The Chemistry of 3-Acetyl-3, 4-Phenacylidenecoumarin Gerald Eugene Risinger Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

The Chemistry of 3-Acetyl-3, 4-Phenacylidenecoumarin Gerald Eugene Risinger Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1961 The chemistry of 3-acetyl-3, 4-phenacylidenecoumarin Gerald Eugene Risinger Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Risinger, Gerald Eugene, "The chemistry of 3-acetyl-3, 4-phenacylidenecoumarin " (1961). Retrospective Theses and Dissertations. 1983. https://lib.dr.iastate.edu/rtd/1983 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 62-1367 microfilmed exactly as received RISINGER, Gerald Eugene, 1932- THE CHEMISTRY OF 3-ACETYL-3,4-PHENACYLI- DENECOUMARIN. Iowa State University of Science and Technology Ph.D., 1961 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan THE CHEMISTRY OF 3-ACETYL-3 , ^-PI-ENACYLIDENECOUKARIN by Gerald Eugene Risinger A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject : Organic Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1961 il TABLE OF CONTENTS PAGE I INTRODUCTION 1 II HISTORICAL 2 III DISCUSSION 49 IV SPECTRA 87 V EXPERIMENTAL 100 VI SUMMARY 116 VII LITERATURE CITED .. 11? VI11 ACKNOWLEDGEMENT 124 1 INTRODUCTION The Darzens reaction has been extensively studied since the turn of the Twentieth Century. The scope and limitations of the reaction were determined by Darzens In the early 1900's, and In recent years, the stereochemistry and mechanism of the condensation have received ample investigation. The vinylogous Darzens reaction, on the other hand, has received sparse attention, and indeed, its existence Is still In doubt today. The purpose of this research was to investigate the chemistry and constitution of 3-acetyl-3,4-phenacylldene- coumarln, and the validity of the vinylogous Darzens reaction In the condensation of 3-acetylcoumarln with phenacyl halldes. HISTORICAL The Darzens Reaction The Darzens reaction le defined as the condensation of a haloraethylene compound with an aldehyde or ketone In the presence of base to yield an oxlrane ring (I) by the elimination of hydrogen hallde, 1,e., H A — C =» 0 -+• X—C — •+ : 0 — C — C — •+• HB®+• X ® I I I I In 1892, Erlenmeyer (1) announced the first synthesis of an epoxy or glycidic ester (II) by the condensation of benzal- dehyde with ethyl Ct-chloroacetate (III) In the presence of sodium: VCO.ET •f NaCL HE I The condensation was extensively investigated by Darzens ( 2-14) in the early 1900'e, as a consequence of which the reaction was given his name. Darzens (2) demonstrated the generality of the condensation in regard to the use of ketones in 1904: V +- CL R + NaCL 0 R-" r."thyl, ieohexyl, heptyl, nonyl, phenyl, j8~ph~nylethyl and p-1 sobutylphenyl 3 In 1906, Darzens (4) investigated the condensation of al­ dehydes with a-haloesters, and demonstrated the reaction to be general for aldehydes also. The aromatic aldehydes, benzaldehyde, anisaldehyde, plperonal and furfural, gave high yields of the corresponding epoxyesters. On the other hand, the aliphatic aldehydes, formaldehyde, acetaldehyde, proplonaldehyde and 1sovaleryaldehyde, were found to give low yields of the epoxyesters. The condensation of (2,^9 -unsaturated ketones with ethyl Œ-chloroacetate was also studies by Darzens and other investigators. Darzens and Host (9) reported the prep­ aration of the glycidic ester of 1-acetyl-l-cyclohexene (IV) by the condensation of ethyl Œ -chloroacetate with 1-acetyl- l-cyclohexene (V). p, ,OET _ ./V^T 0 V IV In recent years, Hellbron and coworkers (15), and Linnell and Shen (16) have investigated the condensation of CL, ft-unsaturated ketones with Œ haloesters. Hellbron, et al have reported the preparation of the glycidic esters of Q-lonone (VII)., ft -ionone (VI), and mesityl oxide (VIII): ^A^co2ET