State of Silanes

Total Page:16

File Type:pdf, Size:1020Kb

State of Silanes State of silanes Professors Bernhard Hidding, Thomas Klapötke and Andreas Kornath, and Dr Xiaomin Zhu outline the progression of their collaborative silicon hydride-related research in Europe SILANES What is the importance of gaseous would then fuel the colonisation of the Moon monosilane to the semiconductor field? (and planets). Monosilane is probably the most important With silane-focused research activity material in the photovoltaic industry today. increasing in Europe, how do you hope your It decomposes thermally into the elements own work will make a mark on silicon and hydrogen at temperatures of the field? 420 °C – a property utilised in chemical vapour decomposition (CVD) methods to produce Regional and national networks well-controlled, thin layers of silicon on a such as our ‘Silanes’ scientific photovoltaic panel. Electronic-grade silicon is network (www.silanet.de) are also produced from monosilane. excellent candidates as seed activities for broader, European initiatives. At the Why is there a need to create increasingly University of Strathclyde, UK, which is part longer-chain liquid silanes? of the Scottish Universities Physics Alliance (SUPA), space science and exploration is also Monosilane is gaseous in ambient conditions. a focus. Excitingly, this may allow for highly Generally speaking, gaseous and solid materials symbiotic research on liquid silanes by our are more difficult to handle than liquids. team and other collaborators in the future. As synthetic chemical compounds, could The density of a gas is much lower than that you explain how silicon hydrides (silanes) of a liquid and heating a gas to elevated Looking ahead to the next five to 10 years, can be produced and, moreover, why liquid temperatures of a few hundred degrees is how do you see your studies progressing? silanes are harder to synthesise? extremely energy-intensive. Recently, the Scottish Centre for the The good news is that silicon is one of the most In contrast, liquid silanes have a much higher Application of Plasma-based Accelerators abundant elements on Earth. For example, silicon density per volume, as well as a variety (SCAPA) was formed as part of SUPA and a sand (silicon dioxide) is used industrially to of additional decomposition methods. This £350 million investment into the University produce raw silicon via reduction with coke, results in dramatically improved epitaxial of Strathclyde in order to exploit particle and monosilane can be produced just as growth rates for electronic-grade silicon. and photon beams for free-electron lasers easily through the reduction of magnesium Increasing growth rates increases the panel and other applications. Additionally, a silicide with hydrochloric acid. A very similar output rate and can therefore decrease £100 million Technology and Innovation production method called Stock’s synthesis is product costs. At the same time, longer- Centre (TIC) with a focus on energy research used to produce a mixture of crude silanes in a chain silanes are easier to handle, transport is nearing completion on the University way that is reminiscent of crude oil produced and store, not only because of their liquid campus. It will be the first Fraunhofer in nature. state but also because of their decreased Institute in the UK and, excitingly, a pyrophoricity – that is, the tendency to ignite Fraunhofer UK umbrella organisation is This mixture contains longer-chained silanes and combust spontaneously when in contact now located in Strathclyde. Recently, such as disilane, trisilane and tetrasilane. with ambient air. It is important to remember the first Max Planck Institute Unfortunately, the longer the silane molecule, that monosilane, despite all of its advantages, partnership in the UK has also been the lower the fraction of it contained in is quite a dangerous substance. implemented. These organisations the liquid crude silane mix. This is because and collaborations make for an the inner energy of silanes increases as the What is the true potential reach of silane- ideal playground for R&D in these complexity of the silane increases. based applications? respective areas. In our scientific network, we have therefore Some believe that the merging of carbon- analysed and developed novel production based structures with silicon-based structures strategies, such as a method for the synthesis will lead to a natural science which is much of liquid cyclopentasilane; a molecule that richer than we know today. One fascinating is especially interesting for photovoltaics idea along these lines originates from a much applications. We hope that the increased broader view: Earth is not the only silicate number of applications and demand for planet in the Solar System. As early as the liquid silanes will further novel large-scale 1950s, NASA considered using silicon on the production methods. Moon for in situ silane manufacture, which WWW.RESEARCHMEDIA.EU 41 SILANES Spark of ingenuity Researchers based in the University of Strathclyde in Scotland, UK, are collaborating with scientists across Europe to study the production and applications of silicon hydrides, as well as novel plasma accelerators AS THE MOST widely used organic compounds, the properties of hydrocarbons have been extensively explored. With their diverse range of applications, they are often seen as the driving force behind modern society. Conversely, silicon hydrides (or silanes) – which