Joko Pamungkas" CACING Lalit DAN KEINDAHANNYA

Total Page:16

File Type:pdf, Size:1020Kb

Joko Pamungkas Oseana, Volume XXXVI, Nomor 2, Tahun 2011: 21-29 ISSN 0216- 1877 CACING LAlIT DAN KEINDAHANNYA Oleh Joko Pamungkas" ABSTRACT MARINE WORMS AND THEIR BEAUTY. Many people generally assume that a worm is always ugly. Nonetheless, particular species of polychaete marine worms (Annelida) belonging to the family Serpulidae and Sabel/idae reveal something different. They are showy, beautiful and attractive. Moreover, they are unlike a worm. For many years, these species of seaworms have been fascinating many divers. For their unique shape, these animals are well known as jan worm't'peacock worm'Z'feather-duster worm' (Sabella pavonina Savigny, 1822) and 'christmas-tree worm' iSpirobranchus giganteus Pallas, 1766). PENDAHULUAN bahwa hewan yang dijumpai tersebut adalah seekor cacing. Hal ini karena morfologi eaeing Apa yang terbersit dalam benak tersebut jauh bcrbeda dengan wujud eacing kita manakala kata "cacing ' disebut? yang biasa dijurnpai di darat. Membayangkannya, asosiasi kita biasanya Cacing yang dimaksud ialab cacing laut langsung tertuju pada makhluk buruk rupa yang Polikaeta (Filum Annelida) dari jenis Sabella hidup di tcmpat-tempat kotor, Bentuknya yang pavonina Sevigny, 1822 (Suku Sabellidae) dan filiform dengan wama khas kernerahan kerap membuat hewan inidicap sebagai binatang yang Spirobranchus giganteus Pallas, 1766 (Suku menjijikkan.Cacing juga sering dianggap Serpulidae). Dua fauna laut inisetidaknya dapat sebagai sumber penyakit yang harus dijaubi dianggap sebagai penghias karang yang telah karena dalam dunia medis beberapa penyakit memikat begitu banyak penyelam. Sebagai memang disebabkan oleh fauna ini. cacing, mereka memiliki benmk tubuh yang Padahal, anggapan terscbut tidak "tidak lazirn" narmm sangat menarik. sepenuhnya benar. Di a1am bawah laut, Tulisan ini mengulas beberapa aspek khususnya zona terumbu karang, kita bisa biologi cacing laut polikaeta dari jenis S. menjumpai aneka macam cacing yang memiliki pavonina dan S. giganteus yang meliputi; (1) pcnampilan atraktif. Pada saat menyelam, jika taksonomi; (2) morfologi umum;(3) habitat dan tidak dibekali dengan pcngetahuan akan biota penyebaran; (4) cara hidup dan makan; (5) taut yang baik, kita bahkan tidak akan menduga strategi reproduksi; serta (6) pemanfaatannya, I) UPT Loka Konservasi Biota Laut , LIPI Ambon. 21 TAKSONOMI ~ dan Sabella pavonja <MALMGREN. ~. Fauna inimemiliki satusub-spesies, yakni S. pavonina pertama kali dideskrip• Sabellapavon ina abyssorum (ROULE, 1896). sikan oleh Jules Cesar Savigny pada tahun 1822 Klasifikasi terbaru hewan ini menurur READ & (originaldescription). Dalam perkembanganya, BELLAN (20 11)adalah sebagai berikut: biota inijuga memiliki dua nama sinonim, yakni Sabella /on~jbranchialq (QUATREFAGES. Kerajaan :Amrnalia Filum :Annelida Kelas : Polychaeta Sub Kelas : Canalipalpata Bangsa : Sabellida Suku : SabeUidae Marga : Sabella Jcnis :Sabella pavonina Savigny, 1822 Deskripsi yang cukup baik mengenai Serpula gigantea, Spirobranchus (Cymospira) S. giganteus dilakukan oleh DAY (1967). Meski giganteus, Spirobranchus giganteus demikian, dan catatan yang ada, biota ini memiliki giganteus, Spirobranchus giganteus cukup banyak nama sinonirn, yakni 19 nama: microceras, Sp irobranchus giganteus Cymospira bicornis, Cymospira cervina, tricorn is , Spirobranchus megasoma, Cymospira gigantea, Cymospira megasoma, Spirobranchus tricornis, dan Terebella Cymospira rubus, Olga e/egantissima, bicomis (ten HOVE, 2010). Klasifikasi terbaru Penicillum marinum, Pomatoceros oerstedi, dari S. giganteus adalah sebagai berikut (ten Serpula {Cymospira) gigantea, Serpula HOVE,2010): (Galeo/aria) gigantea, Serpula bicornis, Kerajaan :Animalia Filtun :Annelida Kelas :Polikaeta Sub Kelas :Canalipalpata Bangsa : SabeLlida Suku :Serpulidae Marga : Spirobranchus Jenis :Spirobranchus giganteus Pallas, 1766 Dari dua klasifikasi terse but, tampak MORFOLOGI UMUM bahwa S. pavonina dan S. giganteus termasuk Sebagai anggota dan Filum Annelida dalam bangsa yang sarna (Sabellida), namun (cacing gelang), S. pavonina dan S. giganteus berbeda suku.S.pavonina termasuk dalam Suku memiliki tubuh multisegmen (DAY, 1967). Sabellidae, semen tara S. giganteus termasuk Keberadaan organ chaeta (rambut-rambut dalam Suku Serpulidae. halus) pada sebagian segmennya menjadi penanda bahwa keduanya termasuk dalam Kelas Polikaeta (cacing rambut). 22 S. pavonina, secara lebib spesifik, sering menjadi daya tarik tersendiri dari jenis memiliki morfologi tubuh berbentuk silindris cacing ini. dengan modifikasi pada bagian anteriornya. Di negara-negara Eropa, S. pavon ina Tubuh hewan ini terbagi menjadi dua, yakni memiliki nama lokal yang eukup beragam. Di daerah torak dan abdomen. Sebagai ciri khas, Inggris, misalnya, cacing ini dijuluki 'peacock bagian anterior S. pavon ina berbentuk seperti worm' alias cacing burung merak karena rumbai-rumbai yang dikenal dengan sebutan morfologinya yang menyerupai ekor burung 'mahkota tentakel' (tentacular crown) atau merak (LEEWIS, 2002). Dalam babasa Perancis, radiole. Organ ini merupakan alat bantu fauna ini dikenal dengan nama lokal 'sabelle' respirasi yang sekaligus berfungsi sebagai (MULLER, 2(04) atau 'pfauerfederwurm' dalam piranti penangkap mangsa (DAY, 1967). Mahkota babasa Jerman (LEEWIS, 2002). Sementara itu, tentakel, dengan aneka warna yang cantik orang Belanda menyebut fauna dengan sebutan (biasanya merah maroon dengan moriftertentu), 'slijkkokerworm' (ENEMAN, 1984) (Gambar I). Gambar 1. Cacing kipas (Sabellapavonina). Ket. a= mahkota tentakel (radiole); b = tubuh yang terbungkus tabung. Sumber foto: FSC (2008). Sarna balnya dengan S. pavon ina, Menariknya, mabkota tentakel pada S. tubuh S. giganteus terbagi menjadi dua bagian, giganteus mengalami modifikasi dengan bentuk yakni torak dan abdomen dengan ukuran tubuh memilin menyerupai pobon natal dengan sekitar 3 em. DAY (1967) mendeskripsikan beragam warna, yakni oranye, biru, kuning, dan adanya mahkota tentakel (radiole) di bagian putih. Oleh sebab bentuk pilinannya yang unik anterior cacing ini, yang dilengkapi dengan inilah, cacing tersebut dijuluki 'cacing pohon operkulum sebagai organ protektif dan natal' (christmas-tree worm) dan menjadi salah pengontroJ evaporasi (Gam bar 1). Keberadaan saru pesoaa ekosistem bawah laut organ operkulum pada S. giganteus, menjadi (MARlNEBIO,2010) (Gambar3 &4). ciri pembeda dengan jenis S. pavon ina karena S. pavonina tidak memiliki organ tersebut (Gambar2). 23 .. b d Gambar 2. a. Morfologi skematis cacing laut dari Suku Serpulidae (sumber gambar: FAUCHALD, 1977). b. Salah satu spesies dari Suku Serpulidae (Spirodiscus sp.) yang ditemukan di perairan Pulau Nusalaut, MaJuku Tengah, Ket.: a = operkulum; b = radiole; c = torak; d = abdomen. Gambar 3. Spirobranchus giganteus (tampak atas). Sumber foto: P.RYAN (20 II) 24 Gambar 4. Spirobranchus giganteus (tampak samping). Sumber foto: P.RYAN (2011) HABITAT DAN PENYEBARAN CARA IUDUP DAN MAKAN S. pavonina hanya ditemukan pada Cacing laut S. pavon ina bersifat perairan asin (marine waters) dan tidak sedentary (menetap) pada bebatuan di substrat ditemukan pada perairan payau, tawar, maupun perairan yang merupakan campuran antara terrestrial. Pada habitatnya, cacing io.i sering lumpur daD pssir (WILDSCREEN, 2010). ditemukan menempel di bebatuan pada substrat Penampakan biota Laut ini cukup menonjol, perairan yang cenderung mengandung lumpur karen a di samping morfologi mahkota bercampur dengan pasir. Spesies ioidilaporkan tentakelnya yang elok, tabung dari S.pavon ina menghuni daerah intertidal (pasang-surut) kc menjulur sekitar 15em dari permukaan sedimen. arab laut lepas. S. pavonina memiliki sebaran Tabung