CO,, ET ^ ^t-CO,ET VI VII VIII 4 Linnell and Shen have also prepared the glycidic ester of benzalacetone (IX) by the condensation of benzalacetone (X) with ethyl fit-chloroacetate: + CL T0 - - L x ix In recent years the German chemists, Merdel and Frtihlich (17) have investigated the condensation of m-methoxyacetophen- one and p-methoxy-acetophenone with ethyl a-chloroacetate, and have obtained a satisfactory yield of the glycidic esters, ethyl ft-methyl- ft-(m-methoxyphenyl) - Cl,ft-epoxypropionate (XI) and ethyl ft -methyl-ft-methyl- ft -p-raethoxyphenyl)-a,ft - epoxypropionate (XII). Nerdel and Frtihllch have also pre­ pared ethyl ft -methyl-^(m-nltrophenyl)- a,ft-epoxypropionate, and ethyl ft -(m-nltrophenyl)-Q ,/5-enoxyproplonate by the con­ densation of rn-nitroaoetophenone and m-nltrobenzaldehyde with V^V/C02'ET ^ CO^ET OCH3 XI ethyl a -chloroacetate. The Russian workers, i'artynov and 01 'man (18) have supi'lein-;nted the work of Nerdel and Frtihlioh by condensing ethyl a -chloroacetate wl!.h several substituted benzal- 5 dehy&es. The Russians have prepared the glycidic esters of o-nitrobenzaldehyde, m-nltrobenzaldehyde, p-nitrobenzalde- hyde, and p-chlorobenzaldehyde. In I905, Darzens (3,4) Investigated the condensation of ethyl a -ohloroproplonate with aldehydes and ketones, and found this O-chloroester to exhibit the same behavior in condensations as ct-chloroacetates. Darzens has pre­ pared the a-methyl glycidic esters of acetone, methyl ethyl ketone, methyl propyl ketone, methyl hexyl ketone, and acetophenone. Aldehydes such as benzaldehyde, anisaldehyde, piperonal, furfural, acetaldehyde, propionaldehyde and isovalerylaldehyde have also been found to condense favor­ ably with ethyl g-ohloroproplonate. In 1952, Dullaghan and Mord (19) have employed ethyl a -ohloroproplonate and methyl CZ-chloroacetate in the pre­ paration of the glycidic esters of 2-thenaldehyde and sub­ stituted 2-thenaldehydes (XIII): 0 XIII 6 XIII a) R^-hydrogen b) Ri-ethyl c) R]_:ethyl d) R%=chloro Rgzmethyl Rgshydrogen Rgzhydrogen Rgzbydrogen R^zmethyl R^zhydrogen R^rmethyl R^thydrogen R/p ethyl Rj^imethyl R^z ethyl R^Zmethyl e) Rliohloro f) R^-hydrogen g) Rirhydrogen h) Ri^hydrogen R2=hydrogen R^hydrogen Rgthydrogen Rgzmethyl R^zmethyl Rirhydrogen R^Zmethyl R^zhydrogen Rijiethyl R^zmethyl R^ethyl R^r methyl In recent years, Morris and Young (20) have investigated the Œ -chloroesters, ethyl a-chloroproplonate, ethyl Cf-chlorobutyrate, ethyl a -chlorovalerate, and ethyl a-chlorocaprdate by preparing the substituted glycidic ester (XIV a-d) of acetone. XIV a) R = methyl b) R r ethyl C02ET c) R = propyl R d) R = butyl XIV Although ethyl 0 -chloroacetate has become the most popular halo component in the Darzens reaction, df-bro- rcoacetate and Œ-lod.oacetate have also been used (21). The yields of glycidic esters are somewhat lower if- the a-bromo- or a -iodoesters are employed; the lower yields have been explained by the greater reactivity of the bromo-and lodo- esters to SH2 displacement. Rallcr and. Ranart - Lucas (22) have illustrated the fact that aIky1at Ion of the carbonyl component is enhanced by usinr; ethyl Œ -bromoacctate and ethyl a -iodoacetate. When ieopropyl phenyl ketone (XV) is condensed with ethyl Q -chloroacetate, the Darzens product (XVI) prevails, Q ___ OET + CL^V/ 0 XV XVI however, when ethyl Q -chloroacetate in replaced by ethyl Q -bromoacetate or ethyl a -lodoacctate, only the alkylated ketone (XVII) is recovered: OET XV 4- X-^V^ CO2ET 0 XVII X; Br, I Stetter, Dierichs, and Siehnhold (23, 24) have alco reported O-alkylation to be the predominate reaction in the conden­ sation of ethyl Ct -bromoacetate with dihyciroresorcinol (XVIII). OET + BR^V^ • COOET 0 OH -ôc XVIII 8 The condensation of ethyl Œ-bromophenylacetate with acetone has been shown by Morris, et