Plankton Diversity Zooplankton

Total Page:16

File Type:pdf, Size:1020Kb

Plankton Diversity Zooplankton Plankton Diversity Zooplankton Zooplankton in the context of marine life Zooplankton is considered the most important link between planktonic primary producers and large carnivores, amongst them fish species subject to human exploitation. Zooplankton can also contribute the role of marine systems as sinks of CO2, the main greenhouse gas. When feeding, zooplankton compacts small, slowly settling particles into larger ones (fecal pellets) that can reach the bottom before being recycled, so that biogenic carbon can be sequestered in the sediment, thus enlarging the time for CO2 to return to the atmosphere. Nutritional modes in zooplankton: All zooplankton -indeed all animals and some micro-organisms- are heterotrophic. That is, they require organic substrates as sources of chemical energy in order to synthesize body materials. Animal species differ in how their energy is obtained: as follow: Herbivores: feed primarily on phytoplankton Carnivores: feed primarily on other zooplankton (animals) Omnivores: feed on mixed diet of plants and animals and detritus Detrivores: feed primarily on dead organic matter (detritus) Crustacean Zooplankton Phylum Arthropoda Crustaceans comprise a class of the phylum Arthropoda, whose distinctive features include (1) an external skeleton of chitin, a flexible but stiff material, that is relatively impermeable to the external environment, and (2) some degree of segmentation, with paired, jointed appendages (e.g., legs, antennae). The crustaceans possess antennae, mandibles, and maxillae as head appendages, and usually have compound eyes. They are notable for their mobility, armored exoskeleton, and generally good vision. ( ﻣﺠﺪاﻓﻴﺎت ا ﻷَرْﺟُﻞ Copepods (oar-footed • The word Copepoda derives from Greek, from koipe, that means oar, and podos, which means feet Hence Copepod = oar-footed, referring to the pair of swimming legs that are moved together, like the oars. Copepods are covered by a chitinous carapace. Generally, the body is elongated and has two distinct parts, the anterior, the cephalothorax or prosome and the posterior, the abdomen or urosome. The last somite which is called the anal somite is ending in a two branched structure called furca or caudal rami (singular ramus). In the cephalothorax two filiform appendices are laterally widespread, the antennae. These are sometimes modified into a sexually modified grasping organ in the males. Following the antennae, there are several feeding appendages, plus four to five double branched swimming feet. ٢١ Fig. Adult calanoid copepod. Lateral view with swimming legs in the anterior position. Enlarged image of one of the filtering mouthparts shown at left. Copepods represent the largest group of crustaceans in the zooplankton and the most abundant zooplankton in all the oceans and seas, they are called “insects of the sea“ and can be found in all seasons and marine environments in the plankton, generally forming the bulk of holoplankton communities both in biomass and in number of individuals. They range in length from less than 1 mm to a few millimeters. They are either Herbivorous, carnivorous or omnivorous species; in fact there is no clear separation between feeding habits, the size of food items ٌ .being usually more important than their possible animal or vegetal origin Development involves twelve different stages (after egg), each separated by moulting, or casting off of the exoskeleton, and marked by the appearance of new segments and additional appendages. The first six stages are nauplius (plural, naupli) larvae (designated NI to NVI); the last six are copepodite stages (CI to CVI), with CVI being the sexually mature adult. Females can lay eggs free in the water, or carry them in egg sacs. Copepods are classified into three major groups (or orders, with three other minor orders) – calanoid, cyclopoid and harpacticoid copepods The calanoid (Suborder Calanoida) are the most of marine planktonic species. Calanoids are usually larger, barrel shaped and the body is com- posed of head, thorax, and abdomen o They have long first antennae that almost reach the length of the animal and a thinner abdomen. o Copepods have two swimming speeds. The first is slow, steady, and accomplished using their mouthparts. The second looks like a succession of jumps separated by stillness. This jumpy form of swimming is accomplished by the appendages on the thorax. ٢٢ o Calanoids have a median naupliar eye but