Filter Chart
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Approach to Prepare Polyethylene Glycol Allyl Glycidyl Ether
E3S Web of Conferences 267, 02004 (2021) https://doi.org/10.1051/e3sconf/202126702004 ICESCE 2021 A new approach to prepare Polyethylene Glycol Allyl Glycidyl Ether Huizhen Wang1*, Ruiyang Xie1, Mingjun Chen1*, Weihao Deng1, Kaixin Zhang2, Jiaqin Liu1 1School of Science, Xihua University, Chengdu 610039, China; 2Chengdu Jingyiqiang Environmental Protection Technology Co., Ltd. Abstract. The polyethylene glycol allyl glycidyl ether (PGAGE) is an important intermediate for preparing silicone softener that can be synthesized from allyl alcohol polyoxyethylene ether and epichlorohydrin (ECH). The performance parameters including the concentration of ECH, initial boron trifluoride diethyl etherate (BFEE) as well as CaCl2 quality were investigated respectively. The optimum process parameters which can get high capping and low by-product rate are as follows: the ECH concentration is 2.0 M, the initial BFEE concentration is 1.65mM, and the CaCl2 dosage is 1.65g/L. Under these conditions, the maximal yield can be improved to 91.36%, the percent of capping rate is higher than 98.16%, the residual concentration of F- is only 0.63 mg/L. concentrated basic solution, in which the total yield was between 90%~91% by Matsuoka et al. [10] also use the 1 Introduction two-step reaction to synthesize AGE based on the reaction Polyethylene glycol allyl glycidyl ether (PGAGE) and the of allyl alcohol with ECH using BFEE as the catalyst. allyl polyoxyethylene ether (APEG), tethering with both Their results demonstrated that the yield reaches 82% alkene and epoxy groups, are widely used as fabric under the following condition: n (ECH) : n (allyl alcohol): finishing agent [1-2] , reactive diluent [3] , cross-linking (catalysis) = 1: (1~3) : (0.01~0.002). -
Pre-Validation of an Acute Inhalation Toxicity Assay Using the Epiairway in Vitro Human Airway Model
Pre-Validation of an Acute Inhalation Toxicity Assay Using the EpiAirway In Vitro Human Airway Model George R. Jackson, Jr., Michelle Debatis, Anna G. Maione, Patrick J. Hayden Exposure to potentially dangerous chemicals can occur through inhalation. UNDERSTANDING HUMAN BIOLOGY IN DIMENSIONS3 2 Regulatory systems for classifying the acute inhalation toxicity of chemicals ≤ 0.05 mg/l > 0.05 ≤ 0.5 mg/l > 0.5 ≤ 2 mg/l > 2 mg/l Respirator Use Required 3 Regulatory systems for classifying the acute inhalation toxicity of chemicals 4 OECD 403/436 is the currently accepted test method for determining acute inhalation toxicity OECD Test Guidelines 403/436: In vivo rat LD50 test (dose at which 50% of the animals die) 4 hour exposure 14 Days Examination: - Death -Signs of toxicity -Necropsy should be performed (not always reported) Nose/Head only (preferred) Whole body Repeat stepwise with additional concentrations as necessary 5 Our goal is to develop & validate an in vitro test for acute inhalation toxicity UNDERSTANDING HUMAN BIOLOGY IN DIMENSIONS3 6 The EpiAirway Model EpiAirway is an in vitro 3D organotypic model of human tracheal/bronchial tissue. - Constructed from primary cells - Highly reproducible - Differentiated epithelium at the air-liquid interface - Beating cilia - Mucus secretion - Barrier function - Physiologically relevant & predictive of the human outcome Air Cilia Differentiated epithelium Microporous membrane Media 7 EpiAirwayTM acute inhalation toxicity test method Prepare 4-point dose Apply chemical to Incubate for 3 hours Examination: curve of chemical in the apical surface - Tissue viability (MTT) dH2O or corn oil Advantages of using the in vitro EpiAirway test: 1. -
Aldrich Polymer Products Applicaton & Reference Information