al. (25) not to afford a glycidic ester. An analysis of the reaction mixture dis­ closed that the bromoester was degraded to a mixture of ethyl phenylacetate, ethyl 2,3-diphenylmaleate, and ethyl 2,3-dlphenylsuccinate. The Darzens reaction with complex Gt-haloesters has proven to be unsuccessful. Yarnall and Wallis (26) have- attempted to condense ethyl 0^3 dichloroproplonate with oyolohexanone and have found no evidence of a Darzens product. Apparently, the ethyl Ctij9 dichloroproplonate undergoes elimination to yield ethyl flt-chloroacrylate. The Darzens reaction between acetophenone and ethyl Ot-chlo- ro- j3j3-dlethoxypropionate has also been unsuccessful, as Oroshnlk and Spoerrl (27) were unable to isolate products. The Darzens reaction involving an Q-haloketone as the haloraethylene component was first discovered by Fritz (28) in 1895» In attempting to prepare a-ethoxyaceto- phenone by the solvolysis of Gt-bromoacetophenone, Fritz discovered that Œ-bromoacetophenone condensed with itself. Fritz named the condensation product, diphenacyl bromide, and assigned the structure of the compound as 1,5-cllphenyl- 2-bromo-l,4 butadlone (XIX). 9 XIX Paal and coworkers (29, 30) studied the condensation in 1903, and discovered that two isomeric diphenacyl bromides were formed In the reaction; the isomeric diphenacyl "bromides were designated as a-and /3-diphenacyl bromides. Paal then extended the condensation by preparing the a -and ft -diphenacyl chlorides, and the GE-and ^-diphenacyl iodides. In 1913 » Wldman (31) investigated the diphenacyl halldes and rejected the structure proposed by Fritz. 'ildman discovered that if he treated ^6-diphenacyl bromide with acetyl chloride, he obtained a product that was Identical with a product obtained by treating ft-diphenacyl chloride with acetyl bromide. On the strength of this reaction, and other degradative evidence, Wldman proposed the tetrahydrofuran structure, 2-b.romo-3 ,4-epoxy-3 ,5 diphenyltetrahydrofuran (XX).
Recommended publications
  • Pre-Validation of an Acute Inhalation Toxicity Assay Using the Epiairway in Vitro Human Airway Model
    Pre-Validation of an Acute Inhalation Toxicity Assay Using the EpiAirway In Vitro Human Airway Model George R. Jackson, Jr., Michelle Debatis, Anna G. Maione, Patrick J. Hayden Exposure to potentially dangerous chemicals can occur through inhalation. UNDERSTANDING HUMAN BIOLOGY IN DIMENSIONS3 2 Regulatory systems for classifying the acute inhalation toxicity of chemicals ≤ 0.05 mg/l > 0.05 ≤ 0.5 mg/l > 0.5 ≤ 2 mg/l > 2 mg/l Respirator Use Required 3 Regulatory systems for classifying the acute inhalation toxicity of chemicals 4 OECD 403/436 is the currently accepted test method for determining acute inhalation toxicity OECD Test Guidelines 403/436: In vivo rat LD50 test (dose at which 50% of the animals die) 4 hour exposure 14 Days Examination: - Death -Signs of toxicity -Necropsy should be performed (not always reported) Nose/Head only (preferred) Whole body Repeat stepwise with additional concentrations as necessary 5 Our goal is to develop & validate an in vitro test for acute inhalation toxicity UNDERSTANDING HUMAN BIOLOGY IN DIMENSIONS3 6 The EpiAirway Model EpiAirway is an in vitro 3D organotypic model of human tracheal/bronchial tissue. - Constructed from primary cells - Highly reproducible - Differentiated epithelium at the air-liquid interface - Beating cilia - Mucus secretion - Barrier function - Physiologically relevant & predictive of the human outcome Air Cilia Differentiated epithelium Microporous membrane Media 7 EpiAirwayTM acute inhalation toxicity test method Prepare 4-point dose Apply chemical to Incubate for 3 hours Examination: curve of chemical in the apical surface - Tissue viability (MTT) dH2O or corn oil Advantages of using the in vitro EpiAirway test: 1.
