822 (Suku Sabellidae) dan filiform dengan wama khas kernerahan kerap membuat hewan inidicap sebagai binatang yang Spirobranchus giganteus Pallas, 1766 (Suku menjijikkan.Cacing juga sering dianggap Serpulidae). Dua fauna laut inisetidaknya dapat sebagai sumber penyakit yang harus dijaubi dianggap sebagai penghias karang yang telah karena dalam dunia medis beberapa penyakit memikat begitu banyak penyelam. Sebagai memang disebabkan oleh fauna ini. cacing, mereka memiliki benmk tubuh yang Padahal, anggapan terscbut tidak "tidak lazirn" narmm sangat menarik. sepenuhnya benar. Di a1am bawah laut, Tulisan ini mengulas beberapa aspek khususnya zona terumbu karang, kita bisa biologi cacing laut polikaeta dari jenis S.
    [Show full text]
  • Sabella Spallanzanii (Gmelin, 1791)
    Sabella spallanzanii (Gmelin, 1791) AphiaID: 130969 ESPIRÓGRAFO Animalia (Reino) > Annelida (Filo) > Polychaeta (Classe) > Sedentaria (Subclasse) > Canalipalpata (Infraclasse) > Sabellida (Ordem) > Sabellidae (Familia) © Vasco Ferreira Vasco Ferreira © Vasco Ferreira Vasco Ferreira 1 © Vasco Ferreira © Vasco Ferreira Estatuto de Conservação Sinónimos Amphitrite ventilabrum [sensu Lamarck, 1818] Amphitrite ventilabrum Gmelin, 1791 Corallina Tubularia-Melitensis Ellis, 1755 Nereis lutraria Pallas, 1766 Sabella gracillima Kinberg, 1866 Sabella penicillum [auct. misspelling] Sabella penicillus (Linnaeus, 1758) Sabella sarsi [auct. misspelling] Sabella sarsii Krøyer, 1856 Sabella unispira Cuvier, 1816 Sabella viola Grube, 1863 Sabella viridis Milne Edwards in Quatrefages, 1866 Serpula penicillus Linnaeus, 1758 Spirographis elegans Quatrefages, 1866 Spirographis gracilis Hansen, 1882 Spirographis imperialis Hansen, 1882 Spirographis longispira Quatrefages, 1866 Spirographis spallanzanii (Viviani, 1805) Tubularia spallanzanii Gmelin, 1791 2 Referências additional source Biosis; Index To Organism Names, available online at http://www.biosis.org.uk/ion/results.asp [details] additional source Bellan, Gerard. (2001). Polychaeta, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels. 50: pp. 214-231. [details] original description Gmelin, J.F. (1791). Vermes. In: Gmelin J.F. (Ed.) Caroli a Linnaei Systema Naturae per Regna Tria Naturae, Ed. 10. Tome 1(6). G.E. Beer, Lipsiae [Leipzig]. pp. 3021-3910. , available online at http://www.biodiversitylibrary.org/item/83098#5 [details] additional source Fattorini, Daniele and Regoli, Francesco 2006. Arsenic speciation in tissues of the Mediterranean Polychaete Sabella spallanzanii. Environmental Toxicology and Chemistry, 23(8):1881-1887 [details] redescription Knight-Jones, Phyllis and Perkins, Thomas H.
    [Show full text]