Low-Energy Meson Phenomenology with Resonance Chiral Lagrangians

Total Page:16

File Type:pdf, Size:1020Kb

Low-Energy Meson Phenomenology with Resonance Chiral Lagrangians Physics Department Centro de Investigación y de Estudios Avanzados del IPN Low-energy meson phenomenology with Resonance Chiral Lagrangians Presented in Partial Fulfilment of the Requirements for the Degree of Doctor in Science by arXiv:1708.00554v1 [hep-ph] 2 Aug 2017 Adolfo Enrique Guevara Escalante Thesis advisors: Dr. Gabriel López Castro and Dr. Pablo Roig Garcés. ii “Life is like a healthy penis, it gets hard for no reason.” iii Table of Contents Table of Contents iii List of Tables vi List of Figures viii 1 Theoretical Framework 7 1.1 Introduction . .7 1.2 Standard Model . .7 1.2.1 Introduction . .7 1.2.2 Electroweak Standard Model . .8 1.2.3 Strong Interactions and Quantum Chromodynamics . 16 1.2.4 Standard Model of Particle Physics . 22 1.2.5 QCD, limitations and Effective Field Theories . 27 1.2.6 Chiral symmetry of the QCD Lagrangian density . 29 1.2.7 Inclusion of external currents . 30 1.3 Chiral Perturbation Theory . 32 1.3.1 Construction of Chiral Perturbation Theory (χPT) . 32 1.4 Resonance Chiral Theory (RχT)..................... 35 2 Lepton universality violation and new sources of CP violation 38 2.1 Introduction . 38 − − + − 2.2 The τ π ντ ` ` decays as background for BSM interactions . 39 ! 2.2.1 Introduction . 39 2.2.2 Matrix element of the process . 40 2.2.3 Form Factors . 42 2.2.4 Short distance constraints . 45 2.2.5 Branching ratio and invariant mass spectrum . 47 2.2.6 Conclusions . 51 iv 2.3 Long-distance contribution to B± (π±;K±)`+`− decays. 52 ! 2.3.1 Introduction . 52 2.3.2 RχT contribution to the Weak Annihilation amplitude . 53 2.3.3 Extending RχT for heavy flavor mesons . 54 2 2.3.4 The electromagnetic form factor FP (q ) ............. 58 2.3.5 CP Asymmetry . 65 2.3.6 Conclusions . 67 3 New charged current structures 69 3.1 Introduction . 69 3.2 Matrix Element and Form Factors . 70 3.3 Meson dominance model prediction . 72 3.4 Resonance Chiral Theory . 78 3.4.1 Resonance Lagrangian operators . 78 − − (0) − − (0) 3.5 τ π η γντ as background in the searches for τ π η ντ ... 94 ! ! 3.5.1 Meson dominance predictions . 94 3.5.2 RχL predictions . 98 3.6 Statistical error analysis . 102 3.7 Conclusions . 104 4 The VV 0P form factors in RχT and the π η η0 light-by-light con- − − tribution to the muon g 2 106 − 4.1 Introduction . 106 4.2 The anomalous magnetic moment . 107 4.3 Hadronic contributions . 111 4.4 Transition Form Factor, TFF . 113 4.5 η- and η0- Transition Form Factor . 116 P;HLbL 4.6 Pseudoscalar exchange contribution aµ .............. 118 4.7 Genuine probe of the πTFF . 121 4.8 Conclusions . 125 v 5 Conclusions 127 Appendices 130 vi List of Tables 2.1 The central values of the different contributions to the branching ratio of − − + − the τ π ντ ` ` decays (` = e; µ) are displayed on the left-hand side ! of the table. The error bands of these branching fractions are given in the right-hand side of the table. The error bar of the IB contribution stems from the uncertainties on the pion decay constant F and τ` lepton lifetime [72]. 48 2.2 LD, SD and their interference contributions to the branching ratio for both channels. 66 2.3 CP asymmetry computed for different q2 ranges, all values are given as percentages. 66 3.1 Our fitted values of the coupling parameters. Those involving a photon are given multiplied by the unit of electric charge. 78 3.2 Branching fractions for different kinematical constraints and parameter space points. 104 3.3 The main conclusions of our analysis are summarized: Our predicted − − (0) branching ratios for the τ π η γντ decays and the corresponding ! results when the cut Eγ > 100 MeV is applied. We also compare the latter results to the prediction for the corresponding non-radiative decay (SCC signal) according to ref. [124] and conclude if this cut alone is able to get rid of the corresponding background in SCC searches. 105 4.1 Different types of contributions to the aµ. The hadronic contributions give the main theoretical uncertainty. 110 4.2 Contributions to aµ from diagrams (a), (b) and (c) in fig 4.5 as given in ref. [166]. 113 π0;HLbL 4.3 Our result for aµ in eq. (4.22) is compared to other determinations. The method employed in each of them is also given. We specify those works π0;HLbL that approximate aµ by the pion pole contribution. It is understood that all others consider the complete pion exchange contribution. ..... 