Reference:Reference: PolymerPolymer PropertiesProperties Thermal Transitions of Homopolymers: Glass Transition & Melting Point Literature values for the glass transition temperature, (Tg), and in Table I have been taken from melting temperature, (Tm), are given in Table I for the more various sources and represent the most commonly common homopolymers. Polymers are listed by the repeat- reported numbers.1 Several factors can influence the ing unit in the polymer chain. These polymers and corre- reported values, including molecular weight, molecular sponding monomers are available from Aldrich. Literature val- weight distribution, tacticity, thermal history, purity, and ues for a given material can vary widely. The values reported method of measurement. Table I: Thermal Transitions of Homopolymers: Glass Transition (Tg) & Melting Point (Tm) Temperatures Repeating Unit Tg (°C) Tm (°C) Repeating Unit Tg (°C) Tm (°C) Acenaphthylene 214 N,N-Dimethylacrylamide 89 Acetaldehyde -32 165 Dimethylaminoethyl methacrylate 19 4-Acetoxystyrene 116 2,6-Dimethyl-1,4-phenylene oxide 167 Acrylamide 165 Dimethylsiloxane -127 -40 Acrylic acid 105 2,4-Dimethylstyrene 112 Acrylonitrile, syndiotactic 125 319 2,5-Dimethylstyrene 143 Allyl glycidyl ether -78 3,5-Dimethylstyrene 104 Benzyl acrylate 6 Dodecyl acrylate -3 Benzyl methacrylate 54 Dodecyl methacrylate -65 Bisphenol A-alt-epichlorohydrin 100 Dodecyl vinyl ether -62 Bisphenol A terephthalate 205 Epibromohydrin -14 Bisphenol carbonate 174 Epichlorohydrin -22 Bisphenol F carbonate 147 1,2-Epoxybutane -70 -
1997-11-12 Acrolein As Federal Hazardous Air Pollutant
ACROLEIN Acrolein is a federal hazardous air pollutant and was identified as a toxic air contaminant in April 1993 under AB 2728. CAS Registry Number: 107-02-8 H2C=CHCHO Molecular Formula: C3H4O Acrolein is a colorless or yellowish, flammable liquid with an unpleasant, extremely pungent odor. It is soluble in petroleum ether, water, and alcohol and miscible with hydrocarbons, acetone, and benzene (Sax, 1989). Acrolein polymerizes (especially in the presence of light, alkali, or strong acid) forming disacryl, a plastic solid (Merck, 1989). Physical Properties of Acrolein Synonyms: acraldehyde; allyl aldehyde; acrylic aldehyde; Biocide; 2-propenal Molecular Weight: 56.06 Boiling Point: 52.5 oC Melting Point: -88.0 oC Flash Point: -18 oC (< 0 oF) (open cup) Vapor Density: 1.94 (air = 1) Vapor Pressure: 210 mm Hg at 20 oC Density/Specific Gravity: 0.8389 at 20/4 oC Log Octanol/Water Partition Coefficient: -0.09 Water Solubility: 208,000 mg/L at 20 oC Henry's Law Constant: 4.4 x 10-6 atm-m3/mole Conversion Factor: 1 ppm = 2.29 mg/m3 (Howard, 1990; HSDB, 1991; Merck, 1989; U.S. EPA, 1994a) SOURCES AND EMISSIONS A. Sources Acrolein is emitted from sources where it is manufactured and used as an intermediate for glycerine, methionine, glutaraldehyde, and other organic chemicals. It is also found in tobacco smoke, forest fire emissions, and gasoline and diesel exhaust. Acrolein is also a photooxidation product of various hydrocarbons including 1,3-butadiene (Howard, 1990). Toxic Air Contaminant Identification List Summaries - ARB/SSD/SES September 1997 23 Acrolein The primary stationary sources that have reported emissions of acrolein in California are paper mills, and abrasive, asbestos, miscellaneous non-metallic mineral, and wood products (ARB, 1997b). -
New L-Serine Derivative Ligands As Cocatalysts for Diels-Alder Reaction
Hindawi Publishing Corporation ISRN Organic Chemistry Volume 2013, Article ID 217675, 5 pages http://dx.doi.org/10.1155/2013/217675 Research Article New L-Serine Derivative Ligands as Cocatalysts for Diels-Alder Reaction Carlos A. D. Sousa,1 José E. Rodríguez-Borges,2 and Cristina Freire1 1 REQUIMTE, Departamento de Qu´ımica e Bioqu´ımica, Faculdade de Cienciasˆ da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal 2 Centro de Investigac¸ao˜ em Qu´ımica, Departamento de Qu´ımica e Bioqu´ımica, Faculdade de Cienciasˆ da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal Correspondence should be addressed to Cristina Freire; [email protected] Received 1 October 2013; Accepted 21 October 2013 Academic Editors: P. S. Andrada, M. W. Paixao, and N. Zanatta Copyright © 2013 Carlos A. D. Sousa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward. 1. Introduction derivative ligands, as alternative to the usual strong Lewis acids. -
