Biodiversity Conservation and Habitat Management

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity Conservation and Habitat Management CONTENTS BIODIVERSITY CONSERVATION AND HABITAT MANAGEMENT Biodiversity Conservation and Habitat Management - Volume 1 No. of Pages: 458 ISBN: 978-1-905839-20-9 (eBook) ISBN: 978-1-84826-920-0 (Print Volume) Biodiversity Conservation and Habitat Management - Volume 2 No. of Pages: 428 ISBN: 978-1-905839-21-6 (eBook) ISBN: 978-1-84826-921-7 (Print Volume) For more information of e-book and Print Volume(s) order, please click here Or contact : [email protected] ©Encyclopedia of Life Support Systems (EOLSS) BIODIVERSITY CONSERVATION AND HABITAT MANAGEMENT CONTENTS Preface xv VOLUME I Biodiversity Conservation and Habitat Management : An Overview 1 Francesca Gherardi, Dipartimento di Biologia Animale e Genetica, Università di Firenze, Italy Claudia Corti, California Academy of Sciences, San Francisco CA, U.S.A. Manuela Gualtieri, Dipartimento di Scienze Zootecniche, Università di Firenze, Italy 1. Introduction: the amount of biological diversity 2. Diversity in ecosystems 2.1. African wildlife systems 2.2. Australian arid grazing systems 3. Measures of biodiversity 3.1. Species richness 3.2. Shortcuts to monitoring biodiversity: indicators, umbrellas, flagships, keystones, and functional groups 4. Biodiversity loss: the great extinction spasm 5. Causes of biodiversity loss: the “evil quartet” 5.1. Over-harvesting by humans 5.2. Habitat destruction and fragmentation 5.3. Impacts of introduced species 5.4. Chains of extinction 6. Why conserve biodiversity? 7. Conservation biology: the science of scarcity 8. Evaluating the status of a species: extinct until proven extant 9. What is to be done? Conservation options 9.1. Increasing our knowledge 9.2. Restore habitats and manage them 9.3. Establish reserves 9.4. Supplement populations 9.5. Legally protect indigenous species 9.6. Prevent non-native species invasion and eradicate pests 9.7. Contribute to education and public awareness 9.8. Combine conservation and economic development 10. Perspectives History of Biodiversity Conservation, Protected Areas and The Conservation Movement 60 Naill E. Doran, Department of Primary Industries, Water and Environment, Tasmania, Australia Alastair M.M. Richardson, University of Tasmania, Australia 1. Global Overview 2. History of Biodiversity Conservation and Protected Areas 2.1. Biodiversity Conservation 2.1.1. Biodiversity 2.1.2. Biodiversity Problems 2.1.3. Biodiversity Conservation 2.2. Protected Areas 2.2.1. Origins of Protected Areas 2.2.2. Time Scales 2.3. Priorities 2.3.1. Biodiversity 2.3.2. Geodiversity ©Encyclopedia of Life Support Systems (EOLSS) i BIODIVERSITY CONSERVATION AND HABITAT MANAGEMENT 2.3.3. Marine Protected Areas 3. A Global Approach 3.1. Preservation versus Collaborative Management 4. Putting a Financial Value on Conservation 5. History of the Conservation Movement 5.1. Early History 5.2. Wise Use versus Protectionism 5.3. Postwar Developments 5.4. Animal Welfare 5.5. Zero Population Growth 5.6. Green Political Parties 5.7. Professional Scientists and Environmentalism 5.8. Tactics 5.9. Nongovernment Organizations 6. The Future Selection, Categorization, Size and Zoning in the World's Protected Areas 93 Franco Andreone, Museo Regionale di Scienze Naturali, Torino, Italy 1. Introduction 2. Selection Process 2.1. Methods to Select a Protected Area 2.2. Case Studies of Ugandan Reserves and South African Coastal Fishes 3. Categorization and Denomination of Protected Areas 3.1. IUCN Categories 3.2. International Important Sites 3.3. Other Kinds of Protected Areas 3.4. Multiple Classifications 4. Size of Protected Areas 4.1. How Big Should Reserves Be? 4.2. Species Number, Area, and Distance 4.3. Population Size and Protected Areas 4.4. Habitat Shape and Size, and Species Number 4.5. Species Loss in Protected Areas 5. Zoning and Differential Use in the Protected Areas 5.1. International Zoning Classifications 5.2. Zoning in "Man and the Biosphere" Reserves 6. A Case Study: the Protected Areas Network in Madagascar 6.1. Biodiversity of Madagascar 6.2. Protected Areas in Madagascar 6.3. National Plan of Environmental Action 6.4. Ecoregional Approach 6.5. Intervention Within the Protected Areas 6.6. Strategic Value of the Protected Areas Network 6.7. Future Steps