119 vii P;HLbL 4.4 Our result for aµ in eq. (4.26) is compared to other determinations. The method employed in each of them is also given. We specify those works that P;HLbL approximate aµ by the pseudoscalar pole contribution. It is understood that all others consider the complete pseudoscalar exchange contribution. 120 HLbL 4.5 Our contribution to the aµ compared to previous computations. 126 viii List of Figures + − 2.1 Feynman diagrams of the different contributions to the τ π` ` ντ ! decay. Diagrams (a) to (c) give the model independent contribution, while the structure dependent has been separated into two contribu- tions for convenience . 40 2.2 Contribution to the vector form factor in eq (2.1), where the circle with cross denotes the weak vertex. 43 2.3 Contribution to the axial form factor in eq (2.1), where the circle with cross denotes the weak vertex. 43 2.4 The different contributions to the normalized e+e− invariant mass distri- bution defined in Eq. (2.15) are plotted. A double logarithmic scale was needed. .................................. 49 2.5 The different contributions to the normalized e+e− invariant mass distribu- 2 tion defined in Eq. (2.15) are plotted in a magnification for s34 & 0:1 GeV intended to better appreciate the SD contributions. A double logarithmic scale was needed. ............................. 50 2.7 All possible contributions to the WA amplitude at leading order in 1=NC . The thick dot denotes interactions between resonances and the fields coupled to the vertex. 53 2.8 All LD WA Feynman diagrams at leading order in 1=NC . The first row shows the contribution from model independent interactions, while the second and third shows contributions from diagrams with one and two resonances respectively. V (0) stands for light charged (neutral) vector resonances. 56 2.9 Only non-vanishing structure dependent contribution to the WA LD amplitude. 58 ix 2.10 BaBar parametrization and our form factor compared with data from p 2 BaBar. Here mll = q . Both form factors overlap below 1.4 GeV, which is the dominant region of the form factor in the observables of the studied decays. 60 2.11 Electromagnetic form factor of the K meson with the BaBar parametriza- tion and our form factor compared with data from BaBar. Here mll = p q2..................................... 61 2 2.12 Real and imaginary parts of FK (q ) using RχT and GS. 62 2 2.13 Real and imaginary parts of Fπ(q ) using RχT and GS. 63 2 2.14 The smooth match between LD and QCDf description of FK at 2 GeV is shown. 64 2 2.15 The smooth match between LD and QCDf description of Fπ at 2 GeV is shown. 65 3.1 Effective hadronic vertex (grey blob) that defines the Vµν and Aµν tensors. 71 3.2 Photon energy spectra for the leading bremsstrahlung terms in BR(τ ! (0) πη γντ ) .................................. 72 3.3 Contributions to the effective weak vertex in the MDM model. The wavy line denotes the photon. 73 3.4 Contributions from the Wess-Zumino-Witten functional [56] to τ − ! − π ηγντ decays. The cross circle indicates the insertion of the charged weak current. 88 3.5 One-resonance exchange contributions from the RχL to the axial- − − vector form factors of the τ π ηγντ decays. Vertices involving ! resonances are highlighted with a thick dot. 89 3.6 Two-resonance exchange contributions from the RχL to the axial- − − vector form factors of the τ π ηγντ decays. Vertices involving ! resonances are highlighted with a thick dot. 89 x 3.7 One-resonance exchange contributions from the RχL to the vector form − − factors of the τ π ηγντ decays. Vertices involving resonances are ! highlighted with a thick dot. 90 3.8 Two-resonance exchange contributions from the RχL to the vector form − − factors of the τ π ηγντ decays. Vertices involving resonances are ! highlighted with a thick dot. 90 − − 3.9 Histogram of BR(τ π ηγντ ) for 100 (left) and 1000 (right) random ! points in the MDM parameter space are plotted. 95 − − 3.10 τ π ηγντ normalized spectra according to MDM in the invariant ! mass of the ηπ− system (left) and in the photon energy (right) are plotted for some characteristic points in fig. 3.9 . 96 3.11 Histogram of BR(τ πηγντ ) where photons with Eγ > 100 MeV are ! rejected. 96 − − 0 3.12 Histogram of BR(τ π η γντ ) for 100 (left) and 1000 (right) ran- ! dom points in the MDM parameter space are plotted. 97 − − 0 3.13 τ π η γντ normalized spectra according to MDM in the invariant ! mass of the π−η0 system (left) and in the photon energy (right) are plotted for some characteristic points in fig. 3.12 . 98 0 3.14 Histogram of BR(τ πη γντ ) where photons with Eγ > 100 MeV are ! rejected.