Acrolein Hazards to Fish, Wildlife, and Invertebrates: a Synoptic Review
Biological Report 23 Contaminant Hazard Reviews June 1994 Report 28 Acrolein Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review By Ronald Eisler U.S. Department of the Interior National Biological Survey Patuxent Environmental Science Center Washington, D.C. 20240 Abstract Sources and Uses General Sources Uses Environmental Chemistry General Chemical Properties Persistence Metabolism Lethal and Sublethal Effects General Terrestrial Plants and Invertebrates Aquatic Organisms Birds Mammals Recommendations Acknowledgments Cited Literature TABLES Number 1 Chemical and other properties of acrolein 2 Acrolein effects on representative aquatic organisms 3 Acrolein effects on birds 4 Acrolein effects on selected mammals 5 Proposed acrolein criteria for the protection of living resources and human health FIGURE Proposed scheme for in vitro mammalian metabolism of acrolein and allyl alcohol, a precursor of acrolein Suggested citation: Eisler, R. 1994. Acrolein hazards to fish, wildlife, and invertebrates: a synoptic review. U. S. National Biological Survey Biological Report 23. 2 Acrolein Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review by Ronald Eisler U.S. Department of the Interior National Biological Survey Patuxent Environmental Science Center Washington, D.C. 20240 Abstract. Acrolein (CH2=CHCHO) is the simplest member of the unsaturated aldehydes and enters the environment from incomplete combustion of fossil fuels, industrial discharges, herbicides, chemical control agents of fouling organisms, and normal metabolic processes of animals. Acrolein is volatile, flammable, and explosive. Biochemical and toxic effects of acrolein are caused by its reaction with sulfhydryl compounds to form a stable thiol ether. Acrolein metabolites under certain conditions are reportedly mutagenic, teratogenic, or carcinogenic. Acrolein degrades quickly in soils and in plant tissues; in water the half-time persistence is usually less than 50 h and in the atmosphere, less than 3 h. -
Vulcanizable Epichlorohydrin Polymer Composition
Europaisches Patentamt J European Patent Office © Publication number: 0 657 499 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94119434.2 © int. Ci.6; C08K 13/02, //(C08K1 3/02,3:26, 5:45) @ Date of filing: 08.12.94 © Priority: 09.12.93 JP 308836/93 © Applicant: DAISO CO., LTD. 1 9.04.94 JP 801 76/94 1 0-8, Edobori 1 -chome Nishi-ku @ Date of publication of application: Osaka-shi 14.06.95 Bulletin 95/24 Osaka-fu (JP) © Designated Contracting States: @ Inventor: Tomoshige, Yoshihiro DE ES FR GB IT Yasuda-shukusha 2-507, 348-7 Tohda-cho Masuda-shi, Shimane-ken (JP) Inventor: Nishi, Yoshikazu 35-5, Ohshima 2-chome Amagasaka-shi, Hyogo-ken (JP) Inventor: Tanaka, Hidekazu 7-1-205, Mukonosato 2-chome Amagasaka-shi, Hyogo-ken (JP) Inventor: Ohnuki, Kohji 1-6-12, Nishitachibana-cho Amagasaki-shi, Hyogo-ken (JP) Inventor: Matoba, Yasuo 9-8-104, Kayandoh-cho Nishinomiya-shi, Hyogo-ken (JP) © Representative: VOSSIUS & PARTNER Siebertstrasse 4 D-81675 Munchen (DE) © Vulcanizable epichlorohydrin polymer composition. © A vulcanizable composition which contains (a) 100 parts by weight of an epichlorohydrin polymer; m CO (b) 0.1 to 10 parts by weight of a 2,3-dimercaptopyrazine derivative or a 2,3-dimercaptoquinoxaline derivative; and (c) 1 to 10 parts by weight of a hydrotalcite compound, has the high vulcanization rate and the excellent long time storage stability. Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 657 499 A1 The present invention relates to a curable composition based on an epichlorohydrin polymer having excellent vulcanization properties and storage stability. -