lack the compound eyes found in many other crustaceans. o Females often retain eggs in one egg sac until they hatch or they scatter their eggs into the water. In the genus Calanus, the female lays eggs in clutches of about 50, every 10-14 days. o The first stage in identifying them is the number of segments behind the head (three, four or five). o Calanoids feed mainly on phytoplankton, some organic particles, and smaller zooplankton. Detection of food occurs first on the first antennae, which are festooned with sensory hairs. They trap particles on hairlike maxillary setules, located on setae, which, in turn, are located on the maxillipeds. The animal flaps four pairs of appendages (Figure ) to propel water past itself. As a diatom comes near the copepod, the maxilliped reaches out and grabs it, rather than sieving it through the setules (as was originally thought). Actually, because of the viscosity of its environment, the animal grabs the diatom with a surrounding envelope of water, which may have to be strained off the particle before it is passed to the mouth parts. In the larger copepods, sieving by the setules may occur. The animal must detect the presence of a diatom by means of chemosensors on the feeding appendages before reaching out for the food. Feeding current (green) generated by thoracic appendages Maxilliped reaches out and grabs particles entrained in current Another copepod group, the Order Cyclopoida, differs in that members are often smaller with relatively shortened antennae and more segments in the posterior third of the body. Females often retain eggs in two ovisac. The order contains over 1000 species, but the majority live among benthic algae or in bottom sediments; only about 250 species are planktonic. The third group, the harpacticoids are smaller still, elongate and with no difference in width between the thorax and abdomen. They have short antennae, two egg sacs and are typically benthic – although they may be found in the plankton at night or on drift algae. The harpacticoids usually have benthic adults, but the larvae of some species may dominate the estuarine zooplankton. Members of the Lernacopodoida are wormlike copepod that parasitize marine mammals and fish. ٢٣ Figure Planktonic Crustacea. Calanoid copepods: (a), Pseudocalanus elongatus; (b), Centropages typicus; (c), Calanus finmarchicus. (d), Microsetella norvegica, a harpacticoid copepod. (e), Oithona simi/is, a cyclopoid copepod. • Krill Family Euphausiidae, Next to copepods in importance are the Euphausiacea. They are shrimp-like creatures from one to a few centimeters long (from 15 mm up to 5 cm long) that form enormous swarms in high latitude seas. They are fast swimmers, often undersampled by nets because of their visual perception and avoidance capabilities. They dominate the zooplankton of much of the Antarctic Ocean. Euphausiids are generally omnivorous with food consisting of detritus, phytoplankton, and a variety of smaller zooplankton. They are a crucial link between primary producers and carnivores of high latitude (both arctic and antarctic) food webs, and the main food source of food for baleen whales, penguins, seals, etc. They are important as prey for commercial fish (e.g. herring, mackerel, salmon, sardines, and tuna). They harvested commercially Adult krill have bioluminescent dots along their abdomen, stalked eyes, a loosely fitting carapace around the abdomen and their long and setose feeding limbs. Euphausia superba, Antarctic Krill Gnathophausia zoea, a mysid. ٢٤ • Mysids (Figure ) they seldom are important components of the plankton community. Many of these shrimp-like animals spend part of the time on the seafloor, but rise into the overlying water at night or when forming breeding swarms. They have been introduced in some lakes for increasing large particle food availability for fish. Instead, they sometimes became competitors for young fish and even predators for newly hatched fish! are more important in fresh water than in ( ﺑﺮاﻏﻴﺚ اﻟﻤﺎء Cladocera (water fleas • seawater, but they are sometimes abundant in estuaries. Eight marine species worldwide. The genus Podon preys on other zooplankton. Because they are capable of producing by parthenogenesis (i.e. reproduction without males and without fertilization), Cladocera are able to rapidly increase their numbers when environmental conditions are favorable. Cladocera are often found on the surface of samples, which may be due to trapped air inside the carapace. Cladocera: Podon leuckarti (left), Podon leuckarti; (right) Evadne nordmann Figure ) are usually minor components of the) ( اﻟﻘﺸﺮﻳﺎت اﻟﺼﺪﻓﻴﺔ ) Ostracods • zooplankton community. These crustaceans have a unique, hinged, bivalved exoskeleton into which the animal can withdraw. Most species are rather small. Little work has been done on feeding habits in this group, but some species are regarded as scavengers. Ostracods cumacean amphipods • Cumaceans are truly planktonic but rarely dominate the zooplankton.. They look superficially like a large calanoid copepod, but with a bulbous head and thorax, and a slender abdomen
