Download PDF Version

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF Version Journal of Oil Palm Research DOI: https://doi.org/10.21894/jopr.2021.0008 A COMPARATIVE STUDY OF BACTERIAL COMMUNITIES DETERMINED BY CULTURE- DEPENDENT AND-INDEPENDENT APPROACHES IN OIL PALM PLANTED ON TROPICAL PEATLAND AYOB, ZAHIDAH* and KUSAI, NOR AZIZAH* ABSTRACT A combination of deoxyribonucleic acid (DNA)-based method and sequencing technologies have initiated a new era of soil microbial ecology to examine the patterns of bacterial communities in tropical peatland. The aims of the study are to verify and compare the bacterial communities in a 12-year-old oil palm plantation on peat of Sibu, Sarawak, Malaysia using culture-dependent and culture-independent approaches. The bacterial diversity identified from both approaches were amplified using 16S ribosomal deoxyribonucleic acid (rDNA) (341/907) primer, sequenced and analysed. This resulted in recovering a total of 227 bacterial isolates belonging to four major phyla accumulated from 22 genera. Meanwhile, about 216 denaturing gradient gel electrophoresis (DGGE) bands were excised, which corresponded to 195 different bacterial species from 20 different phyla by culture-independent method. Although both approaches detected a total of four predominant bacterial phyla (Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes), in general, different taxonomic sequences were targeted by each method. In comparison to culture-dependent, polymerase chain reaction (PCR)-DGGE method identified a higher rate of bacterial diversity and richness and also detected non-culturable bacteria. Thus, this suggests that culture-independent method was showed to be more efficient on the bacterial diversity identification that will lead towards unravelling the hidden bacterial species associated with agricultural practices carried out in Southeast Asia peatland. Keywords: tropical peatland, oil palm plantation, 16S rDNA, culture-dependent, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Received: 28 September 2020; Accepted: 4 January 2021; Published online: 26 February 2021. INTRODUCTION fertility of tropical peatland (Schneider et al., 2015; Nurulita et al., 2016). Previous studies have reported Prokaryotes are the most abundant group of soil that many factors, including land-use change such as microorganisms, which include bacteria and peat swamp forest conversion to oil palm plantation, archaeaARTICLE and play fundamental ecological roles in plantIN species, and PRESS soil properties drive changes in the decomposition, biogeochemical cycling and the pH, temperature, water content, organic carbon maintenance of soil structure, soil quality, and content, nutrient content and soil texture, which influence the diversity of soil microbial communities (Kerfahi et al., 2014; Schneider et al., 2015; Wu * Malaysian Palm Oil Board, et al., 2015; Nurulita et al., 2016). Furthermore, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. understanding the diversity of soil microbial E-mail: [email protected] communities is vital for knowing their function in 1 JOURNAL OF OIL PALM RESEARCH ecosystems and the impact of oil palm management on DGGE gels, and enables the detection of diverse practices and plant communities (Kerfahi et al., 2014). members of soil microbial organisms, including Thus, the identification of bacterial communities in unculturable microbes that are unable to proliferate deep peat cultivated with oil palm using culture- in culture media (Watanabe et al., 2004; Green dependent and culture-independent approaches et al., 2010; Chaudhary et al., 2019). Nevertheless, would postulate the impact of these communities the culture-dependent method is still essential on environmental changes in the tropical peatland. for isolating and defining the taxonomic and The 16S ribosomal deoxyribonucleic acid metabolites of pure strains, and also understanding (16S rDNA) gene is used as a universal molecular how their functions influence bacterial diversity marker in microbial diversity studies because patterns in tropical peatland (González-Rocha et al., it has highly conserved regions that display 2017; Chaudhary