are regarded as the silicon-based equivalents of hydrocarbons – have not been subjected to the same extent of investigation. However, many scientists believe there is an enormous number of silane-based applications that are waiting to be discovered. Visualisation of the geometry of decasilane Si10H22, calculated with Gaussian. Professor Bernhard Hidding, based in the Physics Department at the University of These characteristics lend themselves to a range of pulses of radiation. As a Chair of Experimental Strathclyde, UK, is a prominent silanes specific applications. For instance, their propensity Physics at the Scottish Centre for the Application researcher keen to realise this family of to self-ignite means liquid silanes could be highly of Plasma-Based Accelerators (SCAPA), directed synthetic compounds’ potential. In a project desirable as propellant fuel for rockets. At present, by Professor Dino Jaroszynski, Hidding engages funded by the German Ministry of Research and the enormous thrust rockets generate when in collaborative research on the use of laser- Education (BMBF), he worked with Professor they are launched from Earth into space requires plasma particle accelerators to build a number Andreas Kornath from the Ludwig Maximilian chemical propulsion. Hidding and his collaborators of applications in the fields of chemistry, biology, University of Munich and Dr Xiaomin Zhu from are working to design novel synthetic, reactive and material science and medicine. RWTH Aachen University to study polysilanes. high-energy density fuel from silanes: “In a rocket or Together, the researchers uncovered novel scramjet combustion chamber, the highly reactive While particle accelerators have grown and cheaper production methods for silanes, silanes would release chemical energy due to enormously in terms of size in the last 100 years, as well as studying applications of liquid decomposition and combustion,” Hidding explains. the technology behind the acceleration has silanes. The small group quickly expanded into “The largely gaseous combustion products would not significantly advanced since the 1950s. a broader research network funded by the then be converted into kinetic energy, the thrust Traditionally, higher energies have been achieved German Research Foundation (DFG) until 2014 from which would propel the vessel.” Initial studies by increasing the length of the accelerator, (www.silanet.de). The multidisciplinary team of have shown that liquid silanes are comparably but in a break from the past Hidding and his over 50 scientists – with expertise in chemistry, non-toxic, and thus attractive and environmentally collaborators have pioneered a novel approach physics and engineering – is currently working friendly potential space propellants for the future. to generating and harvesting electric fields to further advance knowledge about silanes. produced in plasma accelerators: “The ability Recent research projects have also focused on the of plasmas to produce such enormous fields to use of liquid silanes in the semiconductor industry. accelerate electrons is already an experimentally One goal in this area is the creation of a spray-on proven technology,” Hidding discloses. “New semiconducting paint that covers large areas – for accelerators would be capable of producing Their propensity to self-ignite example, the walls of buildings – with low-cost teravolts per metre, and in turn the accelerators photovoltaic layers. Doing so could pave the way could be shrunk down from tens of kilometres to means liquid silanes could be for the production of textile-based solar cells. the submetre size – concurrent with a dramatic decrease in the costs of these facilities.” highly desirable as propellant fuel In another research direction, Hidding and his collaborators have developed strategies to replace So far, the major challenge in realising the for rockets carbon atoms with silicon atoms in molecules. This advantages of plasma-based accelerators has seemingly small change can result in enormous been the relatively low quality of the electron differences, leading to the creation
Recommended publications
  • Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Yuri Alexeev Iowa State University
    Chemistry Publications Chemistry 8-2003 Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Yuri Alexeev Iowa State University Mark S. Gordon Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs Part of the Chemistry Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/419. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Abstract Titanium dichloride was investigated as a potential catalyst for the bis-silylation reaction of ethylene with hexachlorodisilane. Ab initio electronic structure calculations at the restricted Hartree−Fock (RHF), density functional (DFT), second-order perturbation (MP2), and couple cluster (CCSD) levels of theory were used to find optimized structures, saddle points, and minimum-energy paths that connect them. The er action was found to have a net zero barrier at the DFT, MP2, and CCSD levels of theory. Dynamic correlation is found to be important for this reaction. Disciplines Chemistry Comments Reprinted (adapted) with permission from Organometallics 22 (2003): 4111, doi:10.1021/om0303350. Copyright 2014 American Chemical Society. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/chem_pubs/419 Organometallics 2003, 22, 4111-4117 4111 Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Yuri Alexeev and Mark S.