Recommended publications
  • The Role of Temperature in Survival of the Polyp Stage of the Tropical Rhizostome Jelly®Sh Cassiopea Xamachana
    Journal of Experimental Marine Biology and Ecology, L 222 (1998) 79±91 The role of temperature in survival of the polyp stage of the tropical rhizostome jelly®sh Cassiopea xamachana William K. Fitt* , Kristin Costley Institute of Ecology, Bioscience 711, University of Georgia, Athens, GA 30602, USA Received 27 September 1996; received in revised form 21 April 1997; accepted 27 May 1997 Abstract The life cycle of the tropical jelly®sh Cassiopea xamachana involves alternation between a polyp ( 5 scyphistoma) and a medusa, the latter usually resting bell-down on a sand or mud substratum. The scyphistoma and newly strobilated medusa (5 ephyra) are found only during the summer and early fall in South Florida and not during the winter, while the medusae are found year around. New medusae originate as ephyrae, strobilated by the polyp, in late summer and fall. Laboratory experiments showed that nematocyst function, and the ability of larvae to settle and metamorphose change little during exposure to temperatures between 158C and up to 338C. However, tentacle length decreased and ability to transfer captured food to the mouth was disrupted at temperatures # 188C. Unlike temperate-zone species of scyphozoans, which usually over-winter in the polyp or podocyst form when medusae disappear, this tropical species has cold-sensitive scyphistomae and more temperature-tolerant medusae. 1998 Elsevier Science B.V. Keywords: Scyphozoa; Jelly®sh; Cassiopea; Temperature; Life history 1. Introduction The rhizostome medusae of Cassiopea xamachana are found throughout the Carib- bean Sea, with their northern limit of distribution on the southern tip of Florida. Unlike most scyphozoans these jelly®sh are seldom seen swimming, and instead lie pulsating bell-down on sandy or muddy substrata in mangroves or soft bottom bay habitats, giving rise to the common names ``mangrove jelly®sh'' or ``upside-down jelly®sh''.
    [Show full text]
  • Appendicularia of CTAW
    APPENDICULARIA APPENDICULARIA a b Fig. 26. Oikopleura albicans (Leuckart, 1854), a commonly occurring appendicularian species: a, dorsal view; b, lateral view. (Scale bar = 0.1 mm). [after T. Prentiss, reproduced with permission, from Alldredge 1976] Appendicularians are small free swimming planktonic tunicates, their bodies consisting of a short trunk and a tail (containing the notochord cells) which is present through the life of the individual. Glandular (oikoplast) epithelium on the trunk secretes the mucous house which encloses the whole or part of the body and contains the complex filters which strain food from the water driven through them (Deibel 1998; Flood & Deibel 1998). Unlike other tunicates, there is no peribranchial cavity and a pair of pharyngeal perforations (spiracles) surrounded by a ring of cilia open directly to the exterior from the floor of the pharynx. The early studies of these organisms, begun with Chamisso's description of Appendicularia flagellum Chamisso, 1821, were confounded by questions of its phylogenetic affinity. Chamisso classified his species with medusoids, Mertens (1830) with molluscs, and Quoy & Gaimard (1833) with zoophytes. Only in 1851 were appendicularians correctly assigned to the Tunicata by Huxley. At the time of this placement, the existence of more than one taxon was only just beginning to be recognised, and despite Huxley's work, they were not universally regarded as adult organisms—some authors still insisting that they were ascidian larvae or a free swimming generation of the sessile ascidians (Fenaux 1993). Subsequently, these questions were resolved by the work of Fol (1872) on material from the Straits of Messina, which forms the basis of later studies on the large collections of the great expeditions of the 19th century that revealed their true diversity in the oceanic plankton.