Recommended publications
  • Simulating Physics with Computers
    International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California Institute of Technology, Pasadena, California 91107 Received May 7, 1981 1. INTRODUCTION On the program it says this is a keynote speech--and I don't know what a keynote speech is. I do not intend in any way to suggest what should be in this meeting as a keynote of the subjects or anything like that. I have my own things to say and to talk about and there's no implication that anybody needs to talk about the same thing or anything like it. So what I want to talk about is what Mike Dertouzos suggested that nobody would talk about. I want to talk about the problem of simulating physics with computers and I mean that in a specific way which I am going to explain. The reason for doing this is something that I learned about from Ed Fredkin, and my entire interest in the subject has been inspired by him. It has to do with learning something about the possibilities of computers, and also something about possibilities in physics. If we suppose that we know all the physical laws perfectly, of course we don't have to pay any attention to computers. It's interesting anyway to entertain oneself with the idea that we've got something to learn about physical laws; and if I take a relaxed view here (after all I'm here and not at home) I'll admit that we don't understand everything.
    [Show full text]
  • The Physical Tourist Physics and New York City
    Phys. perspect. 5 (2003) 87–121 © Birkha¨user Verlag, Basel, 2003 1422–6944/05/010087–35 The Physical Tourist Physics and New York City Benjamin Bederson* I discuss the contributions of physicists who have lived and worked in New York City within the context of the high schools, colleges, universities, and other institutions with which they were and are associated. I close with a walking tour of major sites of interest in Manhattan. Key words: Thomas A. Edison; Nikola Tesla; Michael I. Pupin; Hall of Fame for GreatAmericans;AlbertEinstein;OttoStern;HenryGoldman;J.RobertOppenheimer; Richard P. Feynman; Julian Schwinger; Isidor I. Rabi; Bronx High School of Science; StuyvesantHighSchool;TownsendHarrisHighSchool;NewYorkAcademyofSciences; Andrei Sakharov; Fordham University; Victor F. Hess; Cooper Union; Peter Cooper; City University of New York; City College; Brooklyn College; Melba Phillips; Hunter College; Rosalyn Yalow; Queens College; Lehman College; New York University; Courant Institute of Mathematical Sciences; Samuel F.B. Morse; John W. Draper; Columbia University; Polytechnic University; Manhattan Project; American Museum of Natural History; Rockefeller University; New York Public Library. Introduction When I was approached by the editors of Physics in Perspecti6e to prepare an article on New York City for The Physical Tourist section, I was happy to do so. I have been a New Yorker all my life, except for short-term stays elsewhere on sabbatical leaves and other visits. My professional life developed in New York, and I married and raised my family in New York and its environs. Accordingly, writing such an article seemed a natural thing to do. About halfway through its preparation, however, the attack on the World Trade Center took place.