spesies ini menjadi piranti perlindungan yang Luas dan banyak ditemukan di perairan diri dan tcrbuat dari campuran antara pasir dan Eropa (BELLAN, 200 I), perairan Atlantik Utara lumpur yang direkatkan oleh cairan mucus, (HOLLY, 1938), Atlantik Timur Laut sehingga teksturnya bersifat lentur seperti karet (HAYWARD & RYLAND, 1990), dan beberapa (rubber-like texture) (FSC, 2008) (Gambar 5). perairan subtropis Iainnya, Tidak bcrbeda dengan S.pavonina, S. Beralih ke S. giganteus, hewan ini juga giganteus bidup sesil dengan cara melekatkan hanya ditemukan di perairan asin dan tidak di dirinya pada karang bidup. Seperti umumnya habitat lainnya. S. giganteus banyak ditemukan anggota Famili Serpulidae yang lain, tubuh menempeL pada pennukaan karang bidup dan hewan ini dibungkus oleh tabung yang tersusun lazim dijumpai di daerah tropis seperti di Laut dari kalsium karbonat (calcareous tube) yang Mediterania (STREFTARIS et al., 2005), Laut berfungsi sebagai protektor dari predator (HOVE Merah, dan Samudera Hindia scbelah barat & WOLF, 1984). Berkebalikan dengan tabung (F1SHELSON& RULL1ER, 1%9).Penelitianoleh S. pavon ina yang lentur, tabung S. giganteus PETITJEAN & MYERS (2005) secara khusus cenderung bersifat keras dan kaku (Gambar 6). membuktikan babwa spesies ini juga banyak dijumpai di Laut Cozumel, Meksiko. 25 Gambar 5. Tube cacing laut polikaetadari Famili Sabellidae. Sumber foto: G DRANGE (2011). Gambar 6. Tube cacing laut polikaetadari Famili Serpulidae. Sumber foto: M A. WILSON (2008). 26 Dalam hal cara memperoleh makanan, fotografi bawah air untuk berlornba-lomba kedua jenis cacing ini adalah filter feeder mendapatkan foto spesies cacing tersebut (FAUCHALD, 1977). Mahkota tentakel dan dengan sudut dan resolusi yang baik. kedua jenis cacing ini merupakan alar saring Meskipun dernikian, di beberapa yang efektif dalam menangkap materi organik negara maju, S. pavonina dan S. gigantea (detritus, plankton,
Recommended publications
  • Some Quantitative Aspects of Feeding in Sabellid and Serpulid Fan Worms
    J. mar. bioI. Ass. U.K. (I957) 36, 309-316 309 Printed in Great Britain SOME QUANTITATIVE ASPECTS OF FEEDING IN SABELLID AND SERPULID FAN WORMS By R. PHILLIPS DALES Bedford College, University of London INTRODUCTION It is apparent, from J0rgensen's recent review (1955) of quantitative aspects of filter feeding in invertebrates, that virtually nothing is known of the rate of filtering in polychaete suspension feeders, of which the sabellid and serpulid fan worms are perhaps the most important. There seems to be little variation in the filter-feeding mechanism in different sabellid and serpulid polychaetes. The most detailed account of the feeding mechanism of these worms is that of Sabella published by Nicol (1930) with a resume of earlier work on sabellids and serpulids. Some in• formation on feeding and the anatomy of the crown in other genera may be found in the works of Soulier, 1891 (Serpula, Hydroides, Protula, Branchi• omma, Spirographis and Myxicola), Johansson, 1927 (Serpula and Pomato• ceros) and Thomas, 1940 (Pomatoceros). That the crown arises as a paired structure from the prostomium was shown by Wilson (1936) in Branchiomma. In adults, the crown may retain a clearly divided form, as in many serpulids such as Pomatoceros, or form an almost continuous single cone as in Myxicola or Salmacina. It is not, however, the purpose of the present paper to describe these variations in morphology, but to present some quantitative data on the filtering process. The species investigated were those which could be ob• tained in sufficient quantity at Plymouth. The results of experiments on the sabellids, Myxicola infundibulum (Renier) and Sabella pavonina Savigny, and on the serpulids, Pomatoceros triqueter (L.), Hydroides norvegica (Gunnerus), Spirorbis borealis Daudin, and Salmacina dysteri (Huxley) are presented here.