    [Show full text]
  • Population and Spatial Dynamics Mangrove Jellyfish Cassiopeia Sp at Kenya’S Gazi Bay
    American Journal of Life Sciences 2014; 2(6): 395-399 Published online December 31, 2014 (http://www.sciencepublishinggroup.com/j/ajls) doi: 10.11648/j.ajls.20140206.20 ISSN: 2328-5702 (Print); ISSN: 2328-5737 (Online) Population and spatial dynamics mangrove jellyfish Cassiopeia sp at Kenya’s Gazi bay Tsingalia H. M. Department of Biological Sciences, Moi University, Box 3900-30100, Eldoret, Kenya Email address: [email protected] To cite this article: Tsingalia H. M.. Population and Spatial Dynamics Mangrove Jellyfish Cassiopeia sp at Kenya’s Gazi Bay. American Journal of Life Sciences. Vol. 2, No. 6, 2014, pp. 395-399. doi: 10.11648/j.ajls.20140206.20 Abstract: Cassiopeia, the upside-down or mangrove jellyfish is a bottom-dwelling, shallow water marine sycophozoan of the phylum Cnidaria. It is commonly referred to as jellyfish because of its jelly like appearance. The medusa is the dominant phase in its life history. They have a radial symmetry and occur in shallow, tropical lagoons, mangrove swamps and sandy mud falls in tropical and temperate regions. In coastal Kenya, they are found only in one specific location in the Gazi Bay of the south coast. There are no documented studies on this species in Kenya. The objective of this study was to quantify the spatial and size-class distribution, and recruitment of Cassiopeia at the Gazi Bay. Ten 50mx50m quadrats were randomly placed in an estimated study area of 6.4ha to cover about 40 percent of the total study area. A total of 1043 individual upside-down jellyfish were sampled. In each quadrat, all jellyfish encountered were sampled individually.
    [Show full text]
  • The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean
    The evolution of siphonophore tentilla for specialized prey capture in the open ocean Alejandro Damian-Serranoa,1, Steven H. D. Haddockb,c, and Casey W. Dunna aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; bResearch Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039; and cEcology and Evolutionary Biology, University of California, Santa Cruz, CA 95064 Edited by Jeremy B. C. Jackson, American Museum of Natural History, New York, NY, and approved December 11, 2020 (received for review April 7, 2020) Predator specialization has often been considered an evolutionary makes them an ideal system to study the relationships between “dead end” due to the constraints associated with the evolution of functional traits and prey specialization. Like a head of coral, a si- morphological and functional optimizations throughout the organ- phonophore is a colony bearing many feeding polyps (Fig. 1). Each ism. However, in some predators, these changes are localized in sep- feeding polyp has a single tentacle, which branches into a series of arate structures dedicated to prey capture. One of the most extreme tentilla. Like other cnidarians, siphonophores capture prey with cases of this modularity can be observed in siphonophores, a clade of nematocysts, harpoon-like stinging capsules borne within special- pelagic colonial cnidarians that use tentilla (tentacle side branches ized cells known as cnidocytes. Unlike the prey-capture apparatus of armed with nematocysts) exclusively for prey capture. Here we study most other cnidarians, siphonophore tentacles carry their cnidocytes how siphonophore specialists and generalists evolve, and what mor- in extremely complex and organized batteries (3), which are located phological changes are associated with these transitions.