    [Show full text]
  • 1997-11-12 Acrolein As Federal Hazardous Air Pollutant
    ACROLEIN Acrolein is a federal hazardous air pollutant and was identified as a toxic air contaminant in April 1993 under AB 2728. CAS Registry Number: 107-02-8 H2C=CHCHO Molecular Formula: C3H4O Acrolein is a colorless or yellowish, flammable liquid with an unpleasant, extremely pungent odor. It is soluble in petroleum ether, water, and alcohol and miscible with hydrocarbons, acetone, and benzene (Sax, 1989). Acrolein polymerizes (especially in the presence of light, alkali, or strong acid) forming disacryl, a plastic solid (Merck, 1989). Physical Properties of Acrolein Synonyms: acraldehyde; allyl aldehyde; acrylic aldehyde; Biocide; 2-propenal Molecular Weight: 56.06 Boiling Point: 52.5 oC Melting Point: -88.0 oC Flash Point: -18 oC (< 0 oF) (open cup) Vapor Density: 1.94 (air = 1) Vapor Pressure: 210 mm Hg at 20 oC Density/Specific Gravity: 0.8389 at 20/4 oC Log Octanol/Water Partition Coefficient: -0.09 Water Solubility: 208,000 mg/L at 20 oC Henry's Law Constant: 4.4 x 10-6 atm-m3/mole Conversion Factor: 1 ppm = 2.29 mg/m3 (Howard, 1990; HSDB, 1991; Merck, 1989; U.S. EPA, 1994a) SOURCES AND EMISSIONS A. Sources Acrolein is emitted from sources where it is manufactured and used as an intermediate for glycerine, methionine, glutaraldehyde, and other organic chemicals. It is also found in tobacco smoke, forest fire emissions, and gasoline and diesel exhaust. Acrolein is also a photooxidation product of various hydrocarbons including 1,3-butadiene (Howard, 1990). Toxic Air Contaminant Identification List Summaries - ARB/SSD/SES September 1997 23 Acrolein The primary stationary sources that have reported emissions of acrolein in California are paper mills, and abrasive, asbestos, miscellaneous non-metallic mineral, and wood products (ARB, 1997b).
    [Show full text]
  • The Asymmetric Synthesis of Styrene-Oxide and Its Reactions with Dialkylmagnesium Reagents and Boron Hydrides
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1971 THE ASYMMETRIC SYNTHESIS OF STYRENE-OXIDE AND ITS REACTIONS WITH DIALKYLMAGNESIUM REAGENTS AND BORON HYDRIDES RONALD LEROY ATKINS Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation ATKINS, RONALD LEROY, "THE ASYMMETRIC SYNTHESIS OF STYRENE-OXIDE AND ITS REACTIONS WITH DIALKYLMAGNESIUM REAGENTS AND BORON HYDRIDES" (1971). Doctoral Dissertations. 964. https://scholars.unh.edu/dissertation/964 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. 72-3736 ATKINS, Ronald Leroy, 1939- THE ASYMMETRIC SYNTHESIS OF STYRENE OXIDE AND ITS REACTIONS WITH DIALKYLMAGNESIUM REAGENTS AND BORON HYDRIDES. University of New Hampshire, Ph.D., 1971 Chemistry, organic University Microfilms, A XEROX Company, Ann Arbor, Michigan © 1971 Ronald LeRoy Atkina ALL RIGHTS RESERVED THE ASYMMETRIC SYNTHESIS OF STYRENE OXIDE AND ITS REACTIONS WITH DIALKYLMAGNESIUM REAGENTS AND BORON HYDRIDES by RONALD L. ATKINS B. S., The University of Wyoming, 1966 M. S., The University of Wyoming, 1968 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Graduate School Department of Chemistry August, 1971 This thesis has been examined and approved. f b w < M & > YUffvyido— The^js Director, James D. Morrison Asspaiate Professor of Chemistry & L DJitdsh-iU. _____ Colin D.