et al., 2019). considerable sequence variations, even within Very few studies have reported on the closely related taxa (Singh et al., 2011). The diversity diversity of bacterial communities in Southeast of bacterial communities from peat ecosystems can Asia peatland. Previously, analysis of the bacterial be determined using various approaches, most community composition of tropical peatland commonly culture-dependent methods such as was based separately on culturable or culture- spread-plate (Roslan et al., 2015; Kusai and Ayob, independent methods and compared different 2020) and culture-independent methods, namely ecosystems (Maidin et al., 2016; Nurulita et al., 2016; denaturing gradient gel electrophoresis (DGGE) Tripathi et al., 2016; Too et al., 2018; Dhandapani et (Jackson et al., 2009; Arai et al., 2014; Maidin et al., al., 2019; Kusai and Ayob, 2020; Liu et al., 2020). No 2016; Nurulita et al., 2016), terminal restriction data is available and this study intends to highlight fragment length polymorphism (T-RFLP) the comparison between the bacterial community (Situmorang et al., 2016), 454-pyrosequencing composition of culture-dependent and culture- (Kanokratana et al., 2011; Liu et al., 2020), and next- independent approaches of bacterial communities generation sequencing (Tripathi et al., 2016; Too et al., from a 12-year-old oil palm plantation on tropical 2018). Among these approaches, DGGE is one of the peatland. Therefore, in this article, we investigate most well-established and is used to explain microbial the application of these approaches to verify diversity studies by comparing the composition, and compare bacterial communities in isolation richness and structure of the microbial communities on growth media, followed by 16S rRNA-based in soil, other environments (Ellis et al., 2003; Singh identification of isolates, whereas the culture- et al., 2012; Piterina and Pembroke, 2013; Nagendran independent method involved extracting DNA et al., 2014; Teo and Wong, 2014; Maidin et al., 2016; directly from the soil for polymerase chain reaction Nurulita et al., 2016) and food samples (Chen (PCR) amplification of the 16S rRNA gene followed et al., 2008; Jianzhong et al., 2009; Miguel et al., 2010; by DGGE analysis and sequencing. Kesmen and Kacmaz, 2011). This novel method was introduced into microbial ecology in 1993 by Muyzer et al. MATERIALS AND METHODS Traditionally, culture-based methods provide limited information on microbial communities Peat Sampling because the majority of bacteria are difficult to culture in a laboratory since they require specific growth Peat was sampled in an oil palm (Elaeis media and, as a result, a large proportion of microbial guineensis Jacq.) plantation located in the vicinity of communities remain unexplored. Previous studies Sibu, Sarawak, Malaysia. Muriate of potash (MOP) –1 –1 have reported that culture-dependent methods (0.75 kg palm ), urea [CO(NH2)2] (0.25 kg palm ) present copiotrophs and high guanine-cytosine and rock phosphate (RP) (0.2 kg palm–1) have (GC) gram-positive bacteria because these bacterial been supplemented to the 12-year-old oil palms. groups are capable of growing on selective media The studied site was classified as undecomposed (Smit et al., 2001; Edenborn and Sexstone, 2007), sapric organic materials based on Malaysian whereas culture-independent methods may detect Unified Classification of Organic Soils (MUCOS) bacteria that are difficult to culture, such as those by Paramananthan (2016). This type of soil consists from the phyla Acidobacteria and Verrucomicrobia of sapric material of 1/3 fibre content and no wood (LipsonARTICLE and Schmidt, 2004; Edenborn and Sexstone, upIN to 100 cm depth PRESS (Veloo et al., 2015). The average 2007). Advancements in culture-independent annual rainfall over the area was estimated at methods have facilitated microbial diversity studies 2624.38 mm yr–1 during year 2013. Sampling was by comparing the composition and richness of the carried out during dry season with less than 100 mm bacterial communities in soil (Qaisrani et al., 2019). precipitation on August 2013. Peat samples were In addition, culture-independent