    [Show full text]
  • US Fish & Wildlife Service Seabird Conservation Plan—Pacific Region
    U.S. Fish & Wildlife Service Seabird Conservation Plan Conservation Seabird Pacific Region U.S. Fish & Wildlife Service Seabird Conservation Plan—Pacific Region 120 0’0"E 140 0’0"E 160 0’0"E 180 0’0" 160 0’0"W 140 0’0"W 120 0’0"W 100 0’0"W RUSSIA CANADA 0’0"N 0’0"N 50 50 WA CHINA US Fish and Wildlife Service Pacific Region OR ID AN NV JAP CA H A 0’0"N I W 0’0"N 30 S A 30 N L I ort I Main Hawaiian Islands Commonwealth of the hwe A stern A (see inset below) Northern Mariana Islands Haw N aiian Isla D N nds S P a c i f i c Wake Atoll S ND ANA O c e a n LA RI IS Johnston Atoll MA Guam L I 0’0"N 0’0"N N 10 10 Kingman Reef E Palmyra Atoll I S 160 0’0"W 158 0’0"W 156 0’0"W L Howland Island Equator A M a i n H a w a i i a n I s l a n d s Baker Island Jarvis N P H O E N I X D IN D Island Kauai S 0’0"N ONE 0’0"N I S L A N D S 22 SI 22 A PAPUA NEW Niihau Oahu GUINEA Molokai Maui 0’0"S Lanai 0’0"S 10 AMERICAN P a c i f i c 10 Kahoolawe SAMOA O c e a n Hawaii 0’0"N 0’0"N 20 FIJI 20 AUSTRALIA 0 200 Miles 0 2,000 ES - OTS/FR Miles September 2003 160 0’0"W 158 0’0"W 156 0’0"W (800) 244-WILD http://www.fws.gov Information U.S.
    [Show full text]
  • The Puzzling Occurrence of the Upside-Down Jellyfish Cassiopea
    ZOOLOGIA 37: e50834 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE The puzzling occurrence of the upside-down jellyfishCassiopea (Cnidaria: Scyphozoa) along the Brazilian coast: a result of several invasion events? Sergio N. Stampar1 , Edgar Gamero-Mora2 , Maximiliano M. Maronna2 , Juliano M. Fritscher3 , Bruno S. P. Oliveira4 , Cláudio L. S. Sampaio5 , André C. Morandini2,6 1Departamento de Ciências Biológicas, Laboratório de Evolução e Diversidade Aquática, Universidade Estadual Paulista “Julio de Mesquita Filho”. Avenida Dom Antônio 2100, 19806-900 Assis, SP, Brazil. 2Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14 101, 05508-090 São Paulo, SP, Brazil. 3Instituto do Meio Ambiente de Alagoas. Avenida Major Cícero de Góes Monteiro 2197, 57017-515 Maceió, AL, Brazil. 4Instituto Biota de Conservação, Rua Padre Odilon Lôbo, 115, 57038-770 Maceió, Alagoas, Brazil 5Laboratório de Ictiologia e Conservação, Unidade Educacional de Penedo, Universidade Federal de Alagoas. Avenida Beira Rio, 57200-000 Penedo, AL, Brazil. 6Centro de Biologia Marinha, Universidade de São Paulo. Rodovia Manoel Hypólito do Rego, km 131.5, 11612-109 São Sebastião, SP, Brazil. Corresponding author: Sergio N. Stampar ([email protected]) http://zoobank.org/B879CA8D-F6EA-4312-B050-9A19115DB099 ABSTRACT. The massive occurrence of jellyfish in several areas of the world is reported annually, but most of the data come from the northern hemisphere and often refer to a restricted group of species that are not in the genus Cassiopea. This study records a massive, clonal and non-native population of Cassiopea and discusses the possible scenarios that resulted in the invasion of the Brazilian coast by these organisms.