    [Show full text]
  • Filter Chart
    Filter Chart Chemical Filter Chemical Filter Chemical Filter Abate FFP1 tert-Butyl acetate A1 Copper fume FFP1 Acetaldehyde A1 Butyl acrylate A1 Dusts & mist (as Cu) FFP1 Acetic acid E1 n-Butyl alcohol A1 Cotton dust, raw FFP1 Acetic anhydride B1 sec-Butyl alcohol R A1 Crag herbicide FFP1 Acetonitrile A1 Butylamine B1 Cresol, all isomers FFP1 Acetylene dichloride A1 tert-Butyl chromate (as Cro3) FFP1 Cumene FFP1 Acetylene tetrabromide A1 n-Butyl glycidyl ether(BGE) A1 Cyanamide A1 P1 Acetylsalicylic acid FFP2 n-Butyl lactate A1 Cyanogen B1 Acrolein A1 o-sec Butyl phenol A1 Acrylamide A1 P2 p-tert Butyltoluene A1 Cyanogen chloride (CK) B1 Acrylonitrile A1 Cadmium, dust & salts (as Cd) FFP1 Cyclohexane A1 Aldrin A1 P2 Cadmium oxide fume (as Cd) FFP1 Cyclohexnol A1 Allyl alcohol A1 Calcium cyanamide FFP1 Cyclohexanone A1 Allyl chloride A1 Calcium hydroxide FFP1 Cyclohexene Allyl glycidyl ether (AGE) A1 Calcium oxide FFP1 A1 Allyl propyl disulfide B1 Camphor, synthetic A1 Cyclohexylamine A1 Aluminium metal and oxide FFP2 Caprolactam Dust FFP1 Cyclonite B1 Aluminium pyro powders FFP2 Vapor A1 1.3 Cyclopentadiene A1 Aluminium welding fumes A1 P2 Captafol(DifolatanR) FFP1 2.4-D (2.4-Dichlorophenoxy acetic acid) FFP1 Aluminium soluble salts FFP2 Captan FFP1 Aluminium, alkyls A1 R Carbary (Seven ) FFP1 D.D.T. (Dichlorodiphenyl A1 P1 4-Aminodiphenyl FFP1 Carbofuran (FuradanR) FFP1 trichloroethane) A1 P1 2- Aminoethanol A1 Carbon black FFP1 DDVP Decaborane B1 P1 2- Aminopyridine K1 Carbon dusulfide B1 DemetonR B1 P1 Ammonia A1 Carbon tetrabromide
    [Show full text]
  • Acrolein Hazards to Fish, Wildlife, and Invertebrates: a Synoptic Review
    Biological Report 23 Contaminant Hazard Reviews June 1994 Report 28 Acrolein Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review By Ronald Eisler U.S. Department of the Interior National Biological Survey Patuxent Environmental Science Center Washington, D.C. 20240 Abstract Sources and Uses General Sources Uses Environmental Chemistry General Chemical Properties Persistence Metabolism Lethal and Sublethal Effects General Terrestrial Plants and Invertebrates Aquatic Organisms Birds Mammals Recommendations Acknowledgments Cited Literature TABLES Number 1 Chemical and other properties of acrolein 2 Acrolein effects on representative aquatic organisms 3 Acrolein effects on birds 4 Acrolein effects on selected mammals 5 Proposed acrolein criteria for the protection of living resources and human health FIGURE Proposed scheme for in vitro mammalian metabolism of acrolein and allyl alcohol, a precursor of acrolein Suggested citation: Eisler, R. 1994. Acrolein hazards to fish, wildlife, and invertebrates: a synoptic review. U. S. National Biological Survey Biological Report 23. 2 Acrolein Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review by Ronald Eisler U.S. Department of the Interior National Biological Survey Patuxent Environmental Science Center Washington, D.C. 20240 Abstract. Acrolein (CH2=CHCHO) is the simplest member of the unsaturated aldehydes and enters the environment from incomplete combustion of fossil fuels, industrial discharges, herbicides, chemical control agents of fouling organisms, and normal metabolic processes of animals. Acrolein is volatile, flammable, and explosive. Biochemical and toxic effects of acrolein are caused by its reaction with sulfhydryl compounds to form a stable thiol ether. Acrolein metabolites under certain conditions are reportedly mutagenic, teratogenic, or carcinogenic. Acrolein degrades quickly in soils and in plant tissues; in water the half-time persistence is usually less than 50 h and in the atmosphere, less than 3 h.