for the Valorization of Protected Areas in Madagascar Protected Areas and Endemic Species 118 Marco Masseti, Universita di Firenze, Italy 1. Introduction 2. Endemic Species and Ecological Islands 3. Protected Areas and Nature Reserves 4. Case Studies 4.1. The Archipelago of Komodo 4.2. The Galapagos Islands 4.3. The Mediterranean Islands ©Encyclopedia of Life Support Systems (EOLSS) ii BIODIVERSITY CONSERVATION AND HABITAT MANAGEMENT 5. Perspectives Research, Management, and Monitoring in Protected Areas 128 Sabine Stab, Information Centre of the ‘Saxonian Switzerland’ National Park, Germany Klaus Henle, UFZ-Centre for Environmental Research, Department of Conservation Biology, Germany 1. Introduction 2. Research in protected areas 2.1. Research not related to the conservation of protected areas 2.2. Research addressing conservation issues within protected areas 3. Natural ecology 4. Human ecology 5. Integrating human and natural ecology 6. Management of protected areas 6.1. Fields of action in the management of protected areas 7. Monitoring in protected areas 7.1. Design and implementation of monitoring programmes for protected areas 8. Conclusion Management (for Biodiversity) of Forests and other Wooded Habitats 153 Luca M. Luiselli, Center of Studi Ambientali Demetra, Rome, Italy 1. Before Biodiversity Management: A Short Historical Background 2. Forest Habitats and Biodiversity 3. The Rain Forests of Southern Nigeria: A Case Study 4. Managing Well-Known Forest Sites 4.1. Temperate Forests 4.2. Tropical Forests 4.3. People's Dependence on Forest Resources and Institutional Alternatives for Sustainable Management of the Tropical Forests 4.4. Assessing Conservation Priorities in Tropical Forest Sites 4.5. Conservation and Sustainable Management of Tropical Forests: A Concise Definition of the Points 4.6. Plantation as a Biodiversity Restoration Strategy for Degraded Forests 4.7. What to do in the Years to Come Retention of Old Forest Stands and Individual old Trees 176 Rafaello Giannini, University of Florence, Italy Giovanni G. Vendramin, National Research Council, IGV Florence, Italy Federico Sebastiani, University of Florence, Italy Giovanni Emiliani, University of Florence, Italy Ladislav Paule, Technical University, Zvolen, Slovakia 1. A Perspective on Forest Tree Biodiversity Conservation 2. Old Forest Stands 3. Individual Old Trees Temporal and Spatial Continuity in Forest Ecosystems 185 Luca M. Luiselli, Center of Environmental Studies Demetra, Rome, Italy 1. Introduction 2. The Concept of Forest Succession 3. Stability of Forests ©Encyclopedia of Life Support Systems (EOLSS) iii BIODIVERSITY CONSERVATION AND HABITAT MANAGEMENT Maintenance of Diversity in Forest Habitats 197 Luca M. Luiselli, Center of Environmental Studies Demetra, Rome, Italy 1. Beyond the Forest Biodiversity Crisis: The Influence of Humankind in Forests 2. Deforestation Rates Monitoring 3. What to Do? Natural Regeneration in Woodland Management 208 Marco Borghetti, University of Basilicata, Potenza, Italy Rafaello Giannini, University of Firenze, Italy 1. Introduction 2. Importance and Potential of Natural Regeneration 3. Planning and Implementing Natural Regeneration 3.1. Regeneration Systems 4. Requirements and Constraints to Natural Regeneration 4.1. Seed Trees 4.2. Seed Production, Dispersal, and Predation 4.3. Seed Germination and Seedling Growth 4.4. Herbivore Grazing Influence and Management of Herbivores in Forests 219 Godfrey C. Akani, Rivers State University of Science and Technology, Port Harcourt, Nigeria 1. Introduction to the Problems: the Tropical Forests 2. The Deciduous Forests of the Temperate Regions 3. The Coniferous Forests 4. Wildlife Management in Tropical Forests 5. Deer and Forestry in Great Britain 6. The Regeneration of Tree Species under Browsing Pressure of Ungulates 7. Conservation of Herbivores via Predators Management (for Biodiversity) of Savannahs and Other Open Habitats 229 Godfrey C. Akani, Rivers State University of Science and Technology, Port Harcourt, Nigeria 1. Introduction to the Problems 2. Management and Problems of the African Savannahs 3. Savannah and Grazing, and the Problem of Seasonal Fires Rangeland Management 236 Andrea Pardini, University of Florence, Italy 1. Introduction 2. Rangeland Utilization and Degradation 2.1. Effects On Productivity 2.2. Effects On