    [Show full text]
  • Descriptions of New Serpulid Polychaetes from the Kimberleys Of
    © The Author, 2009. Journal compilation © Australian Museum, Sydney, 2009 Records of the Australian Museum (2009) Vol. 61: 93–199. ISSN 0067-1975 doi:10.3853/j.0067-1975.61.2009.1489 Descriptions of New Serpulid Polychaetes from the Kimberleys of Australia and Discussion of Australian and Indo-West Pacific Species of Spirobranchus and Superficially Similar Taxa T. Gottfried Pillai Zoology Department, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom absTracT. In 1988 Pat Hutchings of the Australian Museum, Sydney, undertook an extensive polychaete collection trip off the Kimberley coast of Western Australia, where such a survey had not been conducted since Augener’s (1914) description of some polychaetes from the region. Serpulids were well represented in the collection, and their present study revealed the existence of two new genera, and new species belonging to the genera Protula, Vermiliopsis, Hydroides, Serpula and Spirobranchus. The synonymy of the difficult genera Spirobranchus, Pomatoceros and Pomatoleios is also dealt with. Certain difficult taxa currently referred to as “species complexes” or “species groups” are discussed. For this purpose it was considered necessary to undertake a comparison of apparently similar species, especially of Spirobranchus, from other locations in Australia and the Indo-West Pacific region. It revealed the existence of many more new species, which are also described and discussed below. Pillai, T. Gottfried, 2009. Descriptions of new serpulid polychaetes from the Kimberleys of Australia and discussion of Australian and Indo-West Pacific species ofSpirobranchus and superficially similar taxa.Records of the Australian Museum 61(2): 93–199. Table of contents Introduction ................................................................................................................... 95 Material and methods ..................................................................................................
    [Show full text]
  • Phylogenetic Relationships of Serpulidae (Annelida: Polychaeta) Based on 18S Rdna Sequence Data, and Implications for Opercular Evolution Janina Lehrkea,Ã, Harry A
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 195–206 www.elsevier.de/ode Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution Janina Lehrkea,Ã, Harry A. ten Hoveb, Tara A. Macdonaldc, Thomas Bartolomaeusa, Christoph Bleidorna,1 aInstitute for Zoology, Animal Systematics and Evolution, Freie Universitaet Berlin, Koenigin-Luise-Street 1-3, 14195 Berlin, Germany bZoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cBamfield Marine Sciences Centre, Bamfield, British Columbia, Canada, V0R 1B0 Received 19 December 2005; accepted 2 June 2006 Abstract Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well- supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula- clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation. r 2007 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Serpulidae; Phylogeny; Operculum; 18S rRNA gene; Annelida; Polychaeta Introduction distinctive calcareous tubes and bilobed tentacular crowns, each with numerous radioles that bear shorter Serpulids are common members of marine hard- secondary branches (pinnules) on the inner side.