methods such as collected at 10 sampling points (N1-N10) with depth DGGE has the capacity to process multiple samples between 0-30 cm, using peat auger. The sampling rapidly by analysing bands that migrate separately points were at least 10 m apart from each other with 2 A COMPARATIVE STUDY OF BACTERIAL COMMUNITIES DETERMINED BY CULTURE-DEPENDENT AND-INDEPENDENT APPROACHES IN OIL PALM PLANTED ON TROPICAL PEATLAND the central point at 2°09’ 47.065” N, 111°55’ 22.387” E Bhd, Puchong, Selangor, Malaysia). The following (Kusai et al., 2018). Peat samples were chilled in the thermal cycling scheme was used for amplification ice box during transportation from the field to the of 16S rDNA: initial hot start incubation at 94°C for laboratory and stored at 4°C until further analysis. 2 min, 35 cycles of denaturation at 94°C for 30 sec, The inorganic elements including macronutrients, annealing for 30 sec at 52°C, extension at 72°C for micronutrient and heavy metal contents were 30 sec, followed by a final extension period at 72°C analysed using Perkin Elmer ELAN DRC-e ICP- for 2 min. Deionised water was used as template for Mass Spectrometry (Perkin Elmer Sdn Bhd, negative control. The PCR products were analysed Petaling
Recommended publications
  • Margaret A. Highland, DVM Washington State University
    Bacterial Pneumonia in Sheep, The Domestic – Bighorn Sheep Interface, and Research at ADRU USAHA Committee on Sheep and Goats Providence, RI October 27, 2015 PLC M. A. Highland, DVM, DACVP, PhD candidate PhD Veterinary Training Program USDA-ARS ADRU Veterinary Microbiology and Pathology Washington State University Pullman, WA DS – BHS Interface Issue Captive/penned commingling studies & anecdotal field reports associate BHS and DS contact with BHS pneumonia Removal of DS public land grazing allotments - profound economic impacts Pneumonia continues to afflict BHS herds - despite decades of research and intense management practices Anecdotal field reports also associate DG with BHS pneumonia - pack goat restrictions on public lands DS and BHS Pneumonia DS . Lambs > Adults . Etiology • Polymicrobial (bacteria +/- viruses) or Unimicrobial • Multifactorial (colostrum, air quality, environmental stressors) BHS (wild) . Reports of respiratory disease date back to the 1920’s . All age outbreaks +/- subsequent years of disease in lambs → population-limiting disease . Etiology • Long been debated • Evidence for polymicrobial (bacterial) and multifactorial • Viruses occasionally reported (no current indication for primary role) What do we know about BHS (and DS) pneumonia? Polymicrobial and Multifactorial (the presence of the bacteria in BHS alone does NOT = disease/death) Incompletely understood disease phenomenon DS and BHS pneumonia-associated bacteria Mycoplasma ovipneumoniae (M ovi) Pasteurellaceae (“Pasteurellas”) . Mannheimia haemolytica
    [Show full text]
  • Engineering the Genome of Minimal Bacteria Using CRISPR/Cas9 Tools Iason Tsarmpopoulos
    Engineering the genome of minimal bacteria using CRISPR/Cas9 tools Iason Tsarmpopoulos To cite this version: Iason Tsarmpopoulos. Engineering the genome of minimal bacteria using CRISPR/Cas9 tools. Mi- crobiology and Parasitology. Université de Bordeaux, 2017. English. NNT : 2017BORD0787. tel- 01834971 HAL Id: tel-01834971 https://tel.archives-ouvertes.fr/tel-01834971 Submitted on 11 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ÉCOLE DOCTORALE Science de la vie et de la Santé SPÉCIALITÉ Microbiologie and Immunologie Par Iason TSARMPOPOULOS Ingénierie de génome de bactéries minimales par des outils CRISPR/Cas9 Sous la direction de : Monsieur Pascal SIRAND-PUGNET Soutenue le jeudi 07 décembre 2017 à 14h00 Lieu : INRA, 71 avenue Edouard Bourlaux 33882 Villenave d'Ornon salle Amphithéâtre Josy et Colette Bové Membres du jury : Mme Cécile BEBEAR Université de Bordeaux et CHU de Bordeaux Président Mme Florence TARDY Anses-Laboratoire de Lyon Rapporteur M. Matthieu JULES Institut Micalis, INRA and AgroParisTech Rapporteur M. David BIKARD Institut Pasteur Examinateur M. Fabien DARFEUILLE INSERM U1212 - CNRS UMR 5320 Invité Mme Carole LARTIGUE-PRAT INRA - Université de Bordeaux Invité M.