Biodiversity 3. Management Solutions 3.1. The Utility of Resource Diversification 3.2. The Integration of Pastoralism within the Global Economy 4. The Pastoral Systems: Some Examples Discussed in Detail 4.1. Mediterranean Pastures of Central Italy 4.2. Mediterranean Pastures in Southwestern Australia 4.3. Arid Rangelands of the Southern Sultanate Of Oman 4.4. Arid Rangeland in Northern Somalia ©Encyclopedia of Life Support Systems (EOLSS) iv BIODIVERSITY CONSERVATION AND HABITAT MANAGEMENT 4.5. Arid Rangeland in Coastal Peru 4.6. Pastures in the Seasonal Rainfall Areas of Bolivia 4.7. Rangelands in the Republic of São Tomé and Principe Grazing and Cutting Regimes for Old Grassland in Temperate Zones 261 Josef Settele, Umweltforschungszentrum (UFZ), Leipzig-Halle, Germany Klaus Henle, Umweltforschungszentrum (UFZ), Leipzig-Halle, Germany 1. Grasslands in the Temperate Zone: Distribution and History 2. Characteristics of Old Temperate Grassland Ecosystems 2.1. Grazing and Cutting Regimes
Recommended publications
  • Wildlife Management in the National Parks
    wildlife management IN THE NATIONAL PARKS wildlife management IN IHE NATIONAL PARKS 1969 REPRINT FROM ADMINISTRATIVE POLICIES FOR NATURAL AREAS OF THE NATIONAL PARK SYSTEM U.S. DEPARTMENT OF THE INTERIOR • NATIONAL PARK SERVICE For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 15 cents WILDLIFE MANAGEMENT IN THE NATIONAL PARKS ADVISORY BOARD ON WILDLIFE MANAGEMENT, APPOINTED BY SECRETARY OF THE INTERIOR UDALL A. S. Leopold (Chairman), S. A. Cain, C. M. Cottam, I. N. Gabrielson, T. L. Kimball March 4, 1963 Historical In the Congressional Act of 1916 which created the National Park Service, preservation of native animal' life was clearly specified as one of the pur­ poses of the parks. A frequently quoted passage of the Act states "... which purpose is to conserve the scenery and the natural and historic objects and the wild life therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoy­ ment of future generations." In implementing this Act, the newly formed Park Service developed a philosophy of wildlife protection, which in that era was indeed the most obvious and immediate need in wildlife conservation. Thus the parks were established as refuges, the animal populations were protected from wildfire. For a time predators were controlled to protect the "good" ani­ mals from the "bad" ones, but this endeavor mercifully ceased in the 1930's. On the whole, there was little major change in the Park Service practice of wildlife management during the first 40 years of its existence.
    [Show full text]
  • Hudson River Estuary Wildlife and Habitat Conservation Framework
    PART I: An Approach to Biodiversity Conservation Introduction The Hudson River Valley is one of New York State’s most impressive regions, rich in history, and cultural, geological, and biological diversity (Figure 1). At the heart of this region is the Hudson River Estuary, which ranges from saline to fresh water, and pulses daily with four-foot ocean tides. The Hudson River Estuary corridor is one of the most densely populated areas of the country and has long been the fastest growing region of the state. Additionally, it is one of the state’s primary industrial centers. As a result, tremendous pressures have been placed on the health and sustainability of the region’s natural resources. Despite these stresses, it remains highly productive with thousands of species of plants and animals. Because of the diversity and complexity of both the biological resources and the threats that face these resources, partnerships involving landowners, municipalities, non-profit organizations, government agencies, and others must be developed to effectively con- serve biodiversity in the Hudson River Valley. Successful implementation of the strate- gies and actions presented in this report will require a commitment to both developing and sustaining these partnerships. The Hudson River Estuary Biodiversity Program The purpose of the Hudson River Estuary Biodiversity Program is to support the conser- vation, recovery, and sustainable use of the biodiversity of the Hudson River Estuary cor- ridor, especially as it relates to terrestrial ecosystems. The project emphasizes voluntary approaches to biodiversity conservation in the context of local home rule. The broad goals of the program are: 1.