    [Show full text]
  • Acrolein Is Absorbed; Have Been Identified for Acrolein
    TM The ToxGuide is developed to be used as a pocket guide. Tear off at perforation and fold along lines. Toxicokinetics and Biomarkers/Environmental Sources of Exposure Normal Human Levels Levels ToxGuideTM General Populations Toxicokinetics Biomarkers Exposure may occur through inhalation, Based on animal data, approximately No biomarkers of exposure or effect for ingestion, and dermal contact. 80–90% of inhaled acrolein is absorbed; have been identified for acrolein. Environmental tobacco smoke (ETS) is most in the upper respiratory tract. the primary source of exposure for many In vitro studies suggest that acrolein will Environmental Levels individuals. form conjugates with glutathione. Air Acrolein Widespread exposure occurs due to the Following oral exposure in animals, formation of acrolein during the heating approximately 30% of the initial dose is Acrolein levels in outdoor air averaged from 0.5 to 3.186 ppb. of fats. expired as carbon dioxide and 50-60% is CH2=CH-CHO The general population may also be excreted in the urine. Acrolein in indoor air ranged from <0.02 to 12 ppb in residential homes. exposed to high concentrations from CAS# 107-02-8 vehicle exhaust (for example, parking Normal Human Levels Sediment and Soil October 2007 garages and/or heavy traffic). No data available No data are available on actual Acrolein is also present in certain foods measurements of acrolein in soil. such as raw cocoa beans, chocolate Water U.S. Department of Health and liquor, fried potatoes and onions, raw and Acrolein has not been found as a Human Services cooked turkey, heated animal fats and contaminant of drinking water.
    [Show full text]
  • A Study for Health Hazard Evaluation of Methylene Chloride Evaporated from the Tear Gas Mixture
    Saf Health Work 2010;1:98-101 | DOI:10.5491/SHAW.2010.1.1.98 pISSN : 2093-7911 eISSN : 2093-7997 Case Report A Study for Health Hazard Evaluation of Methylene Chloride Evaporated from the Tear Gas Mixture Seung-Hyun PARK, Eun-Kyo CHUNG, Gwang-Yong YI, Kwang-Jae CHUNG, Jung-Ah SHIN and In-Seop LEE Department of Occupational Environment Research, Occupational Safety and Health Research Institute, KOSHA, Incheon, Korea This study explored the health hazard of those exposed to methylene chloride by assessing its atmospheric concentration when a tear gas mixture was aerially dispersed. The concentration of methylene chloride ranged from 311.1–980.3 ppm (geometric mean, 555.8 ppm), 30 seconds after the dispersion started. However, the concentration fell rapidly to below 10 ppm after dispersion was completed. The concentration during the dispersion did not surpass the National Institute for Occupational Safety and Health ‘immediately dangerous to life or health’ value of 2,300 ppm, but did exceed the American Conference of Governmental Industrial Hygienists excursion limit of 250 ppm. Since methylene chloride is highly volatile (vapor pressure, 349 mmHg at 20oC), the post- dispersion atmospheric concentration can rise instantaneously. Moreover, the o-chlorobenzylidenemalononitrile formulation of tear gas (CS gas) is an acute upper respiratory tract irritant. Therefore, tear gas mixtures should be handled with delicate care. Key Words: Methylene chloride, CS tear gas, Tear gas mixture, Health hazard evaluation Introduction Despite this long history of use, CS gas has recently come under greater scrutiny since it can be applied as a mixture that Tear gases such as o-chlorobenzylidenemalononitrile (CS), contains a suspected human carcinogen, methylene chloride.