Acrolein Is Absorbed; Have Been Identified for Acrolein
TM The ToxGuide is developed to be used as a pocket guide. Tear off at perforation and fold along lines. Toxicokinetics and Biomarkers/Environmental Sources of Exposure Normal Human Levels Levels ToxGuideTM General Populations Toxicokinetics Biomarkers Exposure may occur through inhalation, Based on animal data, approximately No biomarkers of exposure or effect for ingestion, and dermal contact. 80–90% of inhaled acrolein is absorbed; have been identified for acrolein. Environmental tobacco smoke (ETS) is most in the upper respiratory tract. the primary source of exposure for many In vitro studies suggest that acrolein will Environmental Levels individuals. form conjugates with glutathione. Air Acrolein Widespread exposure occurs due to the Following oral exposure in animals, formation of acrolein during the heating approximately 30% of the initial dose is Acrolein levels in outdoor air averaged from 0.5 to 3.186 ppb. of fats. expired as carbon dioxide and 50-60% is CH2=CH-CHO The general population may also be excreted in the urine. Acrolein in indoor air ranged from <0.02 to 12 ppb in residential homes. exposed to high concentrations from CAS# 107-02-8 vehicle exhaust (for example, parking Normal Human Levels Sediment and Soil October 2007 garages and/or heavy traffic). No data available No data are available on actual Acrolein is also present in certain foods measurements of acrolein in soil. such as raw cocoa beans, chocolate Water U.S. Department of Health and liquor, fried potatoes and onions, raw and Acrolein has not been found as a Human Services cooked turkey, heated animal fats and contaminant of drinking water. -
Allyl Glycidyl Ether
ENEA0080 - ALLYL GLYCIDYL ETHER ALLYL GLYCIDYL ETHER Safety Data Sheet ENEA0080 Date of issue: 12/22/2016 Version: 1.0 SECTION 1: Identification 1.1. Product identifier Product name : ALLYL GLYCIDYL ETHER Product code : ENEA0080 Product form : Substance Physical state : Liquid Formula : C6H10O2 Synonyms : 2-(ALLYLOXYMETHYL)OXIRANE 1,2-EPOXY-3-ALLYLOXYPROPANE [(2-PROPENYLOXY)METHYL]OXIRANE 1-(2-PROPENYLOXY)-2,3-EPOXYPROPANE Chemical family : EPOXY COMPOUND 1.2. Recommended use of the chemical and restrictions on use Recommended use : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Flammable liquids Category 3 H226 Acute toxicity (oral) Category 4 H302 Acute toxicity (inhalation:vapor) Category 3 H331 Skin sensitization Category 1 H317 Germ cell mutagenicity Category 2 H341 Reproductive toxicity Category 2 H361 Specific target organ toxicity (single exposure) Category 3 H335 Hazardous to the aquatic environment - Acute Hazard Category 3 H402 Full text of H statements : see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS02 GHS06 GHS07 GHS08 Signal word (GHS-US) : Danger Hazard -
Toxicological Profile for Acrolein
ACROLEIN 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about acrolein and the effects of exposure to it. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites are then placed on the National Priorities List (NPL) and are targeted for long-term federal clean-up activities. Acrolein has been found in at least 32 of the 1,684 current or former NPL sites. Although the total number of NPL sites evaluated for this substance is not known, the possibility exists that the number of sites at which acrolein is found may increase in the future as more sites are evaluated. This information is important because these sites may be sources of exposure and exposure to this substance may harm you. When a substance is released either from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. Such a release does not always lead to exposure. You can be exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. If you are exposed to acrolein, many factors will determine whether you will be harmed. These factors include the dose (how much), the duration (how long), and how you come in contact with it. You must also consider any other chemicals you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health. 1.1 WHAT IS ACROLEIN? Acrolein is a clear or yellow liquid with a burnt, sweet, pungent odor. -