    [Show full text]
  • Low Pressure Chemical Vapor Deposition of A-Si:H from Disilane Cole Petersburg Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Low pressure chemical vapor deposition of a-Si:H from disilane Cole Petersburg Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons, and the Materials Science and Engineering Commons Recommended Citation Petersburg, Cole, "Low pressure chemical vapor deposition of a-Si:H from disilane" (2007). Retrospective Theses and Dissertations. 14557. https://lib.dr.iastate.edu/rtd/14557 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Low pressure chemical vapor deposition of a-Si:H from disilane by Cole Petersburg A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Vikram Dalal, Major Professor Kristen Constant Santosh Pandey Iowa State University Ames, Iowa 2007 Copyright c Cole Petersburg, 2007. All rights reserved. UMI Number: 1443091 UMI Microform 1443091 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii TABLE OF CONTENTS LIST OF TABLES . iv LIST OF FIGURES .
    [Show full text]
  • Primer on Spontaneous Heating and Pyrophoricity
    NOT MEASUREMENT SENSITIVE DOE‐HDBK‐1081‐2014 Supersedes DOE‐HDBK‐1081‐94 DOE HANDBOOK PRIMER ON SPONTANEOUS HEATING AND PYROPHORICITY U.S. Department of Energy FSC‐6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT: Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web page at: http://www.hss.doe.gov/nuclearsafety/ns/techstds/ Key words: Alkali Metals , Aluminum, Arsine, Calcium, Class D Extinguishing Agents, Coal Storage, Combustible Metals, Diborane, Fire, Hafnium, Heating, Hydrazine, Hydrocarbons, Hypergolic, Hypergolic Reaction, Iron, Lithium, Magnesium, Metals, Microbial Heating, NaK, Organic, Oxidizer, Phosphine, Phosphorus, Plutonium, Potassium, Pyrophoric, Pyrophoricity, Pyrophoric Gases, Pyrophoric Reagents, Silane Specific Area, Sodium, Sodium‐Potassium, Specific Surface Area, Spontaneous, Spontaneous Combustion, Steel, Super Oxides, Thorium, Titanium, Uranium, Water Reactive Metals, Zinc, Zirconium FOREWORD The Primer on Spontaneous Heating and Pyrophoricity is approved for use by all DOE Components. It was developed to help Department of Energy (DOE) facility contractors prevent fires caused by spontaneous ignition. Spontaneously ignitable materials include those that ignite because of a slow buildup of heat (spontaneous heating) and those that ignite in air (pyrophoricity). The scientific principles of combustion and how they affect materials known to be spontaneously combustible are explained. The fire hazards of specific spontaneously heating and pyrophoric materials are discussed as well as techniques to prevent their ignition. Suitable fire extinguishing agents are included for most materials as well as safety precautions for storage and handling. The DOE Primers are fundamental handbooks on safety‐related topics of interest in the DOE Complex and are intended as an educational aid for operations and maintenance personnel and others who may have an interest in this topic.