    [Show full text]
  • Boccardia Proboscidea Class: Polychaeta, Sedentaria, Canalipalpata
    Phylum: Annelida Boccardia proboscidea Class: Polychaeta, Sedentaria, Canalipalpata Order: Spionida, Spioniformia A burrowing spionid worm Family: Spionidae Taxonomy: Boccardia proboscidea’s senior Trunk: subjective synonym, Polydora californica Posterior: Pygidium is a round, flaring (Treadwell, 1914) and an un-typified name, disc with four unequal lobes where dorsal Spio californica (Fewkes, 1889) were both lobes are smaller (Fig. 4) (Hartman 1969). suppressed in 2012 by the International Parapodia: Biramous after first setiger. Commission on Zoological Nomenclature Podia on the first setiger are not lobed, small (ICZN, case 3520). The widely cited and and inconspicuous. The second setiger's used name, Boccardia proboscidea parapodial lobes become twice as large as (Hartman, 1940) was conserved (ICZN the first's, and continue to worm posterior. 2012). Setae (chaetae): All setae are simple and in- clude bunches of short, capillary spines to se- Description tiger six (except for modified setiger five) Size: Specimens up to 30–35 mm in length (Figs. 5a, b). A transverse row of and 1.5 mm in width, where length extends approximately eight neuropodial uncini with age (Hartman 1940). The illustrated (hooded hooks) with bifid (two-pronged) tips specimen has approximately 130 segments begins on setiger seven and continues to (Fig. 1). posterior end (Fig. 5e), with bunches of Color: Yellow-orange with red branchiae capillary setae below them (until setiger 11). and dusky areas around prostomium and Notosetae of setiger five are heavy, dark and parapodia (Hartman 1969). Sato-Okoshi arranged vertically in two rows of five with and Okoshi (1997) report black pigment fol- pairs of long, falcate spines (Fig.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Coral Reef Algae
    Coral Reef Algae Peggy Fong and Valerie J. Paul Abstract Benthic macroalgae, or “seaweeds,” are key mem- 1 Importance of Coral Reef Algae bers of coral reef communities that provide vital ecological functions such as stabilization of reef structure, production Coral reefs are one of the most diverse and productive eco- of tropical sands, nutrient retention and recycling, primary systems on the planet, forming heterogeneous habitats that production, and trophic support. Macroalgae of an astonish- serve as important sources of primary production within ing range of diversity, abundance, and morphological form provide these equally diverse ecological functions. Marine tropical marine environments (Odum and Odum 1955; macroalgae are a functional rather than phylogenetic group Connell 1978). Coral reefs are located along the coastlines of comprised of members from two Kingdoms and at least over 100 countries and provide a variety of ecosystem goods four major Phyla. Structurally, coral reef macroalgae range and services. Reefs serve as a major food source for many from simple chains of prokaryotic cells to upright vine-like developing nations, provide barriers to high wave action that rockweeds with complex internal structures analogous to buffer coastlines and beaches from erosion, and supply an vascular plants. There is abundant evidence that the his- important revenue base for local economies through fishing torical state of coral reef algal communities was dominance and recreational activities (Odgen 1997). by encrusting and turf-forming macroalgae, yet over the Benthic algae are key members of coral reef communities last few decades upright and more fleshy macroalgae have (Fig. 1) that provide vital ecological functions such as stabili- proliferated across all areas and zones of reefs with increas- zation of reef structure, production of tropical sands, nutrient ing frequency and abundance.
    [Show full text]
  • Thelepus Crispus Class: Polychaeta, Sedentaria, Canalipalpata
    Phylum: Annelida Thelepus crispus Class: Polychaeta, Sedentaria, Canalipalpata Order: Terebellida, Terebellomorpha A terebellid worm Family: Terebellidae, Theleponinae Description (Hartman 1969). Notosetae present from Size: Individuals range in size from 70–280 second branchial segment (third body mm in length (Hartman 1969). The greatest segment) and continue almost to the worm body width at segments 10–16 is 13 mm (88 posterior (to 14th segment from end in mature –147 segments). The dissected individual specimens) (Hutchings and Glasby 1986). All on which this description is based was 120 neurosetae short handled, avicular (bird-like) mm in length (from Coos Bay, Fig. 1). uncini, imbedded in a single row on oval- Color: Pinkish orange and cream with bright shaped tori (Figs. 3, 5) where the single row red branchiae, dark pink prostomium and curves into a hook, then a ring in latter gray tentacles and peristomium. segments (Fig. 3). Each uncinus bears a General Morphology: Worm rather stout thick, short fang surmounted by 4–5 small and cigar-shaped. teeth (Hartman 1969) (two in this specimen) Body: Two distinct body regions consisting (Fig. 4). Uncini begin on the fifth body of a broad thorax with neuro- and notopodia segment (third setiger), however, Johnson and a tapering abdomen with only neuropo- (1901) and Hartman (1969) have uncini dia. beginning on setiger two. Anterior: Prostomium reduced, with Eyes/Eyespots: None. ample dorsal flap transversely corrugated Anterior Appendages: Feeding tentacles are dorsally (Fig. 5). Peristomium with circlet of long (Fig. 1), filamentous, white and mucus strongly grooved, unbranched tentacles (Fig. covered. 5), which cannot be retracted fully (as in Am- Branchiae: Branchiae present (subfamily pharctidae).
