2010 Annual Progress Report for Fuels Technologies

Total Page:16

File Type:pdf, Size:1020Kb

2010 Annual Progress Report for Fuels Technologies 20annual progress 10report Fuels Technologies For more information DOE/EE-0725 January 2011 1-877-EERE-INFO (1.877.337.3463) Printed with a renewable-source ink on paper containing eere.energy.gov at least 50% wastepaper, including 10% post consumer waste. U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2010 PROGRESS REPORT FOR FUELS TECHNOLOGIES Energy Efficiency and Renewable Energy Vehicle Technologies Program Approved by Kevin Stork Team Leader, Fuels Technologies Vehicle Technologies Program February 2011 DOE-FT-2010AR FY 2010 Progress Report i Fuels Technologies Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. Fuels Technologies ii FY 2010 Progress Report Table of Contents I. Introduction . 1 II. Fuels and Lubricants to Enable High Efficiency Engine Operation while Meeting 2007 - 2010 Standards. 19 II.1 Oak Ridge National Laboratory: Effects of Fuel and Lubricant Properties on Advanced Engine Emission Control; Development of Rapid Aging and Poisoning Protocols. 21 II.2 Oak Ridge National Laboratory: Non-Petroleum-Based Fuels: Effects on EGR System Performance . 27 II.3 Oak Ridge National Laboratory: Non-Petroleum-Based Fuels: Effects on Emissions Controls Technologies. 30 III. Fuel Property Effects on Advanced Combustion Regimes . 37 III.1 Oak Ridge National Laboratory: Fuel Effects on Advanced Combustion Engines . 39 III.2 Sandia National Laboratories: Optical-Engine Investigations of Fuel and Operating-Condition Effects on In-Cylinder Liquid-Phase Fuel Penetration. 45 III.3 Lawrence Livermore National Laboratory: Chemical Kinetic Modeling of Advanced Transportation Fuels . 51 III.4 Lawrence Livermore National Laboratory: Improving Advanced Fuel Utilization through Detailed Chemical Kinetic Combustion Modeling . 55 III.5 National Renewable Energy Laboratory: Advanced Petroleum-Based Fuels Research at NREL . 59 III.6 National Renewable Energy Laboratory: Fuels for Advanced Combustion Engines (FACE) – Development of Research Fuels Matrix . 64 III.7 Oak Ridge National Laboratory: Non-Petroleum Fuel Effects in Advanced Combustion Regimes. 70 III.8 Sandia National Laboratories: Alternative Fuels DISI Engine Research . 75 III.9 Oak Ridge National Laboratory: Enabling High-Efficiency Ethanol Engines . 80 III.10 Oak Ridge National Laboratory: CRADA with Reaction Design. 84 IV. Petroleum Displacement Fuels/Fuel Blending Components. 89 IV.1 National Renewable Energy Laboratory: Biodiesel Impact on Performance and Durability of DOC and DPF Systems. 91 IV.2 National Renewable Energy Laboratory: Biofuels Quality Surveys in 2010. 94 IV.3 National Renewable Energy Laboratory: Understanding Biodiesel Low Temperature Operability Issues . 99 IV.4 Oak Ridge National Laboratory: Advanced Chemical Characterization of Non-Petroleum-Based Fuels and Emissions for Understanding Effects on Combustion. 103 IV.5 National Renewable Energy Laboratory: Evaluating Compatibility of New and Legacy Infrastructure with E15. .106 IV.6 National Renewable Energy Laboratory: Headspace Flammability of Gasoline/Ethanol Blends. 109 IV.7 Oak Ridge National Laboratory: Mid-Level Ethanol Blends Vehicle Aging Program . 113 IV.8 General Motors Powertrain: The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel. 119 IV.9 MAHLE Powertrain LLC: Optimally Controlled Flexible Fuel Powertrain System . 123 IV.10 Ford Motor Company: E85 Optimized Engine . 128 IV.11 Robert Bosch LLC: Optimally Controlled Flexible-Fuel Powertrain System. .133 FY 2010 Progress Report iii Fuels Technologies Table of Contents IV. Petroleum Displacement Fuels/Fuel Blending Components (Continued) IV.12 Delphi: E85 Optimized Engine through Boosting, Spray-Optimized GDi, VCR and Variable Valvetrain . 140 IV.13 University of Illinois at Urbana-Champaign: Investigation of Biodiesel-Fueled Engines under Low-Temperature Combustion Strategies. .144 IV.14 Pacific Northwest National Laboratory: Unconventional Hydrocarbon Fuels. 150 IV.15 Pacific Northwest National Laboratory: Alternative Fuels Infrastructure Development. 153 IV.16 Pacific Northwest National Laboratory: Decision Analysis Tool to Compare Energy Pathways for Transportation. .156 V. New Projects. 