    [Show full text]
  • Examining the Risk of Disease Transmission Between Wild Dall's
    Examining the Risk of Disease Transmission between Wild Dall’s Sheep and Mountain Goats, and Introduced Domestic Sheep, Goats, and Llamas in the Northwest Territories Prepared for: The Northwest Territories Agricultural Policy Framework and Environment and Natural Resources Government of the Northwest Territories, Canada August 20, 2005 Examining the Risk of Disease Transmission between Wild Dall’s Sheep and Mountain Goats, and Introduced Domestic Sheep, Goats, and Llamas in the Northwest Territories Elena Garde 1,2 , Susan Kutz 1,3 , Helen Schwantje 4, Alasdair Veitch 5, Emily Jenkins 1,6 , Brett Elkin 7 1 Research Group for Arctic Parasitology and the Canadian Cooperative Wildlife Health Centre, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4. 2 Associate Wildlife Veterinarian, Biodiversity Branch, Ministry of Environment, PO Box 9338, Stn Prov Govt, 2975 Jutland Road, Victoria, BC, V8W 9M1, (250) 953-4285 [email protected] 3 Associate Professor, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary AB, T2N 4N1 Ph: (306) 229-6110 4 Wildlife Veterinarian, Biodiversity Branch, Ministry of Environment, PO Box 9338, Stn Prov Govt, 2975 Jutland Road, Victoria, BC, V8W 9M1, (250) 953-4285 [email protected] 5 Supervisor, Wildlife Management, Environment and Natural Resources, Sahtu Region, P.O. Box 130, Norman Wells, NT X0E 0V0, Ph: (867) 587-2786; Fax: (867) 587-2359 [email protected] 6 Wildlife Disease Specialist / Research Scientist, Canadian Wildlife Service, 115 Perimeter Rd. Saskatoon, SK S7N 0X4 (306) 975-5357, (306) 966-7246 7 Disease & Contaminants Specialist, Environment and Natural Resources, 500 – 6102 50 th Ave.
    [Show full text]
  • Applied Microbiology VOLUME 60 This Page Intentionally Left Blank ADVANCES in Applied Microbiology
    ADVANCES IN Applied Microbiology VOLUME 60 This page intentionally left blank ADVANCES IN Applied Microbiology Edited by ALLEN I. LASKIN Somerset, New Jersey SIMA SARIASLANI Wilmington, Delaware GEOFFREY M. GADD Dundee, United Kingdom VOLUME 60 AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s Road, London WC1X 8RR, UK This book is printed on acid-free paper. Copyright ß 2006, Elsevier Inc. All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2006 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters.