    [Show full text]
  • Hazardous Chemicals Vapor Phase Library
    Hazardous Chemicals Vapor Phase Library Index Number Compound Name Index Number Compound Name 1 (Chloromethyl)trichlorosil 28 4,4'- ane Isopropylidenediphenol; 2 Benzyl chloride; a- Bisphenol A Chlorotoluene 29 2-Phenylphenol; 2- 3 1,3-Dichlorobenzene Hydroxybiphenyl 4 N,N-Dimethylaniline 30 Phenyltrichlorosilane 5 Cumene; 31 Resorcinol; 1,3- Isopropylbenzene Dihydroxybenzene 6 Naphthalene 32 Phenanthrene 7 1,2,4-Trichlorobenzene 33 Fluoranthene 8 4-Allyl-1,2- 34 Acenaphthylene (methylenedioxy)benzen 35 Ethyl thiocyanate e; Safrole 36 1,4-Dichloro-2-butene, 9 Tolylene 2,6- (E) + (Z) diisocyanate; 2-Methyl- 37 2,4,6-Trifluoro-1,3,5- 1,3-phenylene triazine; Cyanuric fluoride diisocyanate 38 3- 10 Triethoxysilane Hydroxypropanesulfonic 11 Butyraldehyde; Butanal acid sultone; 1,3- 12 Acrolein; Propenal Propane sultone 13 2-Methylpropionic acid; 39 Formic acid Isobutyric acid 40 Acetic acid; Ethanoic 14 Biphenyl acid 15 Acenaphthene 41 Adipic acid; Hexanedioic 16 Fluorene acid 17 1,3-Dinitrobenzene 42 Acetamide 18 1,2-Dinitrobenzene 43 Acrylamide; 19 Piperylene, (E) + (Z); Propenoamide 1,3-Pentadiene, (E) + (Z) 44 Urethane; Ethyl 20 1,2- carbamate Dibromotetrafluoroethan 45 1,2,3,4,5,6- e Hexachlorocyclohexane, 21 Bis(2-ethylhexyl) adipate; g-isomer; Lindane Bis(2-ethylxexyl) 46 Ethyltrichlorosilane hexanedioate 47 (E)-1,4-Dichloro-2- 22 1,2,4,5- butene Tetrachlorobenzene 48 3-Nitrophenol 23 Pentachlorobenzene 49 2,4,5-Trichlorophenol 24 Isobutyraldehyde; 2- 50 4-Nitrobenzyl chloride; a- Methylpropanal Chloro-4-nitrotoluene 25 2-Methylaziridine
    [Show full text]
  • Toxicological Profile for Acrolein
    ACROLEIN 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about acrolein and the effects of exposure to it. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites are then placed on the National Priorities List (NPL) and are targeted for long-term federal clean-up activities. Acrolein has been found in at least 32 of the 1,684 current or former NPL sites. Although the total number of NPL sites evaluated for this substance is not known, the possibility exists that the number of sites at which acrolein is found may increase in the future as more sites are evaluated. This information is important because these sites may be sources of exposure and exposure to this substance may harm you. When a substance is released either from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. Such a release does not always lead to exposure. You can be exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. If you are exposed to acrolein, many factors will determine whether you will be harmed. These factors include the dose (how much), the duration (how long), and how you come in contact with it. You must also consider any other chemicals you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health. 1.1 WHAT IS ACROLEIN? Acrolein is a clear or yellow liquid with a burnt, sweet, pungent odor.
    [Show full text]
  • Review Article Synthesis and Reactions of Five-Membered Heterocycles Using Phase Transfer Catalyst (PTC) Techniques
    Hindawi Publishing Corporation Journal of Chemistry Volume 2014, Article ID 163074, 47 pages http://dx.doi.org/10.1155/2014/163074 Review Article Synthesis and Reactions of Five-Membered Heterocycles Using Phase Transfer Catalyst (PTC) Techniques Ahmed M. El-Sayed,1 Omyma A. Abd Allah,1 Ahmed M. M. El-Saghier,1 and Shaaban K. Mohamed2,3 1 Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt 2 Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, UK 3 Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt Correspondence should be addressed to Omyma A. Abd Allah; [email protected] Received 1 May 2013; Revised 15 September 2013; Accepted 28 October 2013; Published 25 February 2014 Academic Editor: Jorge F. Fernandez-Sanchez Copyright © 2014 Ahmed M. El-Sayed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Phase transfer catalysts (PTCs) have been widely used for the synthesis of organic compounds particularly in both liquid-liquid and solid-liquid heterogeneous reaction mixtures. They are known to accelerate reaction rates by facilitating formation of interphase transfer of species and making reactions between reagents in two immiscible phases possible. Application of PTC instead of traditional technologies for industrial processes of organic synthesis provides substantial benefits for the environment. On the basis of numerous reports it is evident that phase-transfer catalysis is the most efficient way for generation and reactions of many active intermediates.