    [Show full text]
  • Severe Introduced Predator Impacts Despite Attempted Functional Eradication
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.451788; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Severe introduced predator impacts despite attempted functional eradication 2 Brian S. Cheng1,2, Jeffrey Blumenthal3,4, Andrew L. Chang3,4, Jordanna Barley1, Matthew C. Ferner4,5, Karina J. Nielsen4, Gregory M. Ruiz2, Chela J. Zabin3,4 4 1Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01002 6 2Smithsonian Environmental Research Center, Edgewater, MD, 21037 3Smithsonian Environmental Research Center, Tiburon, CA 94920 8 4Estuary & Ocean Science Center, San Francisco State University, Tiburon, CA 94920 5San Francisco Bay National Estuarine Research Reserve, Tiburon, CA 94920 10 ORCID: BSC 0000-0003-1679-8398, ALC 0000-0002-7870-285X, MCF 0000-0002-4862-9663, KJN 0000-0002-7438-0240, JGB 0000-0002-8736-7950, CJZ 0000-0002-2636-0827 12 DECLARATIONS 14 Funding: Advancing Nature-Based Adaptation Solutions in Marin County, California State Coastal Conservancy and Marin Community Foundation. 16 Conflicts/Competing interests: The authors declare no conflicts or competing interests. Availability of data and code: All data and code has been deposited online at 18 https://github.com/brianscheng/CBOR Ethics approval: not applicable 20 Consent to participate: not applicable Consent for publication: not applicable 22 Page 1 of 37 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.451788; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Reforming Section 10 and the Habitat Conservation Plan Program David A
    Northwestern University School of Law Northwestern University School of Law Scholarly Commons Faculty Working Papers 2009 Reforming Section 10 and the Habitat Conservation Plan Program David A. Dana Northwestern University School of Law, [email protected] Repository Citation Dana, David A., "Reforming Section 10 and the Habitat Conservation Plan Program" (2009). Faculty Working Papers. Paper 193. http://scholarlycommons.law.northwestern.edu/facultyworkingpapers/193 This Working Paper is brought to you for free and open access by Northwestern University School of Law Scholarly Commons. It has been accepted for inclusion in Faculty Working Papers by an authorized administrator of Northwestern University School of Law Scholarly Commons. DRAFT Reforming Section 10 and the Habitat Conservation Program David A. Dana Northwestern University One of the central dilemmas of the Endangered Species Act is how to foster species conservation and recovery on private land. Much of the habitat thought to be occupied by endangered species is on private land. According to some estimates, more than two thirds of listed endangered species can be found on private land.1 And even in areas where there is substantial federal land that contains critical habitat, the federal land often is part of a patchwork of federal, state, local and purely private holdings. (Importantly, the Act treats state and locally-owned land as private land.) In such cases, any comprehensive recovery plan would need to extend to private land. In theory, the Endangered Species Act powerfully addresses the risks posed to endangered species by private development and other economic activity on private land. Section Nine of the Act prohibits the "taking" of endangered species on private land, and broadly defines "take."2 The Fish and Wildlife Service's regulation implementing Section 9 clearly encompass private development activity that kills or prevents the reproduction of protected species members,3 and the United States Supreme Court upheld 4 that regulation in Sweet Home v.