    [Show full text]
  • Of Charles D. Ferguson, on Behalf Of
    FEDERATION OF AMERICAN SCIENTISTS T: 202/546-3300 1725 DeSales Street, NW 6th Floor Washington, DC 20036 www.fas.org F: 202/675-1010 [email protected] PRM-70-9 DOCKETED Board of Sponsors (75FR80730) USNRC (PartialList) March 4, 2011 March 7, 2011 (10:30 am) •Pacr Agre * SidnheyAman * Philip W. Anderson *Kenneth J. Arrow To: Secretary, U.S. Nuclear Regulatory Commission OFFICE OF SECRETARY * David Baltimore RULEMAKINGS AND * Bamj Be.....ea Washington, DC 20555-0001 SPaulBerg ADJUDICATIONS STAFF * J. Michael Bishop AT-TN: Rulemakings and Adjudications Staff * Guther Blobel * Nicolaas Bloensbergen * Paul Boyce Ann Pitts Carter Subject: Comment on Docket ID NRC-2010-0372, "Petition for Rulemaking, * Stanley Cohen * Leon N. Cooper Francis Slakey on Behalf of the American Physical Society" * E. J. Corey 'James Cronin * Johann Deismehofer ArmDruyan *RenatoDulbeomo As Board Members of the Federation of American Scientists, an independent, Paul L Ehrlich George Field nonpartisan think tank, we strongly support the petition submitted by the Vat L. Fitch * JeromeI. Friedman American Physical Society that requests proliferation risk assessments become a * Riccardo Giacoani * Walter Gilbert required part of the NRC licensing process. * Alfed G. Gilman " Donald Glaser * Sheldon L. Glashow Marvin L. Goidhergr * Joseph L. Goldstein Emerging nuclear fuel technologies such as laser enrichment of uranium can pose Roger C. L. Gaillemin * L[land H. Hartwell significant proliferation risks due to difficulties in detecting facilities using these * Herbert A. Hauptman " Dudley RKHIaechach technologies. If such technologies are developed without a clear, objective, and * Roald Hoff-aan John P. Hoidren detailed assessment, they can dangerously undermine U.S. nuclear * -l Robert Horvitz * David H.
    [Show full text]
  • Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
    Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well­ more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt­ it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering.
    [Show full text]
  • Bringing out the Dead Alison Abbott Reviews the Story of How a DNA Forensics Team Cracked a Grisly Puzzle
    BOOKS & ARTS COMMENT DADO RUVIC/REUTERS/CORBIS DADO A forensics specialist from the International Commission on Missing Persons examines human remains from a mass grave in Tomašica, Bosnia and Herzegovina. FORENSIC SCIENCE Bringing out the dead Alison Abbott reviews the story of how a DNA forensics team cracked a grisly puzzle. uring nine sweltering days in July Bosnia’s Million Bones tells the story of how locating, storing, pre- 1995, Bosnian Serb soldiers slaugh- innovative DNA forensic science solved the paring and analysing tered about 7,000 Muslim men and grisly conundrum of identifying each bone the million or more Dboys from Srebrenica in Bosnia. They took so that grieving families might find some bones. It was in large them to several different locations and shot closure. part possible because them, or blew them up with hand grenades. This is an important book: it illustrates the during those fate- They then scooped up the bodies with bull- unspeakable horrors of a complex war whose ful days in July 1995, dozers and heavy earth-moving equipment, causes have always been hard for outsiders to aerial reconnais- and dumped them into mass graves. comprehend. The author, a British journalist, sance missions by the Bosnia’s Million It was the single most inhuman massacre has the advantage of on-the-ground knowl- Bones: Solving the United States and the of the Bosnian war, which erupted after the edge of the war and of the International World’s Greatest North Atlantic Treaty break-up of Yugoslavia and lasted from 1992 Commission on Missing Persons (ICMP), an Forensic Puzzle Organization had to 1995, leaving some 100,000 dead.
    [Show full text]
  • Biographical References for Nobel Laureates
    Dr. John Andraos, http://www.careerchem.com/NAMED/Nobel-Biographies.pdf 1 BIOGRAPHICAL AND OBITUARY REFERENCES FOR NOBEL LAUREATES IN SCIENCE © Dr. John Andraos, 2004 - 2021 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ CHEMISTRY NOBEL CHEMISTS Agre, Peter C. Alder, Kurt Günzl, M.; Günzl, W. Angew. Chem. 1960, 72, 219 Ihde, A.J. in Gillispie, Charles Coulston (ed.) Dictionary of Scientific Biography, Charles Scribner & Sons: New York 1981, Vol. 1, p. 105 Walters, L.R. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 328 Sauer, J. Chem. Ber. 1970, 103, XI Altman, Sidney Lerman, L.S. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 737 Anfinsen, Christian B. Husic, H.D. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 532 Anfinsen, C.B. The Molecular Basis of Evolution, Wiley: New York, 1959 Arrhenius, Svante J.W. Proc. Roy. Soc. London 1928, 119A, ix-xix Farber, Eduard (ed.), Great Chemists, Interscience Publishers: New York, 1961 Riesenfeld, E.H., Chem. Ber. 1930, 63A, 1 Daintith, J.; Mitchell, S.; Tootill, E.; Gjersten, D., Biographical Encyclopedia of Scientists, Institute of Physics Publishing: Bristol, UK, 1994 Fleck, G. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 15 Lorenz, R., Angew.