161 V.1 National Renewable Energy Laboratory: Collaborative Lubricating Oil Study on Emissions (CLOSE) Project. 163 VI. Acronyms, Abbreviations and Definitions. .167 VII. Index of Primary Contacts. 171 Fuels Technologies iv FY 2010 Progress Report I. INTRODUCTION FY 2010 Progress Report 1 Fuels Technologies Fuels Technologies 2 FY 2010 Progress Report I. Introduction ADVANCED PETROLEUM-BASED, NON-PETROLEUM-BASED, AND RENEWABLE FUELS FOR A CLEAN AND SECURE HIGHWAY TRANSPORTATION SYSTEM On behalf of the Department of Energy’s Vehicle Technologies Program (VTP), we are pleased to introduce the Fiscal Year (FY) 2010 Progress Report for Fuels Technologies. The potential benefits of advanced fuels technologies include: • Energy security: Advanced fuels enable more efficient engines that reduce fuel use, and non- petroleum-based fuels reduce the demand for petroleum fuel, much of which is imported. • Environmental sustainability: Cleaner fuels enable efficient and durable emissions control technologies for reduced vehicle emissions. Advanced and non-petroleum-based fuels reduce the emissions of greenhouse gases. • Economic improvement: A more diverse portfolio of fuels in transportation will improve the economy by reducing price volatility and stimulating new market activity in areas such as renewable fuels. The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement. Transportation fuels are anticipated to be produced from future refinery feedstocks that may increasingly be from non-conventional sources including, but not limited to, heavy crude, oil sands, shale oil, and coal, as well as renewable resources such as biomass, oils derived from plants and algae, and waste animal fats. The impact of changes in refinery feedstocks on finished fuels is an area of relatively new concern to engine manufacturers, regulators and users. Advanced engine technologies may be more sensitive to variations in fuel composition than were earlier engines, in addition to facing tightening emissions standards. The Fuels Technologies subprogram activities focus on the properties and quality of the finished fuels derived from these sources, not primarily on their production. The Fuels Technologies subprogram consists of two activities: Advanced Petroleum-Based Fuels, and Non-Petroleum-Based Fuels and Lubricants. The goals are: (1) to enable post-2010 advanced combustion regime engines and emission control systems to be more efficient while meeting future emission standards; and, (2) to reduce reliance on petroleum-based fuels through direct fuel substitution by non-petroleum-based fuels. These activities are undertaken to determine the impacts of fuel and lubricant properties on the efficiency, performance, and emissions of current engines as well as to enable emerging advanced internal combustion engines, and are coordinated with and supportive of the Environmental Protection Agency’s (EPA’s) fuels and emissions-related activities, as mentioned in their strategic plan. The Energy Independence and Security Act (EISA) of 2007 established aggressive goals for renewable fuel use that might require significant changes to the nation’s fueling infrastructure. The EISA mandates the use of as much as 36 billion gallons annually by 2022 of renewable fuels, which will mainly be ethanol. The U.S. vehicle fleet consumed almost 10.8 billion gallons of ethanol in the first 10 months of 2010 (compared to 11.0 billion gallons in all of 2009), nearly all in the form of E10 (10% ethanol, 90% gasoline) sold as gasoline at fueling stations. The nation’s 8.35 million flexible- fuel vehicles can operate on E85 (85% ethanol, 15% gasoline), but relatively few fueling stations are equipped to dispense E85. Because of E10 and E85’s limited ability to absorb increases in U.S. ethanol production to meet the EISA goal of 36 billion gallons of annual renewable fuel consumption by 2022, a solution would be to require vehicles to use intermediate ethanol blends such as E15 (15% ethanol, 85% gasoline) or E20 (20% ethanol, 80% gasoline). The Fuels Technologies subprogram is examining the impact of intermediate blends on passenger vehicles, outdoor equipment, and generator sets, with research focusing on regulated and unregulated tailpipe emissions, fuel economy, and emission system durability. Materials compatibility, evaporative emissions, and vehicle driveability are also being investigated. FY 2010 Progress Report 3 Fuels Technologies I. Introduction The Fuel Technologies subprogram is an integral part of the FreedomCAR government/industry partnership and a key means of pursuing the FreedomCAR mission to develop more energy-efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum in transportation. The work in advanced