    [Show full text]
  • Eurochordata and Cephalochordata of Persian Gulf & Oman See
    Subphylum Urochordata : Tunicates Class Ascidacea Class Larvacea Class Thaliacea Subphylum Cephalochordata : Amphioxus Phylum Chordata : 1 - Subphylum Urochordata 2 Subphylum Cephalochordata (Subphylum Urochordata : Tunicates ) Class Ascidiacea Class Larvacea Class Thaliacea (Subphylum Cephalochordata ) Class Ascidiacea Ascidia Kowalevsky Patricia Kott D. lane David George & Gordon Paterson Herdmania momus savigny Herdmania momus kiamanensis Didemnum candidum savigny Phallusia nigra savigny Styela canopus savigny Class Ascidiacea : Order : Aplousobranchia Family : Polyclinidae : Aplidium cf. rubripunctum C.Monniot & F. Monniot 1997 Polyclinum constellatum Savigny, 1816 Family Didemnidae Didemnum candidum Savigny, 1816 Didemnum cf. granulatum Tokioka, 1954 Didemnum obscurum F. Monniot 1969 Didemnum perlucidum F. Monniot, 1983 Didemnum sp. Didemnum yolky C.Monniot & F. Monniot 1997 Diplosoma listerianum Milne Edwards, 1841 Order : Phlebobranchia Family : Ascidiidae Ascidia sp. Phallusia julinea Sluiter, 1915 Phallusia nigra Savigny, 1816 Order : Stolidobranchia Family : Styelidae Botryllus gregalis Sluiter, 1898 Botryllus niger Herdman, 1886 Botryllus sp. Eusynstyela cf. hartmeyeri Michaelsen, 1904 Polyandrocarpa sp. Styela canopus Savigny, 1816 Symplegma bahraini C.Monniot & F. Monniot 1997 Symplegma brakenhielmi Michaelsen, 1904 Family pyuridae Herdmania momus Savigny, 1816 Pyura curvigona Tokioka, 1950 Pyurid sp. Class Larvacea Larva Seymour Sewell Phylum Chordata Subphylum Urochordata * Class Larvacea Order Copelata Family Fritillariidae
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • Cassiopea Andromeda (Forsskål, 1775) [Cnidaria: Scyphozoa: Rhizostomea]
    Aquatic Invasions (2006) Volume 1, Issue 3: 196-197 DOI 10.3391/ai.2006.1.3.18 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Short communication A new record of an alien jellyfish from the Levantine coast of Turkey - Cassiopea andromeda (Forsskål, 1775) [Cnidaria: Scyphozoa: Rhizostomea] Cem Çevik*, Itri Levent Erkol and Benin Toklu Çukurova University, Faculty of Fisheries,Department of Marine Biology, Adana, 01330, Turkey Email: [email protected] *Corresponding author Received 17 July 2006; accepted in revised form 5 September 2006 Abstract To date, three alien scyphozoan species were reported from the Eastern Mediterranean, but only one, Rhopilema nomadica, was reported from the Turkish coast. Recently, a second alien scyphozoan, Cassiopea andromeda, was collected on 20 July 2005 in Iskenderun Bay, SE Turkey. Key words: Cassiopea andromeda, Scyphozoa, Levant Sea, Turkey, Iskenderun Bay, alien species Cassiopea andromeda (Forsskål, 1775) is the Factory (36°11.200'N and 36°43.100'E) on first Erythrean scyphomedusan species reported 20.07.2005. The site was sampled monthly since from the Mediterranean following the opening of 2002. the Suez Canal. It had been collected in the Suez Two of the six individuals found which have a Canal in 1886 (Galil et al. 1990), and soon after mean umbrella length of 5 cm were taken for from Cyprus (Maas 1903). Nearly half a century further investigation in the laboratory, and were later it was found in Neokameni, a small determined as C. andromeda (Figure 1) volcanic island near Thira, in the southern according to the identification key given by Galil Aegean Sea (Schäffer 1955), and later in et al.