    [Show full text]
  • Zool({)Jgic/Ffll :§!L[Lj}Djj(F)§
    Zoological Studies 34(2): 117-125 (1995) Zool({)JgiC/ffll :§!l[lJ}dJj(f)§ Distribution of Spirobranchus giganteus cornicuiatus (Hove) on the Coral Reefs of Southern Taiwan Chang-Feng Dai* and Hsiao-Pei Yang Institute of Oceanography, National Taiwan University, Taipei, Taiwan 106, R.O.C. (Accepted February 27, 1995) Chang-Feng Dai and Hsiao-Pei Yang (1995) Distribution of Spirobranchus giganteus corniculatus (Hove) on the coral reefs of southern Taiwan. Zoological Studies 34(2): 117-125. The distribution of Spirobranchus giganteus corniculatus (Hove), a widely distributed tube-building serpulid, on the coral reefs of southern Taiwan was studied by the transect sampling method. Two reef sites in Nanwan Bay, one with a high degree of physical disturbance and the other with a lower degree of disturbance, were surveyed. The spatial distri­ bution of S. giganteus corniculatus on coral colonies was also analyzed using distance to nearest neighbor. The results show that S. giganteus corniculatus is distributed nonrandomly among coral species. Four species, Porites tutee, P. lobete, P. lichen, Montipora informis, are frequently colonized by the worm. About 30 species are occasionally colonized and many coral species are not colonized. Coral species which are frequently colonized by the worm are competitively subordinate. The spatial distribution of S. giganteus corniculatus on a coral colony is related to the number of worms with a tendency toward clustering with in­ creasing number of worms per colony. In addition, most worms were found at intermediate depths (6-17 rn) where the reef surface was flat and there were more colonizable scleractinians. The distribution and abun­ dance of S.
    [Show full text]
  • Polychaeta, Serpulidae) from the Hawaiian Islands1 JULIE H
    Deepwater Tube Worms (Polychaeta, Serpulidae) from the Hawaiian Islands1 JULIE H. BAILEy-BROCK2 THREE SERPULID TUBE WORMS have been dis­ (1906), but no serpulids were found. Hart­ covered on shells and coral fragments taken in man (1966a) reviewed the literature in an dredges from around the Hawaiian Islands. The extensive analysis of the Hawaiian polychaete two serpulines Spirobranchus latiscapus Maren­ fauna. Straughan (1969), presented a more zeller and Vermiliopsis infundibulum Philippi recent survey of the littoral and upper sublit­ are new records for the islands. However, the toral Serpulidae. Other works by Vine (1972) small spirorbid Pileolaria (Duplicaria) dales­ and Vine, Bailey-Brock, and Straughan (1972) traughanae Vine has been described previously include ecological data collected from settle­ from within diving depths (Vine, 1972), but ment plates and by diving, but no records ex­ it is absent from shoal waters and intertidal re­ tend below 28 meters. Serpulids have been gions. 3 The occurrence of this species in the described from deepwater collections in other dredged collections indicates an extensive depth parts of the world. Southward (1963) found range in the Hawaiian Islands. 14 species of calcareous tube worms on hard The tube worms were obtained from col­ substrata dredged from depths as great as 1,755 lections taken during two separate oceano­ meters along the continental shelf off south­ graphic investigations in Hawaiian waters. western Britain. Antarctic collections yielded 14 Material consisting mostly of the pink serpuline genera and more than 23 species from depths Spirobranchus latiscapus was loaned by Dr. E. C. ranging from the littoral zone down to 4,930­ Jones of the National Marine Fisheries Service 4,963 meters in the South Sandwich Trench (N.M.F.S.) and was taken from an average (Hartman, 1966b, 1967).