    [Show full text]
  • Less Lethal Technologies for Law Enforcement Technote, June 2019
    TechNote June 2019 LESS LETHAL TECHNOLOGIES FOR LAW ENFORCEMENT The U.S. Department of Less lethal technologies are devices designed to be less likely to cause death Homeland Security (DHS) when deployed than conventional weapons like firearms. Less lethal Science and Technology technologies are used by law enforcement in two primary situations: crowd Directorate (S&T) established control and one-on-one suspect apprehension. For each of these situations, the System Assessment and Validation for Emergency technology subcategories exist based on the modalities of the technology, Responders (SAVER) Program such as chemical, kinetic and conducted energy. to assist emergency responders making Overview procurement decisions. Less lethal technologies DHS S&T’s Nation Urban grant law enforcement Security Technology Officer Presence Laboratory (NUSTL) manages officers an additional tool to the SAVER Program and de-escalate situations. In A conducts objective Multi-Method Evaluation of Verbalization assessments and validations Police Use of Force on commercial equipment and Outcomes—a study systems. These results, along commissioned by the Empty Hand with other relevant equipment National Institute of Justice Control information, are provided to the emergency response (NIJ)—authors found less community in an operationally lethal weapons reduce the Less Lethal useful form. SAVER provides rates of injuries for law information on equipment that enforcement personnel and falls within the categories offenders [1]. Compared to Lethal listed in the DHS Authorized using physical force (e.g., Equipment List. hands, fists, feet), using The SAVER Program is pepper spray or conducted supported by a network of energy weapons (e.g., stun Figure 1. NIJ Use-of-Force Continuum technical agents who perform guns) reduced the likelihood assessment and validation activities.
    [Show full text]
  • Otto-Catalog-2019-20.Pdf
    Lab Chemicals & More..... Otto Catalog 2019-20 1 CODE PRODUCT NAME CAS NO. PACKING RATE ` PACKING RATE ` A 1214 ABSCISIC ACID practical grade 10% 14375-45-2 100mg 2007 1gm 13059 A 1215 ABSCISIC ACID for biochemistry 99% 14375-45-2 25mg 1395 100mg 3609 500 mg 17469 A 1217 (7-AMINO CEPHALOSPORANIC ACID) 7-ACA 98% 957-68-6 1gm 2403 5gm 9396 A 1225 ACACIA 9000-01-5 500gm 504 5kg 4392 A 1226 ACACIA spray dried powder 9000-01-5 500gm 684 5kg 6309 A 1227 ACACIA GR 9000-01-5 500gm 828 5kg 7407 A 0855 ACARBOSE, >95% 56180-94-0 1 gm 18099 A 1229 ACENAPHTHENE pract 83-32-9 100gm 306 500gm 1395 5 kg 11907 A 1230 ACENAPHTHENE for synthesis 97% 83-32-9 100gm 450 500gm 1692 A 1231 ACENAPHTHENE GR for HLPC 83-32-9 100gm 1359 500gm 5533 A 1234 ACES BUFFER 99% 7365-82-4 5gm 864 25gm 2385 [N-(2-Acetamido)-2-aminoethane sulfonic acid] 100 gm 8739 A 1233 ACETALDEHYDE 20-30% solution for synthesis 75-07-0 500ml 477 5lt 4095 A 1235 ACETAMIDE for synthesis 99% 60-35-5 500 gm 801 A 1240 ACETAMIDINE CHLORIDE for synthesis 124-42-5 100gm 3159 250gm 7830 A 1242 N-(2-ACETAMIDO) IMINODIACETIC ACID (ADA BUFFER) 26239-55-4 25gm 855 100gm 2592 250 gm 5994 A 1245 ACETANILIDE for synthesis 98.5% 103-84-4 500gm 918 5kg 8289 A 1248 ACETATE BUFFER SOLUTION pH 4.6 - - - - - 500ml 180 5lt 1449 A 1250 ACETIC ACID glacial 99% 64-19-7 500ml 207 5lt 1602 A 1251 ACETIC ACID glacial GR 99%+ 64-19-7 500ml 252 5lt 1908 A 1252 ACETIC ACID GLACIAL GR 99.7% 64-19-7 500ml 315 5lt 1998 A 1253 ACETIC ACID GLACIAL EL 99.9% 64-19-7 500ml 378 5lt 2502 A 1254 ACETIC ACID 99.8% for HPLC 64-19-7
    [Show full text]