Methyl Acrylate (CASRN 96-33-3) | IRIS
Integrated Risk Information System (IRIS) U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment Methyl acrylate; CASRN 96-33-3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data, as outlined in the IRIS assessment development process. Sections I (Health Hazard Assessments for Noncarcinogenic Effects) and II (Carcinogenicity Assessment for Lifetime Exposure) present the conclusions that were reached during the assessment development process. Supporting information and explanations of the methods used to derive the values given in IRIS are provided in the guidance documents located on the IRIS website. STATUS OF DATA FOR Methyl acrylate File First On-Line 12/01/1990 Category (section) Assessment Available? Last Revised Oral RfD (I.A.) not evaluated Inhalation RfC (I.B.) not evaluated Carcinogenicity Assessment (II.) yes 12/01/1990 I. Chronic Health Hazard Assessments for Noncarcinogenic Effects I.A. Reference Dose for Chronic Oral Exposure (RfD) Substance Name — Methyl acrylate CASRN — 96-33-3 Not available at this time. 1 Integrated Risk Information System (IRIS) U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment I.B. Reference Concentration for Chronic Inhalation Exposure (RfC) Substance Name — Methyl acrylate CASRN — 96-33-3 Not available at this time. II. Carcinogenicity Assessment for Lifetime Exposure Substance Name — Methyl acrylate CASRN — 96-33-3 Last Revised — 12/01/1990 Section II provides information on three aspects of the carcinogenic assessment for the substance in question; the weight-of-evidence judgment of the likelihood that the substance is a human carcinogen, and quantitative estimates of risk from oral exposure and from inhalation exposure. -
A Novel Synthesis of Methyl Acrylate-Rl-D and 1 H Nuclear Magnetic Resonance Spectra of Its Alternating Copolymers
Polymer Journal, Vol. 12, No.3, pp 177-181 (1980) A Novel Synthesis of Methyl Acrylate-rl-d and 1 H Nuclear Magnetic Resonance Spectra of Its Alternating Copolymers Kenji YOKOTA, Tadamichi HIRABAYASHJ, and Kensuke TAKAHASHI Materials Research Laboratory, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan. (Received November 13, 1979) ABSTRACT: Methyl acrylate-a-d of high isotopic purity was synthesized in 50 per cent yield by reducing methyl a-bromoacrylate with zinc dust and deuterium oxide in diethylene glycol dimethyl ether at 80-1 oooc. 1 H nuclear magnetic resonance spectra of alternating styrene-a-d-methyl acrylate-a-d and a-methylstyrene-methyl acrylate-a-d copolymers ate discussed. KEY WORDS Methyl Acrylate-a-d I Deuteraiion I Zinc I Deuterium Oxide I 1 H NMR I Alternating Copolymer I The partial deuteration of a vinyl monomer at a The last step, in which a deuterium is substituted for specified position has made possible the useful bromine, is an application of Whitesides et al.'s simplification of 1 H nuclear magnetic resonance deuteration procedure.4 They carried out the (NMR) spectra of derived polymers.' reaction on some saturated halogeno-esters and Matsuzaki et a/. 2 synthesized methyl acrylate-IX-d -nitriles. by hydrolyzing acrylonitrile-IX-d 3 with D 20-D2 S04 Methyl acrylate-IX-d thus obtained was and esterifying the resulting acid with methanol. The copolymerized to give alternating styrene-IX-d yield however was low (14%) and the isotopic purity, methyl acrylate-IX-d and IX-methylstyrene-methyl unsatisfactory (91 %). acrylate-IX-d copolymers.