    [Show full text]
  • Genomes Published Outside of SIGS, June
    Standards in Genomic Sciences (2011) 5:154-167 DOI:10.4056/sigs.2324675 Genome sequences of Bacteria and Archaea published outside of Standards in Genomic Sciences, June – September 2011 Oranmiyan W. Nelson1 and George M. Garrity1 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to this subsequent versions of this list are invited to provide the bib- liometric data for such references to the SIGS editorial office. Phylum Crenarchaeota Phylum Euryarchaeota Pyrococcus yayanosii CH1, sequence accession CP002779 [1] Methanocella paludicola, sequence accession AP011532 [2] Halorhabdus tiamatea, sequence accession AFNT00000000 [3] Thermococcus sp. Strain 4557, sequence accession CP002920 [4] Phylum Chloroflexi Phylum Proteobacteria Ralstonia solanacearum strain Po82, sequence accession CP002819 (chromosome) and CP002820 (megaplasmid) [5 Desulfovibrio alaskensis G20, sequence accession CP000112 [6] Methylophaga aminisulfidivorans MPT, sequence accession AFIG00000000 [7] Acinetobacter sp. P8-3-8, sequence accession AFIE00000000 [8] Sphingomonas strain KC8, sequence accession AFMP01000000
    [Show full text]
  • A Pilot Study of the Effects of Mycoplasma Ovipneumoniae Exposure on Domestic Lamb Growth And
    bioRxiv preprint doi: https://doi.org/10.1101/459628; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Full title: 2 A pilot study of the effects of Mycoplasma ovipneumoniae exposure on domestic lamb growth and 3 performance. 4 5 Thomas E. Besser1*, Jessica Levy1, Melissa Ackerman2, Danielle Nelson1, Kezia Manlove3, Kathleen A. 6 Potter1, Jan Busboom4, Margaret Benson4 7 8 Short title: 9 Sub-clinical Mycoplasma ovipneumoniae infection 10 11 1 Department of Veterinary Microbiology and Pathology, Washington State University College of 12 Veterinary Medicine, Pullman WA, United States of America 13 2 Department of Veterinary Clinical Sciences, Washington State University College of Veterinary 14 Medicine, Pullman WA, United States of America 15 3 Department of Wildland Resources, Utah State University College of Natural Resources, Logan UT, 16 United States of America 17 4 Department of Animal Sciences, Washington State University College of Agricultural, Human, and 18 Natural Resource Sciences, Pullman WA, United States of America. 19 * Corresponding author 20 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/459628; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Mycoplasma Ovipneumoniae Rotter ML, Hirschl AM
    RESEARCH LETTERS Figure. Direct examination with dark-field microscopy of specimens from a patient with agammaglobulinemia who had Spiroplasma apis infection, France. A) Helical and motile bacteria in blood culture. B) Elongated and coccoid bacteria in joint fluid. C) Helical and motile bacteria in culture from joint fluid in modified SP4 broth medium. Scale bar indicates 10 µm. than honeybees. The insect stings in this patient are a likely 7. Mueller NJ, Tini GM, Weber A, Gaspert A, Husmann L, gateway of the reported infection. Bloemberg G, et al. Hepatitis from Spiroplasma sp. in an immunocompromised patient. Am J Transplant. 2015;15:2511–6. In summary, clinicians and microbiologists should be http://dx.doi.org/10.1111/ajt.13254 aware of fastidious organisms in atypical infections in im- 8. Lorenz B, Schroeder J, Reischl U. First evidence of an endogenous munocompromised patients. Our findings indicate a need Spiroplasma sp. infection in humans manifesting as unilateral for prolonged culture on specific agar on all joint fluids in cataract associated with anterior uveitis in a premature baby. Graefes Arch Clin Exp Ophthalmol. 2002;240:348–53. patients with agammaglobulinemia and targeted molecular http://dx.doi.org/10.1007/s00417-002-0453-3 methods to identify S. apis organisms. 9. Aquilino A, Masiá M, López P, Galiana AJ, Tovar J, Andrés M, et al. First human systemic infection caused by Spiroplasma. J Clin Microbiol. 2015;53:719–21. http://dx.doi.org/10.1128/JCM.02841-14 Acknowledgments We thank Anne Laurence Thomi Georgelin, who referred the Address for correspondence: Olivier Lortholary, Necker-Enfants Malades patient to the Necker-Pasteur Center for Infectious Diseases and University Hospital, 149 rue de Sevre 75743, Paris CEDEX, France; Tropical Medicine; Valérie Zeller for the management of septic email: [email protected] polyarthritis; and Philippe Lanotte and Marie-Pierre Dubrana, who participated in molecular analysis.