Recommended publications
  • 2013 KIVA Development
    2013 DOE Merit Review 2013 KIVA Development David Carrington Los Alamos National Laboratory May 13, 2013 Project ID # ACE014 This presentation does not contain any proprietary, confidential, or otherwise restricted information LA-UR-13-21976 2013 DOE Overview Merit Review Timeline Barriers • Improve understanding of the fundamentals of • 10/01/09 fuel injection, fuel-air mixing, thermodynamic combustion losses, and in-cylinder combustion/ • 09/01/14 emission formation processes over a range of combustion temperature for regimes of interest • 65% complete by adequate capability to accurately simulate these processes • Engine efficiency improvement and engine- Budget out emissions reduction • Minimization of engine technology development • Total project funding to date: – User friendly (industry friendly) software, robust, accurate, more predictive, & quick meshing – 2000K – 640K in FY 12 Partners – Contractor (Universities) share ~40% • University of New Mexico- Dr. Juan Heinrich • University of Purdue, Calumet - Dr. Xiuling • Funding to date for FY13 - 210K Wang • Funding anticipated FY13 – 763K • University of Nevada, Las Vegas - Dr. Darrell W. Pepper 2 2013 DOE FY 09 to FY 14 KIVA-Development Merit Review Objectives • Robust, Accurate Algorithms in a Modular Object-Oriented code– • Relevance to accurately predicting engine processes to enable better understanding of, flow, thermodynamics, sprays, in easy to use software for moderate computer platforms – More accurate modeling requires new algorithms and their correct implementation. – Developing more robust and accurate algorithms • To understand better combustion processes in internal engines – Providing a better mainstay tool • improving engine efficiencies and • help in reducing undesirable combustion products. – Newer and mathematically rigorous algorithms will allow KIVA to meet the future and current needs for combustion modeling and engine design.
    [Show full text]
  • Catalytically Generating and Utilizing Hydrogen to Reduce Nox Emissions in Automobile Applications
    Catalytically Generating and Utilizing Hydrogen to Reduce NOx Emissions in Automobile Applications Thesis by Nawaf Mohammed Alghamdi In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia November, 2018 2 EXAMINATION COMMITTEE PAGE The thesis of Nawaf Mohammed Alghamdi is approved by the examination committee. Committee Chairperson: Professor Mani Sarathy Committee Members: Professor Jorge Gascon and Professor Aamir Farooq 3 © November, 2018 Nawaf Mohammed Alghamdi All Rights Reserved 4 ABSTRACT Catalytically Generating and Utilizing Hydrogen to Reduce NOx Emissions in Automobile Applications Nawaf Mohammed Alghamdi Heterogeneous catalysis is a powerful chemical technology because it can enhance the conversion of reactants, promote selectivity to a desired product, and lower the reaction temperature requirements. The breaking and forming of chemical bonds in heterogeneous catalysis is facilitated on a solid surface where adsorbed gas-phase species react and form products. This study is concerned with utilizing heterogeneous catalysis in the automobile industry via the generation and utilization of hydrogen to reduce NOx emissions. In spark ignition engines, the three-way-catalyst technology is ineffective at the more efficient, lean-burn conditions. In compression-ignition engines, an ammonia-based technology is implemented but has associated high cost and ammonia slip challenges. This motivates providing an alternative technology, such as hydrogen selective catalytic reduction (H2- SCR). In this study, four catalysts were investigated for the lean-burn selective catalytic reduction of NO using hydrogen. The catalysts were platinum (Pt) and palladium (Pd) noble metals supported on cerium oxide (CeO2) and magnesium oxide (MgO).