    [Show full text]
  • Socioeconomic Benefits of Habitat Restoration
    Socioeconomic Benefits of Habitat Restoration U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS-OHC-1 May 2017 Socioeconomic Benefits of Habitat Restoration Giselle Samonte1, Peter Edwards2, Julia Royster3, Victoria Ramenzoni4, and Summer Morlock5 1 Contractor with Earth Resources Technology, Inc. NOAA Fisheries Office of Habitat Conservation 1315 East-West Hwy, Silver Spring, MD 20910 2 Contractor with The Baldwin Group, Inc. NOAA National Ocean Service, Office for Coastal Management 1305 East-West Highway, Silver Spring, MD 20910 3 NOAA Fisheries Office of Habitat Conservation 1315 East West Highway, Silver Spring, MD 20910. 4 Harte Research Institute for Gulf of Mexico Studies Texas A&M University-Corpus Christi 6300 Ocean Drive, Corpus Christi, TX 78412 5 NOAA Budget Office, Department of Commerce 1401 Constitution Ave. NW, Washington D.C. 20230 NOAA Technical Memorandum NMFS-OHC-1 May 2017 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Oceanic and Atmospheric Administration Benjamin Friedman, Acting NOAA Administrator National Marine Fisheries Service Chris Oliver, Assistant Administrator for Fisheries Recommended citation: Giselle Samonte, Peter Edwards, Julia Royster, Victoria Ramenzoni, and Summer Morlock. 2017. Socioeconomic Benefits of Habitat Restoration. NOAA Tech. Memo. NMFS-OHC-1, 66 p. Copies of this report may be obtained from: Office of Habitat Conservation National Oceanic and Atmospheric Administration 1315
    [Show full text]
  • An Economic Analysis of the Benefits of Habitat Conservation on California Rangelands
    An Economic Analysis of the Benefits of Habitat Conservation on California Rangelands CONSERVATION ECONOMICS WHITE PAPER Conservation Economics Program Timm Kroeger, Ph.D., Frank Casey, Ph.D., Pelayo Alvarez, Ph.D., Molly Cheatum and Lily Tavassoli Defenders of Wildlife March 2010 i This study can be found online at http://www.defenders.org/programs_and_policy/science_and_economics/conservation_ec onomics/valuation/index.php Suggested citation: Kroeger, T., F. Casey, P. Alvarez, M. Cheatum and L. Tavassoli. 2009. An Economic Analysis of the Benefits of Habitat Conservation on California Rangelands. Conservation Economics White Paper. Conservation Economics Program. Washington, DC: Defenders of Wildlife. 91 pp. Authors: Timm Kroeger, Ph.D., Natural Resources Economist, Conservation Economics Program; Frank Casey, Ph.D., Director, Conservation Economics Program; Pelayo Alvarez, Ph.D., Conservation Program Director, California Rangeland Conservation Coalition; Molly Cheatum, Conservation Economics Associate, Conservation Economics Program; Lily Tavassoli, Intern, Conservation Economics Program. Cover photo credits clockwise from top: U.S. Environmental Protection Agency Natural Resources Conservation Service Natural Resources Conservation Service California Cattlemen’s Association Defenders of Wildlife is a national nonprofit membership organization dedicated to the protection of all native wild animals and plants in their natural communities. National Headquarters Defenders of Wildlife 1130 17th St. NW Washington, DC 20036 USA Tel.: (202)
    [Show full text]
  • Habitat Conservation, Biodiversity and Wildlife Natural History in Northwestern Amazonia
    HABITAT CONSERVATION, BIODIVERSITY AND WILDLIFE NATURAL HISTORY IN NORTHWESTERN AMAZONIA Daniel M. Brooks Houston Museum of Natural Science; Dept. of Vertebrate Zoology; One Hermann Circle Dr.; Houston, Texas 77030-1799 – [email protected] The Ecuadorian Schuar, Colombian Tikuna and Venezuelan Piaroa inhabit northwestern Amazonia. The interactions of these tribes with wildlife is quite complex, taking place for hundreds of years prior to the Spanish invasion some 500 years ago. For example, these tribes not only utilize “bushmeat” of many large mammals and gamebirds as a major protein source (Brooks 1999), but also utilize the feathers of certain species of Amazonian birds for ornamentation. While many of the tribes use feathers from various species, the main species that feathers are used (in descending order) are from Macaws (Ara ) and Amazon parrots ( Amazona ), Great Egrets ( Casmerodius ), Curassows ( Crax and Mitu ), Toucans ( Ramphastos ) and various members of the family Contingidae; in some cases mammal remains are used to, such Tamarin ( Saguinus ) tails (Brooks unpubl. data). Unfortunately, many of these species are threatened by forest destruction and over- hunting in the case of Curassows (Brooks and Strahl 1997). In this note I generally describe habitat and current levels of forest destruction in northwestern Amazonia, as well as biodiversity and natural history of some of the species utilized by Schuar, Tikuna and Piaroa. Habitat description and forest destruction in northwestern Amazonia Average annual temperature in northwestern Amazonia is 26 Celcius, and annual rainfall exceeds 2500 millimeters (Gorchov et al. 1995). Whereas most temperate regions experience several seasons, the Amazon experiences two subtle contrasts over the year in water level: high water season occurs November – May, and low water occurs June – October (Brooks 1998).