    [Show full text]
  • Download This Article in PDF Format
    The Second Lepton Family Klaus Winter, CERN The Nobel Prize for Physics for 1988 was awarded to L. Lederman, M. Schwartz and J. Steinberger for work on neutrinos in the early 1960s. In a letter [1] addressed to the "dear radioactive ladies and gentlemen", writ­ ten in December 1930, Wolfgang Pauli proposed, as a "desperate remedy" to save the principle of conservation of energy in beta-decay, the idea of the neutrino, a neutral particle of spin 1/2 and with a mass not larger than 0.01 proton mass. "The continuous beta-spectrum [2] would then become understandable by the assumption that in beta-decay a neutrino is emitted together with the electron, in such a way that the sum of the energies of the neutrino and electron is constant." Pauli did not specify at that time Fig. 1 — A recent photograph taken at CERN of Leon Lederman (left), whether the neutrino was to be ejected Jack Steinberger (centre) and Melvin Schwartz. or created. In his famous paper "An attempt of a theory of beta-decay" [3] the muon not decay into e + at the rate ween 1 and 2 GeV should be achievable. E. Fermi used the neutrino concept of predicted if such a non-locality exis­ Would these synchrotrons though, deli­ Pauli together with the concept of the ted ? ". On this view the muon would vir­ ver enough neutrinos? According to nucleon of Heisenberg. He assumed tually dissociate into W + v, the charged their specifications they should accele­ that in beta-decay a pair comprising an W would radiate a and W + v would rate 1011 protons per second, an unpre­ electron and a neutrino is created, analo­ recombine to an electron.
    [Show full text]
  • SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA
    TOWARDS A UNIFIED THEORY - THREADS IN A TAPESTRY Nobel Lecture, 8 December, 1979 by SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA INTRODUCTION In 1956, when I began doing theoretical physics, the study of elementary particles was like a patchwork quilt. Electrodynamics, weak interactions, and strong interactions were clearly separate disciplines, separately taught and separately studied. There was no coherent theory that described them all. Developments such as the observation of parity violation, the successes of quantum electrodynamics, the discovery of hadron resonances and the appearance of strangeness were well-defined parts of the picture, but they could not be easily fitted together. Things have changed. Today we have what has been called a “standard theory” of elementary particle physics in which strong, weak, and electro- magnetic interactions all arise from a local symmetry principle. It is, in a sense, a complete and apparently correct theory, offering a qualitative description of all particle phenomena and precise quantitative predictions in many instances. There is no experimental data that contradicts the theory. In principle, if not yet in practice, all experimental data can be expressed in terms of a small number of “fundamental” masses and cou- pling constants. The theory we now have is an integral work of art: the patchwork quilt has become a tapestry. Tapestries are made by many artisans working together. The contribu- tions of separate workers cannot be discerned in the completed work, and the loose and false threads have been covered over. So it is in our picture of particle physics. Part of the picture is the unification of weak and electromagnetic interactions and the prediction of neutral currents, now being celebrated by the award of the Nobel Prize.