    [Show full text]
  • Combustion Research Facility – Industry Interactions and Impact
    Combustion Research Facility – Industry Interactions and Impact Bob Hwang Director, Transportation Energy Center Sandia National Laboratories, Livermore, CA Sandia Sites Albuquerque, New Mexico Livermore, California Kauai, Hawaii Pantex Plant, Amarillo, Texas Waste Isolation Pilot Plant, Tonopah, Carlsbad, New Mexico Nevada 2 CRF - Understanding Combustion Processes A Clearly Defined Partnership Mission from the Beginning • Born out of gasoline crises of 1970’s – created in 1980 • Built to tap into strengths of existing NNSA laboratory – Premier optical diagnostics – High Performance Computing – Flagship experimental facilities • Teaming at DOE – Office of Science unwavering “Do great science” mandate • “Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels in order to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security.” – Vehicle Technologies partnership: “make an impact” • “The U.S. Department of Energy's Vehicle Technologies Office supports research, development (R&D), and deployment of efficient and sustainable highway transportation technologies to improve vehicles’ fuel economy and minimize petroleum use.” • Strong industrial and academic ties from day #1 Combustion Research Facility A DOE Collaborative Research Facility dedicated to energy science and technology for the twenty-first century • Leadership in combustion research since 1980 • 8200-m2
    [Show full text]
  • Comodia 2012
    ♦Event Overview♦ Monday, July 23 15:00~18:00 Registration Hour 16:00~18:00 Welcome Party (Room C) Tuesday, July 24 7:10~17:00 Registration Hour 8:00~17:30 Exhibition Hour 8:20~9:20 Opening Remark & Plenary Lecture PL-1 (Room A) Room A Room B Room C 9:30~10:45 EE1 9:30~10:45 GE1 9:30~10:45 MS1 Exhaust Emissions and Gas Engine 1 Modeling and Simulation 1 Measurement 1 10:45~11:05 Technical Session Break 11:05~12:20 EE2 11:05~12:20 GE2 11:05~12:20 MS2 Exhaust Emissions and Gas Engine 2 Modeling and Simulation 2 Measurement 2 12:20~13:50 Lunch Break 13:50~15:55 OS1-1 13:50~15:55 FL1 13:50~15:55 MS3 Ultimate thermal efficiency 1 Fuels 1 Modeling and Simulation 3 15:55~16:15 Technical Session Break 16:15~17:30 OS1-2 16:15~17:30 FL2 16:15~17:30 SP1 Ultimate thermal efficiency 2 Fuels 2 Spray and Spray Combustion 1 17:30~17:50 Technical Session Break 17:50~18:40 LE1 17:50~18:40 EC1 Lubricants, Engine and Engine Engines Control Components 19:00~21:00 Reception (Room A) Wednesday, July 25 8:00~17:00 Registration Hour 8:00~17:30 Exhibition Hour 8:20~9:10 Plenary Lecture PL-2 (Room A) Room A Room B Room C 9:20~11:00 OS2-1 9:20~11:00 OS3-1 9:20~11:00 CT1 EGR combustion 1 Application of chemical kinetics to Combustion, Thermal and Fluid combustion modeling 1 Science 11:00~11:20 Technical Session Break 11:20~12:35 OS2-2 11:20~12:35 OS3-2 11:20~12:35 SI1 EGR combustion 2 Application of chemical kinetics to Spark-Ignition Engine Combustion 1 combustion modeling 2 12:35~14:00 Lunch Break 14:00~14:50 Plenary Lecture PL-3 (Room A) 14:50~15:00 Technical Session
    [Show full text]
  • VALVE CONTROLS INFINITE POSSIBILITIES ROGER STONE, CAMCON AUTOMOTIVE TECHNICAL DIRECTOR Where All the Pieces Fall Into Place
    The pan-European magazine of SAE International May/June 2013 VALVE CONTROLS INFINITE POSSIBILITIES ROGER STONE, CAMCON AUTOMOTIVE TECHNICAL DIRECTOR Where All the Pieces Fall Into Place Let’s face it; driveline design can be a real brainteaser. Reduced emissions. Improved fuel economy. Enhanced vehicle performance. Getting all the pieces to fit is challenging—especially when you can’t see the whole picture. That’s why you need one more piece to solve the driveline puzzle. Introducing DrivelineNEWS.com—a single, all-encompassing website exclusively dedicated to driveline topics for both on- and off-road vehicles. Log on for the latest news, market intelligence, technical innovations and hardware animations to help you find solutions and move your business forward. It takes ingenuity and persistence to succeed in today’s driveline market. Test your skills at DrivelineNEWS.com/Puzzle. Solve the puzzle to enter to win a Kindle Fire. © 2013 The Lubrizol Corporation. All rights reserved. 121569 Contents 12 12 Cover Story 5 Comment Valve controls Imagine a valve control system that is infinitely 6 variable irrespective of engine speed and load. News Impossible? Not according to Camcon Automotive’s • Exclusive: technical director Roger Stone, as Ian Adcock Engine knock discovers predicted 16 Biomimicry • Volvo diesel breakthrough Mother Nature knows best What can the automotive industry learn from nature • Driveline software when it comes to weight saving? Ryan Borroff has 20 been finding out • Four-way cat for petrol engines 20 Fuel injection systems Building up the pressure 11 Tony Lewin reports on the growing trend towards even The Columnist higher line pressures in injection systems.