    [Show full text]
  • SEASMART Program Final Report Annex
    Creating a Sustainable, Equitable & Affordable Marine Aquarium Industry in Papua New Guinea | 1 Table of Contents Executive Summary ............................................................................................................ 7 Introduction ....................................................................................................................... 15 Contract Deliverables ........................................................................................................ 21 Overview of PNG in the Marine Aquarium Trade ............................................................. 23 History of the Global Marine Aquarium Trade & PNG ............................................ 23 Extent of the Global Marine Aquarium Trade .......................................................... 25 Brief History of Two Other Coastal Fisheries in PNG ............................................ 25 Destructive Potential of an Inequitable, Poorly Monitored & Managed Nature of the Trade Marine Aquarium Fishery in PNG ........................... 26 Benefit Potential of a Well Monitored & Branded Marine Aquarium Trade (and Other Artisanal Fisheries) in PNG ................................................................... 27 PNG Way to Best Business Practice & the Need for Effective Branding .............. 29 Economic & Environmental Benefits....................................................................... 30 Competitive Advantages of PNG in the Marine Aquarium Trade ................................... 32 Pristine Marine
    [Show full text]
  • Chaetal Loss and Replacement in Pseudopotamilla Reniformis (Sabellida, Annelida)
    Invertebrate Biology 133(3): 261–273. © 2014, The American Microscopical Society, Inc. DOI: 10.1111/ivb.12061 Chaetal loss and replacement in Pseudopotamilla reniformis (Sabellida, Annelida) Glafira D. Kolbasova,1,a Alexander B. Tzetlin,2 and Elena K. Kupriyanova3 1 Department of Invertebrate Zoology, Moscow State University, Moscow 119991, Russia 2 Pertsov White Sea Biological Station, Moscow State University, Moscow 119991, Russia 3 The Australian Museum, Sydney, New South Wales 2010, Australia Abstract. Chaetae are continually being replaced during the life of a polychaete, but the process of chaetal degeneration during replacement is still poorly known. Chaetal loss occurs either one at a time through special degenerative sites, or all chaetae in a chaetal sac are lost simultaneously in the absence of degenerative sites. Old chaetae can be either resorbed inside the coelom or shed. This study describes chaetal degradation, loss, and sub- sequent replacement during experimentally induced regeneration in the sabellid polychaete Pseudopotamilla reniformis. During post-traumatic regeneration in P. reniformis, abdominal- type chaetae fall from the chaetal sac simultaneously without degenerative sites, and are replaced by thoracic-type chaetae. Chaetal sac degradation occurs in three main stages: (1) formation of numerous lysosomes and small electron-transparent vesicles in follicle cell cytoplasm; (2) disintegration of follicular cell membranes; and (3) disintegration of follicular cell cytoplasm. Description of changes during parapodial transformation allows identifica- tion of signs of degradation that can serve as histological indicators of chaetal degeneration in a wide range of polychaetes. Our study suggests that chaetal degeneration and loss in polychaetes can occur either with degenerative sites or without them, depending on the type of chaetal replacement.
    [Show full text]
  • A3a.2 BENTHOS A3a.2.1 Introduction A3a.2.2 UK Context
    Offshore Energy SEA A3a.2 BENTHOS A3a.2.1 Introduction Available information relating to the benthos of the UKCS has been reviewed in successive SEAs – where appropriate in terms of three divisions; offshore, nearshore (to approximately 5km) from shore, and intertidal (littoral). These distinctions also correspond broadly to differences in survey methods and the coverage of both individual studies and regional programmes. In recent years there have been a number of additional data compilations and analyses, notably the Marine Natural Area profile (Jones et al. 2004) by English Nature (now Natural England), the UKSeaMap marine landscape classification (Connor et al. 2006) and the Mapping European Seabed Habitats (MESH) programme (MESH Partnership 2008), and some additional acquisition of data. Similarly, there have been developments in terms of conservation with OSPAR establishing a list of threatened and/or declining species and habitats in the North-East Atlantic, revisions to the UK Biodiversity Action Plan, and site designations. Increasing attention has also been focused on the assessment of changes in benthic community structure and function, in relation to the effects of regional climate change. A3a.2.2 UK context Over a period of nearly one hundred years, the biology of the seabed has been studied in the context of fisheries ecology and, latterly, in relation to biogeographical patterns of species distribution. More recently, numerous smaller spatial scale investigations of the seabed have been carried out, concerned primarily with environmental monitoring of various industrial activities (e.g. oil and gas developments, aggregate extraction, and sewage sludge dumping. Benthic communities identified by various authors show consistency at a high level, and strong correlation with habitat (or substrate) type.
    [Show full text]