    [Show full text]
  • Attachment 1 .PLOS ONE
    Attachment 1 .PLOS ONE CORRECTION Correction: Exposure of bighorn sheep to domestic goats colonized with Mycoplasma ovipneumoniae induces sub-lethal pneumonia Thomas E. Besser, E. Frances Cassirer, Kathleen A. Potter, William J. Foreyt Tn response to queries raised after publication, the authors, the authors’ institution (Office of Research Assurance, Washington State University) and a member of PLOS ONE’s Editorial Board have reviewed the findings in this article, and as a consequence the authors provide an update to the Competing Interests statement and clarifications regarding the results: The competing interests declaration is updated to acknowledge additional sources of fund ing received by the authors. This specific study was supported by funding competitively awarded by the Wild Sheep Foundation and by revenue from the WSU Rocky Crate Endow ment for Wild Sheep Disease Research. Additional research funding for the authors’ bighorn sheep pneumonia-related research has been received from the US Department of Agriculture (including the Animal Plant Health Inspection Service and the US Forest Service), the US Geo logic Survey, numerous chapters and affiliates of the Wild Sheep Foundation, and the WSU Fowler Emerging Infectious Diseases endowment. Regarding the pneumonia diagnosis reported in the article, the authors re-assessed the pri mary data and solicited and received a second opinion from a veterinary pathologist at Wash ington Animal Disease Diagnostic Lab (WADDL) unassociated with the original project. Following this reassessment, the authors confirmed the descriptions and diagnoses as reported in the article, but they noted that the consulted pathologist advised, “some pathologists might describe the histopathologic lesions seen in the least severely affected animal as ‘bronchiolitis’ rather than ‘pneumonia’ due to the preponderance of that lesion in that animal”.
    [Show full text]
  • ( 12 ) United States Patent
    US009956282B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,956 , 282 B2 Cook et al. (45 ) Date of Patent: May 1 , 2018 ( 54 ) BACTERIAL COMPOSITIONS AND (58 ) Field of Classification Search METHODS OF USE THEREOF FOR None TREATMENT OF IMMUNE SYSTEM See application file for complete search history . DISORDERS ( 56 ) References Cited (71 ) Applicant : Seres Therapeutics , Inc. , Cambridge , U . S . PATENT DOCUMENTS MA (US ) 3 ,009 , 864 A 11 / 1961 Gordon - Aldterton et al . 3 , 228 , 838 A 1 / 1966 Rinfret (72 ) Inventors : David N . Cook , Brooklyn , NY (US ) ; 3 ,608 ,030 A 11/ 1971 Grant David Arthur Berry , Brookline, MA 4 ,077 , 227 A 3 / 1978 Larson 4 ,205 , 132 A 5 / 1980 Sandine (US ) ; Geoffrey von Maltzahn , Boston , 4 ,655 , 047 A 4 / 1987 Temple MA (US ) ; Matthew R . Henn , 4 ,689 ,226 A 8 / 1987 Nurmi Somerville , MA (US ) ; Han Zhang , 4 ,839 , 281 A 6 / 1989 Gorbach et al. Oakton , VA (US ); Brian Goodman , 5 , 196 , 205 A 3 / 1993 Borody 5 , 425 , 951 A 6 / 1995 Goodrich Boston , MA (US ) 5 ,436 , 002 A 7 / 1995 Payne 5 ,443 , 826 A 8 / 1995 Borody ( 73 ) Assignee : Seres Therapeutics , Inc. , Cambridge , 5 ,599 ,795 A 2 / 1997 McCann 5 . 648 , 206 A 7 / 1997 Goodrich MA (US ) 5 , 951 , 977 A 9 / 1999 Nisbet et al. 5 , 965 , 128 A 10 / 1999 Doyle et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 ,589 , 771 B1 7 /2003 Marshall patent is extended or adjusted under 35 6 , 645 , 530 B1 . 11 /2003 Borody U .