    [Show full text]
  • Modeling and Simulation of a Free-Piston Engine with Electrical Generator Using HCCI Combustion
    Graduate Theses, Dissertations, and Problem Reports 2016 Modeling and Simulation of a Free-Piston Engine with Electrical Generator Using HCCI Combustion Mohammad Alrbai Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Alrbai, Mohammad, "Modeling and Simulation of a Free-Piston Engine with Electrical Generator Using HCCI Combustion" (2016). Graduate Theses, Dissertations, and Problem Reports. 5086. https://researchrepository.wvu.edu/etd/5086 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Modeling and Simulation of a Free-Piston Engine with Electrical Generator Using HCCI Combustion ____________________________________________ Mohammad Alrbai Dissertation Submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Doctorate of Philosophy in Mechanical Engineering Nigel Clark, Ph.D., Chair Hailin Li, Ph.D. Cosmin Dumitrescu, Ph.D. Terence Musho, Ph.D. Fernando V. Lima, Ph.D. Department of Mechanical and Aerospace Engineering Morgantown, West Virginia 2016 Keywords: Free Piston Engine, Electrical Generator, Chemical kinetics, HCCI Combustion, Model Control, EGR, Equivalence Ratio.
    [Show full text]
  • The Kinetics of Nitrogen Oxides Formation in the Flame Gas
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Zajemska, Monika; Poskart, Anna; Musiał, Dorota Article The kinetics of nitrogen oxides formation in the flame gas Economic and Environmental Studies (E&ES) Provided in Cooperation with: Opole University Suggested Citation: Zajemska, Monika; Poskart, Anna; Musiał, Dorota (2015) : The kinetics of nitrogen oxides formation in the flame gas, Economic and Environmental Studies (E&ES), ISSN 2081-8319, Opole University, Faculty of Economics, Opole, Vol. 15, Iss. 4, pp. 445-460 This Version is available at: http://hdl.handle.net/10419/178898 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu www.ees.uni.opole.pl ISSN paper version 1642-2597 ISSN electronic version 2081-8319 Economic and Environmental Studies Vol.