    [Show full text]
  • Silanes As Ligands in Transition Metal Coordination Chemistry
    inorganics Article (2-Pyridyloxy)silanes as Ligands in Transition Metal Coordination Chemistry Lisa Ehrlich 1, Robert Gericke 1 , Erica Brendler 2 and Jörg Wagler 1,* 1 Institut für Anorganische Chemie, TU Bergakademie Freiberg, D-09596 Freiberg, Germany; [email protected] (L.E.); [email protected] (R.G.) 2 Institut für Analytische Chemie, TU Bergakademie Freiberg, D-09596 Freiberg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-3731-39-4343 Received: 29 September 2018; Accepted: 26 October 2018; Published: 31 October 2018 Abstract: Proceeding our initial studies of compounds with formally dative TM!Si bonds (TM = Ni, Pd, Pt), which feature a paddlewheel arrangement of four (N,S) or (N,N) bridging ligands around the TM–Si axis, the current study shows that the (N,O)-bidentate ligand 2-pyridyloxy (pyO) is also capable of bridging systems with TM!Si bonds (shown for TM = Pd, Cu). Reactions of MeSi(pyO)3 with [PdCl2(NCMe)2] and CuCl afforded the compounds MeSi(µ-pyO)4PdCl (1) and MeSi(µ-pyO)3CuCl (2), respectively. In the latter case, some crystals of the Cu(II) compound MeSi(µ-pyO)4CuCl (3) were obtained as a byproduct. Analogous reactions of Si(pyO)4, in the presence of HpyO, with [PdCl2(NCMe)2] and CuCl2, afforded the compounds [(HpyO)Si(µ-pyO)4PdCl]Cl (4), (HpyO)2Si[(µ-pyO)2PdCl2]2 (5), and (HpyO)2Si[(µ-pyO)2CuCl2]2 (6), respectively. Compounds 1–6 and the starting silanes MeSi(pyO)3 and Si(pyO)4 were characterized by single-crystal X-ray diffraction analyses and, with exception of the paramagnetic compounds 3 and 6, with NMR spectroscopy.
    [Show full text]
  • Ereztech LLC SI0687 Safety Data Sheet
    EREZTECH LLC 11555 Medlock Bridge Road, Suite 100, Johns Creek, GA 30097, USA T: +1.888.658.1221 F: 1.678.619.2020 E: [email protected] W: https://ereztech.com Section 1. Identification Product Name: Hexafluorodisilane Product Type: Gas CAS Number: 13830-68-7 Product Number: SI0687 Product Manufacturer: Ereztech LLC 11555 Medlock Bridge Road, Suite 100 Johns Creek, GA 30097 Product Information: (888) 658-1221 In case of an emergency: CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International); CCN836180 *** Contact manufacturer for all non-emergency calls. Section 2. Hazards Identification Hazards Identification Classification: GASES UNDER PRESSURE – Compressed Gas, H280 SKIN CORROSION/IRRITATION; - Category 1B, H314 SERIOUS EYE DAMAGE/EYE IRRITATION - Category 1, H318 ACUTE TOXICITY, INHALATION; - Category 3, H331 SPECIFIC TARGET ORGAN TOXICITY, SINGLE EXPOSURE; RESPIRATORY TRACT IRRITATION - Category 3, H335 GHS label elements Hazard pictograms: Signal word: DANGER Hazard statements: H280: Contains gas under pressure; may explode if heated. H314: Causes severe skin burns and eye damage. H318: Causes serious eye damage. H331: Toxic if inhaled. H335: May cause respiratory irritation. Ereztech SI0687 Page 1 of 13 Revision: 1.10 Date of Issue: 1/4/20 Hexafluorodisilane Safety Data Sheet Section 2. Hazards Identification Precautionary statements Prevention: P260: Avoid breathing vapors and gases. P264: Wash skin thoroughly after handling. P271: Use only outdoors or in a well-ventilated area. P280: Wear protective gloves/ protective clothing/ eye protection/ face protection. Response: P301 + P330 + P331: IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. P303 + P361 + P353: If on skin (or hair): Take off immediately all contaminated clothing.