    [Show full text]
  • Isolation and Molecular Characterization of Mycoplasma Spp
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.12/May-2019/6.pdf Open Access Isolation and molecular characterization of Mycoplasma spp. in sheep and goats in Egypt Mounier M. Abdel Halium1, Fayez A. Salib1, S. A. Marouf2 and Emil S. Abdel Massieh1 1. Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; 2. Department of Microbiology and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt. Corresponding author: Emil S. Abdel Massieh, e-mail: [email protected] Co-authors: MMAH: [email protected], FAS: [email protected], SAM: [email protected] Received: 04-12-2018, Accepted: 15-03-2019, Published online: 13-05-2019 doi: 10.14202/vetworld.2019.664-670 How to cite this article: Abdel Halium MM, Salib FA, Marouf SA, Abdel Massieh ES (2019) Isolation and molecular characterization of Mycoplasma spp. in sheep and goats in Egypt, Veterinary World, 12(5): 664-670. Abstract Background and Aim: Different species of Mycoplasma are associated with many pathological problems in small ruminants including respiratory manifestation, this problem results in significant losses, especially in African countries. This study aimed to (I) study some epidemiological aspects of Mycoplasma species infections in Egyptian sheep and goats at Giza Governorate, (II) diagnosis of Mycoplasma species affections using bacterial isolation and identification, (III) apply the polymerase chain reaction (PCR) for typing of different Mycoplasma species, and (IV) illustrate the phylogenetic tree for the isolated Mycoplasma species and other species from GenBank using the purified PCR product. Materials and Methods: A total of 335 samples were collected from sheep and goats from Giza Governorate in Egypt as 142 nasal swabs from clinically affected animals, 167 pneumonic lungs, 18 samples from tracheal bifurcation, and 8 samples by bronchial wash were cultured on pleuropneumonia-like organisms (PPLOs) media for cultivation of Mycoplasma species.
    [Show full text]
  • 2017 National Veterinary Scholars Symposium 18Th Annual August 4
    2017 National Veterinary Scholars Symposium 18th Annual August – 4 5, 2017 Natcher Conference Center, Building 45 National Institutes of Health Bethesda, Maryland Center for Cancer Research National Cancer Institute with The Association of American Veterinary Medical Colleges https://www.cancer.gov/ Table of Contents 2017 National Veterinary Scholars Symposium Program Booklet Welcome .............................................................................................................................. 1 NIH Bethesda Campus Visitor Information and Maps .........................................................2 History of the National Institutes of Health ......................................................................... 4 Sponsors ............................................................................................................................... 5 Symposium Agenda .......................................................................................................6 Bios of Speakers ................................................................................................................. 12 Bios of Award Presenters and Recipients ........................................................................... 27 Training Opportunities at the NIH ...................................................................................... 34 Abstracts Listed Alphabetically .......................................................................................... 41 Symposium Participants by College of Veterinary Medicine
    [Show full text]
  • Post-Translational Protein Deimination Signatures in Plasma and Plasma Evs of Reindeer (Rangifer Tarandus)
    biology Article Post-Translational Protein Deimination Signatures in Plasma and Plasma EVs of Reindeer (Rangifer tarandus) Stefania D’Alessio 1, Stefanía Thorgeirsdóttir 2, Igor Kraev 3 , Karl Skírnisson 2 and Sigrun Lange 1,* 1 Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; [email protected] 2 Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland; [email protected] (S.T.); [email protected] (K.S.) 3 Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)207-911-5000 (ext. 64832) Simple Summary: Reindeer are an important wild and domesticated species of the Arctic, Northern Europe, Siberia and North America. As reindeer have developed various strategies to adapt to extreme environments, this makes them an interesting species for studies into diversity of immune and metabolic functions in the animal kingdom. Importantly, while reindeer carry natural infections caused by viruses (including coronaviruses), bacteria and parasites, they can also act as carriers for transmitting such diseases to other animals and humans, so called zoonosis. Reindeer are also affected by chronic wasting disease, a neuronal disease caused by prions, similar to scrapie in sheep, mad cows disease in cattle and Creutzfeldt-Jakob disease in humans. The current study assessed a specific protein modification called deimination/citrullination, which can change how proteins Citation: D’Alessio, S.; function and allow them to take on different roles in health and disease processes.
    [Show full text]