    [Show full text]
  • 12Th Diesel Engine-Efficiency and Emissions Research (DEER
    7/28/06 3 p.m. 12th Diesel Engine-Efficiency and Emissions Research Conference Detroit Marriott at the Renaissance Center August 20-24, 2006 ---------- PLENARY SESSIONS ---------- Monday, August 21, 2006 8:30 a.m. - Noon A View from the Bridge Panel Discussion Andrew Karsner, Assistant Secretary for Energy Efficiency and Renewable Energy at the U.S. Department of Energy Elizabeth Lowery, Vice-President for Environment and Energy at General Motors Gerhard Schmidt, Vice-President for Research and Advanced Engineering at Ford Motor Company Margo Ogé, Director of the Office of Transportation and Air Quality at the U.S. Environmental Protection Agency (EPA) John K. Amdall, Director of Engine Research and Development at Caterpillar Tom Cackette, Chief Deputy Executive Officer at the California Air Resources Board Michael Walsh, environmental consultant Tuesday, August 22, 2006 8:30 a.m. - Noon Accelerating Light-Duty Diesel Sales in the U.S. Market Panel Discussion Charles Freese, General Motors Simon Godwin, DaimlerChrysler Kevin McMahon, Martec Group Karl Simon, EPA Wolfgang Mattes, BMW Yasuyuki Sando, Senior Manager, Advanced Engine Research Division at Honda Klaus-Peter Schindler, Volkswagen 1 Wednesday, August 23, 2006 8:30 a.m. - Noon New Feedstocks and Replacement Fuels Panel Discussion Loren Beard, DaimlerChrysler (invited) Norman Brinkman, General Motors Nigel Clark, West Virginia University Herb Dobbs, TACOM Craig Fairbridge, National Centre for Upgrading Technology Robert McCormick, National Renewable Energy Laboratory James Simnick, BP ________ TECHNICAL SESSIONS _______ Monday, August 21, 2006 1:30 – 4:10 p.m. Technical Session 1 – Advanced Combustion Technologies, Part 1 Title Speaker Affiliation Heavy-Duty HCCI Development Kevin Duffy Caterpillar Activities at Caterpillar Low-Temperature Combustion for Dennis Assanis University of High-Efficiency, Ultra-Low Emission Michigan Engines Evaluation of High-Efficiency Clean Robert M.
    [Show full text]
  • Oak Ridge National Laboratory Capabilities
    FEMP Team Capabilities at ORNL in Buildings and Fleets Managed by UT-Battelle for the Department of Energy ORNL FEMP Team — Primary Work-for-Others Technical Assistance Capabilities Customers • Geothermal (ground-source) heat pumps • DOE • Combined heat and power (CHP, • US Navy distributed energy, cogeneration) • Marine Corps • Benchmarking and strategic energy • US Army management • Air Force • Industrial energy efficiency • Coast Guard • Energy assessments • Environmental Protection Agency • Alternative financing • Housing and Urban • Measurement & Development verification • Fish and Wildlife Service • Commissioning, O&M • Tennessee Valley Authority • Federal design/construction practices • State of California • General technical/design assistance • New York State ERDA – LEED, Energy Star, life-cycle cost, modeling, etc. 2 Managed by UT-Battelle for the Department of Energy 1 Geothermal Heat Pumps — Retrofits or New Construction ORNL’s independent design review and simulation modeling for residential GHP • Feasibility studies systems for Marine Corps Air Station Beaufort, South Carolina (“Fightertown”) • Life-cycle-cost studies contributed to the success of the project. • Review of technical and price proposals • Review of system design • Interpretation of thermal properties tests • Review of bore field sizing • Baseline and energy savings estimates/ calculations • Review of pricing • Development of building simulation models • Development of measurement and verification plans 3 Managed by UT-Battelle for the Department of Energy Presentation_name
    [Show full text]
  • SAE 2011 World Congress & Exhibition
    SAE 2011 World Congress & Exhibition Technical Session Schedule As of 04/18/2011 07:40 pm Tuesday, April 12 New Transmission Technologies That Could Change the Face of Powertrain Performance Session Code: ANN200 Room FEV Powertrain Innovation Forum Session Time: 10:00 a.m. New transmission concepts and developments are occurring in parallel with new innovations in engine technology, allowing OEMs to produce powertrain systems that meet both government regulatory mandates while still giving the consumer the drivability they have come to expect. Not only have the number of speeds increased, new types of transmissions and control strategies are coming to market. These include DCT, electrically assisted AMT, electrically assisted hybrid automatics, etc. Transmission experts on the panel will discuss new development trends, control and calibration strategies as well as provide a glimpse into the future for these new design trends. Moderators - Mircea Gradu, Director Transmission & Driveline Engrg, Chrysler Group LLC Panelists - Thomas Brown, General Mgr, Drivetrain Engrg, Aisin Tech. Center of America; Kiran Govindswamy, Chief Engineer, NVH, CAE & Driveline Systems, FEV, Inc.; Steven G. Thomas, Mgr, Transmission/Driveline, Res & Adv Engrg, Ford Motor Co.; Hamid Vahabzadeh, General Director, Global Adv Trans Engrg, GM Powertrain; Andy Yu, Vice President Engineering, BorgWarner Inc.; Tuesday, April 12 Charging Forward Toward 2017: The Powertrains That Will Get Us There Session Code: ANN201 Room FEV Powertrain Innovation Forum Session Time: 1:00 p.m. While much of the regulatory attention may be shifting to CAFE, ozone and CO2 limits proposed by both CARB and EPA for 2017 to 2025, the 2016 regulations still must be met.