    [Show full text]
  • Synthesis of Di- and Trisilanes with Potentially Chelating Substituents
    Journal of Organometallic Chemistry 649 (2002) 25–42 www.elsevier.com/locate/jorganchem Synthesis of di- and trisilanes with potentially chelating substituents Johannes Belzner a,1*, Uwe Dehnert a, Dirk Scha¨r a, Bernhard Rohde a, Peter Mu¨ller b, Isabel Uso´n b a Institut fu¨r Organische Chemie der Georg-August-Uni6ersita¨t Go¨ttingen, Tammannstr. 2, D-37077 Go¨ttingen, Germany b Institut fu¨r Anorganische Chemie der Georg-August-Uni6ersita¨t Go¨ttingen, Tammannstr. 4, D-37077 Go¨ttingen, Germany Received 3 April 2001; received in revised form 29 May 2001; accepted 29 October 2001 Abstract Silylenes 2 or 4, generated by thermolysis of cyclotrisilanes 1 and 3, were inserted into the SiCl or SiH bonds of monosilanes to yield a variety of disilanes, which can be further functionalized subsequently. In a few cases, trisilanes are accessible by the reaction of 1 with disilanes. The reaction of a metalated silane with a chlorosilane is an alternative method for the formation of SiSi bonds, which turned out to be especially useful for the synthesis of bulkily substituted disilanes. Some of the new dichlorodi- and trisilanes themselves serve as thermal precursors of silylenes 2 or 4, the extrusion of which can be catalyzed by 1 or 3 in certain cases. © 2002 Elsevier Science B.V. All rights reserved. Keywords: Silylenes; Oligosilanes; Halosilanes; Siliconsilicon bond formation 1. Introduction crucial intermediate—to the formation of symmetri- cally substituted disilanes [1]. In contrast, geminally Two principal reaction pathways are available for the dihalogenated silanes do not serve as synthetically use- formation of SiSi bonds (Scheme 1).
    [Show full text]
  • Ideal Gas Thermochemistry of Silicon Inorganic Organic and Ion Compounds
    This is the peer reviewed version of the following article: Alexander Burcat, Elke Goos, Ideal gas thermochemical properties of silicon containing inorganic, organic compounds, radicals, and ions, Int J Chem Kinet. 2018;50:633–650, which has been published in final form at http://dx.doi.org/10.1002/kin.21188. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. 1 Ideal Gas Thermochemical Properties of Silicon containing Inorganic, Organic Compounds, Radicals and Ions. Alexander Burcat Faculty of Aerospace Engineering, Technion- Israel Institute of Technology, Haifa 32000, Israel, [email protected] and Elke Goos, Institute of Combustion Technology, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR, German Aerospace Center), Pfaffenwaldring 38, 70569 Stuttgart, Germany. [email protected] ABSTRACT The ideal gas thermochemical properties such as standard heat of formation, entropy and heat capacities of 112 inorganic and 35 organic neutral compounds, radicals and ions containing silicon were calculated using molecular properties obtained with the G3B3 (or G3//B3LYP) method. Among them were linear and cyclic silanes, silenes, hydrocarbonsilanes, fluorine and oxygen containing compounds. Many of their molecular and thermodynamic properties were calculated for the first time and 16 of them had no CAS No. Additionally the thermochemical properties were presented in the NASA 7-term polynomial format for the temperature range of 200 K to 6000 K commonly used in chemical kinetic modeling and simulation programs. The polynomials are available in the supplement to this article free of charge. 2 KEYWORDS Thermodynamic data, Thermochemistry, Thermochemical properties, Heat of formation, Entropy, Enthalpy, Heat capacity, NASA format, Quantum chemical calculation, G3B3 composite approach, Silicon hydride, Silanes, Silicon fluoride, Silicon hydrocarbon, Silicon ions, Silicon compounds, Database INTRODUCTION Silicon containing substances are widely used and important for the mankind.