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum Chordata by J
    Tropical Marine Invertebrates CAS BI 569 Phylum Chordata by J. R. Finnerty Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata *Nematoda *Platyhelminthes Acoelomorpha Calcispongia Silicispongiae PROTOSTOMIA Phylum Chordata subPhylum VERTEBRATA subPhylum UROCHORDATA class Ascidaceae—the “sea squirts” class Larvaceae—the larvaceans class Thaliaceae—the salps subPhylum CEPHALOCHORDATA—the “lancelets” Subphylum Subphylum Subphylum Phylum Phylum Vertebrata Urochordata Cephalochordata ECHINODERMATA HEMICHORDATA Phylum CHORDATA Notochord Blastopore -> anus Dorsal hollow nerve cord Radial / equal cleavage Pharyngeal gill slits Coelom forms by enterocoely Endostyle Cross-section through a Chick embryo During Neurulation Subphylum Vertebrata Ordovician Origins—Jawless fishes vertebral column paired appendages post-anal tail Jawed fishes, gnathostomes late Ordovician, early Silurian jaws early Devonian / late Devonian tetrapods / amniotes Permian (299-251) Carboniferous subphylum VERTEBRATA (359-299) gnathostomes (with jaws) 1. Vertebral column Devonian 2. Paired appendages (416-359) 3. Jaws 4. Post anal tail Silurian (444-416) Bony fishes Cartilaginous fishes Paleozoic (543-225) Fishes with jaws & paired fins Ray-finned & Lobe-finned fishes Ordivician Jawless fishes (488-444) Vertebrate origins Jawless fishes phylum CHORDATA Cambrian 1. Dorsal nerve cord (542-488) Non-vert chordates “Cambrian explosion” 2. Notochord Rapid appearance of most 3. Gill slits Animal phyla in fossil record Including Phylum Chordata 4. Endostyle Permian (299-251) 4 3 2 1 1.Pre-mammal-like reptiles 2. Snake-lizard ancestor 3.Crocodile-Bird-Dino ancestor 4. Turtles Carboniferous (359-299) amphibians Early reptiles. Devonian (416-359) Vertebrates invade land “Age of amphibians” Silurian (444-416) Bony fishes AMNIOTES Cartilaginous fishes Paleozoic (543-225) Fishes with jaws & paired fins 1.
    [Show full text]
  • Biochemical Characterization of Cassiopea Andromeda (Forsskål, 1775), Another Red Sea Jellyfish in the Western Mediterranean Sea
    marine drugs Article Biochemical Characterization of Cassiopea andromeda (Forsskål, 1775), Another Red Sea Jellyfish in the Western Mediterranean Sea Gianluca De Rinaldis 1,2,† , Antonella Leone 1,3,*,† , Stefania De Domenico 1,4 , Mar Bosch-Belmar 5 , Rasa Slizyte 6, Giacomo Milisenda 7 , Annalisa Santucci 2, Clara Albano 1 and Stefano Piraino 3,4 1 Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; [email protected] (G.D.R.); [email protected] (S.D.D.); [email protected] (C.A.) 2 Department of Biotechnology Chemistry and Pharmacy (DBCF), Università Degli Studi Di Siena, Via A. Moro, 53100 Siena, Italy; [email protected] 3 Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa, Local Unit of Lecce), Via Monteroni, 73100 Lecce, Italy; [email protected] 4 Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Campus Ecotekne, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy 5 Laboratory of Ecology, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, 90128 Palermo, Italy; [email protected] 6 Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway; [email protected] 7 Centro Interdipartimentale della Sicilia, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo, 90142 Palermo, Italy; [email protected] Citation: De Rinaldis, G.; Leone, A.; * Correspondence: [email protected]; Tel.: +39-0832-422615 De Domenico, S.; Bosch-Belmar, M.; † These authors contributed equally to this work. Slizyte, R.; Milisenda, G.; Santucci, A.; Albano, C.; Piraino, S.
    [Show full text]
  • Bibliography on the Scyphozoa with Selected References on Hydrozoa and Anthozoa
    W&M ScholarWorks Reports 1971 Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa Dale R. Calder Virginia Institute of Marine Science Harold N. Cones Virginia Institute of Marine Science Edwin B. Joseph Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, D. R., Cones, H. N., & Joseph, E. B. (1971) Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa. Special scientific eporr t (Virginia Institute of Marine Science) ; no. 59.. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.21220/V59B3R This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BIBLIOGRAPHY on the SCYPHOZOA WITH SELECTED REFERENCES ON HYDROZOA and ANTHOZOA Dale R. Calder, Harold N. Cones, Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE. OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23012 AUGUST, 1971 BIBLIOGRAPHY ON THE SCYPHOZOA, WITH SELECTED REFERENCES ON HYDROZOA AND ANTHOZOA Dale R. Calder, Harold N. Cones, ar,d Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 w. J. Hargis, Jr. April 1971 Director i INTRODUCTION Our goal in assembling this bibliography has been to bring together literature references on all aspects of scyphozoan research. Compilation was begun in 1967 as a card file of references to publications on the Scyphozoa; selected references to hydrozoan and anthozoan studies that were considered relevant to the study of scyphozoans were included.
    [Show full text]