    [Show full text]
  • Chem 103, Section F0F Unit I
    Lecture 4 - Observations that Led to the Chem 103, Section F0F Nuclear Model of the Atom Unit I - An Overview of Chemistry Dalton’s theory proposed that atoms were indivisible particles. Lecture 4 • By the late 19th century, this aspect of Dalton’s theory was being challenged. • Work with electricity lead to the discovery of the electron, • Some observations that led to the nuclear model as a particle that carried a negative charge. for the structure of the atom • The modern view of the atomic structure and the elements • Arranging the elements into a (periodic) table 2 Lecture 4 - Observations that Led to the Lecture 4 - Observations that Led to the Nuclear Model of the Atom Nuclear Model of the Atom The cathode ray In 1897, J.J. Thomson (1856-1940) studies how cathode rays • Cathode rays were shown to be electrons are affected by electric and magnetic fields • This allowed him to determine the mass/charge ration of an electron Cathode rays are released by metals at the cathode 3 4 Lecture 4 - Observations that Led to the Lecture 4 - Observations that Led to the Nuclear Model of the Atom Nuclear Model of the Atom In 1897, J.J. Thomson (1856-1940) studies how cathode rays In 1897, J.J. Thomson (1856-1940) studies how cathode rays are affected by electric and magnetic fields are affected by electric and magnetic fields • Thomson estimated that the mass of an electron was less • Thomson received the 1906 Nobel Prize in Physics for his that 1/1000 the mass of the lightest atom, hydrogen!! work.
    [Show full text]
  • CERN Courier Is Distributed to Member-State Governments, Institutes and Laboratories Affiliated with CERN, and to Their Personnel
    I n t e r n at I o n a l J o u r n a l o f H I g H - e n e r g y P H y s I c s CERN COURIERV o l u m e 4 6 n u m b e r 9 n o V e m b e r 2 0 0 6 OPERA makes its grand debut ACCELERATORS COMPUTING NEWS INTERVIEW Laser-wakefield device Business signs up to Stephen Hawking pays reaches 1 GeV p5 work with EGEE p12 a visit to CERN p28 CCENovCover1.indd 1 18/10/06 08:53:59 CERN & ProCurve Networking 15 petabytes of data And a network that can handle it “CERN uses ProCurve Switches because we generate a colossal amount of data, making dependability a top priority.” —David Foster, Communication Systems Group Leader, CERN CERN has joined with ProCurve to build their network based on high-performance security, reliability and flexibility, along with a lifetime warranty.* From the world’s largest applications, to a company-wide email, just think what ProCurve could do for your network. Get a closer look at CERN and the world’s biggest physics experiment. Visit www.hp.com/eur/procurvecern1 *For as long as you own the product, with next-business-day advance replacement (available in most countries). For details, refer to the ProCurve Software License, Warranty and Support booklet at www.hp.com/rnd/support/warranty/index.htm The ProCurve Routing Switch 9300m series, ProCurve Routing Switch 9408sl, ProCurve Switch 8100fl series, and the ProCurve Access Control Server 745wl have a one-year- warranty with extensions available.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • Scientific and Related Works of Chen Ning Yang
    Scientific and Related Works of Chen Ning Yang [42a] C. N. Yang. Group Theory and the Vibration of Polyatomic Molecules. B.Sc. thesis, National Southwest Associated University (1942). [44a] C. N. Yang. On the Uniqueness of Young's Differentials. Bull. Amer. Math. Soc. 50, 373 (1944). [44b] C. N. Yang. Variation of Interaction Energy with Change of Lattice Constants and Change of Degree of Order. Chinese J. of Phys. 5, 138 (1944). [44c] C. N. Yang. Investigations in the Statistical Theory of Superlattices. M.Sc. thesis, National Tsing Hua University (1944). [45a] C. N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. J. Chem. Phys. 13, 66 (1945). [45b] C. N. Yang. The Critical Temperature and Discontinuity of Specific Heat of a Superlattice. Chinese J. Phys. 6, 59 (1945). [46a] James Alexander, Geoffrey Chew, Walter Salove, Chen Yang. Translation of the 1933 Pauli article in Handbuch der Physik, volume 14, Part II; Chapter 2, Section B. [47a] C. N. Yang. On Quantized Space-Time. Phys. Rev. 72, 874 (1947). [47b] C. N. Yang and Y. Y. Li. General Theory of the Quasi-Chemical Method in the Statistical Theory of Superlattices. Chinese J. Phys. 7, 59 (1947). [48a] C. N. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948). 2 [48b] S. K. Allison, H. V. Argo, W. R. Arnold, L. del Rosario, H. A. Wilcox and C. N. Yang. Measurement of Short Range Nuclear Recoils from Disintegrations of the Light Elements. Phys. Rev. 74, 1233 (1948). [48c] C.
    [Show full text]