    [Show full text]
  • Phylogenetic Relationships of Serpulidae (Annelida: Polychaeta) Based on 18S Rdna Sequence Data, and Implications for Opercular Evolution Janina Lehrkea,Ã, Harry A
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 195–206 www.elsevier.de/ode Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution Janina Lehrkea,Ã, Harry A. ten Hoveb, Tara A. Macdonaldc, Thomas Bartolomaeusa, Christoph Bleidorna,1 aInstitute for Zoology, Animal Systematics and Evolution, Freie Universitaet Berlin, Koenigin-Luise-Street 1-3, 14195 Berlin, Germany bZoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cBamfield Marine Sciences Centre, Bamfield, British Columbia, Canada, V0R 1B0 Received 19 December 2005; accepted 2 June 2006 Abstract Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well- supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula- clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation. r 2007 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Serpulidae; Phylogeny; Operculum; 18S rRNA gene; Annelida; Polychaeta Introduction distinctive calcareous tubes and bilobed tentacular crowns, each with numerous radioles that bear shorter Serpulids are common members of marine hard- secondary branches (pinnules) on the inner side.
    [Show full text]
  • Natural Resources and Wildlife Management Statistics
    Natural Resources and Wildlife Management 2018-19 State Results Statistics data includes students taking exams in the original testing period and includes students retaking exams. The Score Distribution and Standards performance tables show results for original testing period only for accurate evaluation of live testing performance. Statistics Categories Performance Participants 3 Pass Rate 3 Pass Percentage 100.0% Average Score 73.0 Cut Score 65 Score Distribution % Range # Scores in Range 0-15 0 15-25 0 25-35 0 35-45 0 45-55 0 55-65 1 65-75 1 75-85 1 85-95 0 95-100 0 Natural Resources and Wildlife Management 1) CONTENT STANDARD 1.0: EXPLORE NATURAL RESOURCE SCIENCE AND MANAGEMENT 75.93% 1) Performance Standard 1.1 : Investigate the Relationship Between Natural Resources and Society, Including Conflict Management 72.22% 1) 1.1.1 Define natural resource management 77.78% 3) 1.1.3 Describe human dependency and demands on natural resources 88.89% 4) 1.1.4 Explain natural resource conservation 66.67% 5) 1.1.5 Investigate the effects of multiple uses of natural resources (e.g., recreation, mining, agriculture, forestry, public lands grazing, etc.) 66.67% 6) 1.1.6 Analyze societal issues related to natural resource management 50% 2) Performance Standard 1.2 : Explain Interrelationships Between Natural Resources and Humans in Managing Natural Environments 86.67% 1) 1.2.1 Explain the effects and/or trade-off of population growth, greater energy consumption, and increased technology and development on natural resources and the environment 83.33%
    [Show full text]
  • Mapping and Distribution of Sabella Spallanzanii in Port Phillip Bay Final
    Mapping and distribution of Sabellaspallanzanii in Port Phillip Bay Final Report to Fisheries Research and Development Corporation (FRDC Project 94/164) G..D. Parry, M.M. Lockett, D.P. Crookes, N. Coleman and M.A. Sinclair May 1996 Mapping and distribution of Sabellaspallanzanii in Port Phillip Bay Final Report to Fisheries Research and Development Corporation (FRDC Project 94/164) G.D. Parry1, M. Lockett1, D. P. Crookes1, N. Coleman1 and M. Sinclair2 May 1996 1Victorian Fisheries Research Institute Departmentof Conservation and Natural Resources PO Box 114, Queenscliff,Victoria 3225 2Departmentof Ecology and Evolutionary Biology Monash University Clayton Victoria 3068 Contents Page Technical and non-technical summary 2 Introduction 3 Background 3 Need 4 Objectives 4 Methods 5 Results 5 Benefits 5 Intellectual Property 6 Further Development 6 Staff 6 Final cost 7 Distribution 7 Acknow ledgments 8 References 8 Technical and Non-technical Summary • The sabellid polychaete Sabella spallanzanii, a native to the Mediterranean, established in Port Phillip Bay in the late 1980s. Initially it was found only in Corio Bay, but during the past fiveyears it has spread so that it now occurs throughout the western half of Port Phillip Bay. • Densities of Sabella in many parts of the bay remain low but densities are usually higher (up to 13/m2 ) in deeper water and they extend into shallower depths in calmer regions. • Sabella larvae probably require a 'hard' surface (shell fragment, rock, seaweed, mollusc or sea squirt) for initial attachment, but subsequently they may use their own tube as an anchor in soft sediment . • Changes to fish communities following the establishment of Sabella were analysed using multidimensional scaling and BACI (Before, After, Control, Impact) design analyses of variance.