    [Show full text]
  • Alternative Ad.Qxd
    P001_ADEU_MAY11.qxp:Layout 1 23/5/11 18:28 Page 1 The pan-European magazine of SAE International May/June 2011 Variable compression ratio reborn CFD combustion analysis Lighting the way Exhaust materials SAE Review P002_ADEU_MAY11 19/5/11 10:38 Page 1 WITHOUT DUAL CLUTCH TRANSMISSION TECHNOLOGY, YOU’RE JUST GETTING LEFT BEHIND. Maybe it’s the fact that in the time you read this, a Dual Clutch Transmission could switch gears 40,000 times. Perhaps it’s the fact that DCTs appeal to more buyers by combining impressive fuel-economy, the smooth ride of an automatic and the speed of a manual. It could be the fact that leading clutch suppliers estimate they’ll quadruple DCT sales by 2014. Or maybe it’s the fact that by 2015, 10% of all passenger cars will have them. DCTFACTS.COM gives you endless reasons to believe that DCTs are the future generation DCTFACTS.COM of transmissions. And the more you know about them, the further ahead you’ll get. P003_ADEU_MAY11.qxp:Layout 1 23/5/11 18:18 Page 3 Contents 16 16 Spotlight on Bernie Rosenthal 5 Comment Ian Adcock talks with the Reaction Design CEO After the bad.... about the company’s ground-breaking computional comes the good fluid dynamics package for combustion analysis. 6 News 22 Cover feature Laser spark sees the Consumption: The Mother of Invention light • Two eyes are It’s a challenge that has engaged the minds of many better than one • down the years: changing the compression ratio in an Avago launches first engine on the fly.
    [Show full text]
  • ASME® 2018 ICEF Internal Combustion Engine Fall Technical Conference
    ASME® 2018 ICEF Internal Combustion Engine Fall Technical Conference CONFERENCE November 4 – 7, 2018 EXHIBITION November 5 – 6, 2018 Hilton San Diego Resort & Spa Program San Diego, CA e American Society of Mechanical Engineers® ASME® Technical Sessions MONDAY, NOVEMBER 5 TRACK 3 ADVANCED COMBUSTION TRACK 2 FUELS Track Chair: Sundar Rajan Krishnan, University of Alabama, Tuscaloosa, AL, United States Track Chair: Gregory Bogin, Colorado School of Mines, Golden, CO, United States Track Co-Chair: Cosmin Dumitrescu, West Virginia University, Morgantown, WV, United States Track Co-Chair: Hailin Li, West Virginia University, Morgantown, WV, United States 3-1 FUNDAMENTALS/SI/THERMODYNAMICS SAN DIEGO, CA, HILTON RESORT & SPA, SORRENTO 2-1 SPARK IGNITION, FUEL SPRAYS AND IGNITION KINETICS 10:00AM - 12:00PM SAN DIEGO, CA, HILTON RESORT & SPA, LAS PALMAS 10:00AM - 12:00PM Session Chair: Hui Xu, Cummins Inc., Columbus, IN, United States Session Chair: Douglas Longman, Argonne Natl Lab., Argonne, IL, United Session Co-Chair: Joshua Bittle, University of Alabama, Tuscaloosa, AL, States United States, Tiegang Fang, NC State University, Raleigh, NC, United States, Isaac Ekoto, 7011 East avenue, Livermore, CA, United States Session Co-Chair: Scott Wayne, West Virginia University, Morgantown, WV, United States EFFECT OF DIRECT FUEL INJECTION STRATEGY ON COMBUSTION, PERFORMANCE AND EMISSIONS OF A PORT FUEL INJECTED EXPERIMENTAL INVESTIGATIONS OF HYDROGEN-NATURAL GAS COMPRESSED NATURAL GAS ENGINE USING SIMULATION TOOLS ENGINES FOR MARITIME APPLICATIONS
    [Show full text]