    [Show full text]
  • Phylogeography of the Invasive Polychaete Sabella Spallanzanii (Sabellidae) Based on the Nucleotide Sequence of Internal Transcribed Spacer 2 (ITS2) of Nuclear Rdna
    MARINE ECOLOGY PROGRESS SERIES Vol. 215: 169–177, 2001 Published May 31 Mar Ecol Prog Ser Phylogeography of the invasive polychaete Sabella spallanzanii (Sabellidae) based on the nucleotide sequence of internal transcribed spacer 2 (ITS2) of nuclear rDNA F. P. Patti*, M. C. Gambi Stazione Zoologica ‘A. Dohrn’, Laboratorio di Ecologia del Benthos, 80077 Ischia (Napoli), Italy ABSTRACT: Genetic relationships between different populations of the invasive species Sabella spallanzanii (Gmelin, 1791) (Polychaeta, Sabellidae) are investigated through the use of the internal transcribed spacer 2 (ITS2) of the nuclear ribosomal DNA (285 bp). Samples were taken from South Australian waters (3 populations), the Mediterranean Sea (8 populations) and the French Atlantic coast (1 population). The ITS2 sequences were analyzed using both maximum parsimony and unweighted pair-group mean analysis (UPGMA) algorithms; results showed genetic disjunction between the Australian and the Mediterranean populations. Within the Mediterranean populations, 3 different sub-groups, corresponding to different sub-basins, could be clearly detected (Northwest- ern, Central and Eastern basins). The Atlantic population showed strong differences with the Mediterranean and Australian populations, but did not allow the identification of the source of intro- duction from Europe to Australia. Data also suggest the occurrence of a reduced genetic variability of the Australian populations, probably due to the ‘founder effect’ of one introduction, either via ballast waters or hull fouling. The recent description of the life cycle and larval development of S. spallan- zanii in the Mediterranean Sea, with a long pelagic larval phase and a post-settlement stage of meta- morphosis (approx. 25 d), supports the hypothesis of introduction via ballast waters (larval pool).
    [Show full text]
  • For-74: a Guide to Urban Habitat Conservation Planning
    FOR-74 A Guide to Urban Habitat Conservation Planning Thomas G. Barnes, Extension Wildlife Specialist Lowell Adams, National Institute for Urban Wildlife entuckians value their forests and Kother natural resources for aes- Guidelines for Considering Wildlife in the Urban Development thetic, recreational, and economic Process significance, so over the past several Promote habitats that will have the food, cover, water, and living space that decades they have become increasingly all wildlife require by following these guidelines: concerned about the loss of wildlife • Before development, maximize open space and make an effort to protect the habitat and greenspace. Urban and most valuable wildlife habitat by placing buildings on less important portions suburban development is one of the of the site. Choosing cluster development, which is flexible, can help. leading causes of this loss: A recent • Provide water, and design stormwater control impoundments to benefit wildlife. study indicated that every day in • Use native plants that have value for wildlife as well as aesthetic appeal. Kentucky more than 100 acres of rural • Provide bird-feeding stations and nest boxes for cavity-nesting birds like land is being converted to urban house wrens and wood ducks. development. • Educate residents about wildlife conservation, using, for example, informa- Because concern for loss of tion packets or a nature trail through open space. greenspace is not new, we have for • Ensure a commitment to managing urban wildlife habitats. some time created attractive urban greenspace environments with our parks and backyards. These The publication can also be useful to A landscape is a large area com- greenspaces have been created not so the average homeowner in understand- posed of ecosystems (the plants, much for wildlife habitats as for people ing the complex issues involved in animals, other living organisms, and to enjoy, but the potential for wildlife landscape planning and wildlife their physical surroundings).
    [Show full text]