    [Show full text]
  • Toxic and Highly Toxic Gas Handling Procedure
    Environmental Health and Safety Toxic and Highly Toxic Gas Handling Procedure Date of Issuance: 10/2019 Revision Date: 5/27/2021 Revision Number: 1 Prepared by: EHS 1. Scope and Background The Carnegie Mellon University Toxic and Highly Toxic Gas Handling Program specifies minimum requirements for safe storage, use, and handling of toxic and highly toxic gas at Carnegie Mellon University. This program has been approved by the Laboratory Safety Committee. This document: • summarizes the health and safety risks associated with toxic and highly toxic gas use and handling; • identifies exposure control methods to protect employee’s safety and health and the environment; • outlines regulatory and university requirements related to this work; • specifies emergency response procedures for addressing toxic gas issues; and • provides resources for further information. Toxic and highly toxic gases are gases that may cause significant acute health effects at low concentrations. Health effects may include severe skin or eye irritation, pulmonary edema, neurotoxicity or other potentially fatal conditions. The criteria used to establish the materials addressed by this policy are: • A National Fire Protection Association (NFPA) health rating of 3 or 4 • An NFPA health rating of 2 with poor physiological warning properties • Pyrophoric (self-igniting) characteristics, OR • An extremely low occupational exposure limits in the absence of an NFPA health rating. Table 1 identifies common gases that meet the criteria of toxic or highly toxic, though it is
    [Show full text]
  • The Chemical List of Interest
    List of Toxic and Pyrophoric Gases that require preappro val from MSU EHS BEFORE purc hase Chemical MSDS CAS # Health Fire Reactive 1,3-BUTADIENE 1,3-BUTADIENE 106-99-0 2d 4 0 2-METHYL-1,3-BUTADIENE 2-METHYL-1,3-BUTADIENE 78-79-5 1i 4 0 ACETYL FLUORIDE ACETYL FLUORIDE 557-99-3 3 0 0 AMMONIA AMMONIA 7664-41-7 3 1 0 ANTIMONY PENTAFLUORIDE ANTIMONY PENTAFLUORIDE 7783-70-2 4 0 1 ARSENIC PENTAFLUORIDE ARSENIC PENTAFLUORIDE 7784-36-3 3 1 0 ARSENIC TRIFLUORIDE ARSENIC TRIFLUORIDE 7784-35-2 3 0 1 ARSINE ARSINE 7784-42-1 4 4 2 BIS(TRIFLUOROMETHYL)PEROXIDE BIS(TRIFLUOROMETHYL)PEROXIDE 927-84-4 a, j a, j a, j BORON TRIBROMIDE BORON TRIBROMIDE 10294-33-4 4 2 0 BORON TRICHLORIDE BORON TRICHLORIDE 10294-34-5 3 0 1 BORON TRIFLUORIDE BORON TRIFLUORIDE 7637-07-2 4 0 1 BROMINE BROMINE 7726-95-6 3 0 0 BROMINE CHLORIDE BROMINE CHLORIDE 13863-41-7 3 0 1 BROMINE PENTAFLUORIDE BROMINE PENTAFLUORIDE 7789-30-2 3 0 3 BROMINE TRIFLUORIDE BROMINE TRIFLUORIDE 7787-71-5 3 0 3 BROMOETHENE BROMOETHENE 593-60-2 2d 4 1 BROMOMETHANE BROMOMETHANE 74-83-9 3 1 0 CARBON DISULFIDE CARBON DISULFIDE 75-15-0 3 4 0 CARBON MONOXIDE CARBON MONOXIDE 630-08-0 2e 4 0 CARBONYL FLUORIDE CARBONYL FLUORIDE 353-50-4 4 0 1 CARBONYL SULFIDE CARBONYL SULFIDE 463-58-1 3 4 1 CHLORINE CHLORINE 7782-50-5 4 0 0 CHLORINE DIOXIDE CHLORINE DIOXIDE 10049-04-4 3 0 4 CHLORINE MONOXIDE CHLORINE MONOXIDE 12301-79-0 a a a CHLORINE PENTAFLUORIDE CHLORINE PENTAFLUORIDE 13637-63-3 3 0 3 CHLORINE TRIFLUORIDE CHLORINE TRIFLUORIDE 7790-91-2 4 0 3 CHLOROTRIFLUOROETHYLENE CHLOROTRIFLUOROETHYLENE 79-38-9 3 4 3 CARBON
    [Show full text]
  • Mastercommission 9K
    r V f .6 1 .*......'=r t63 - t-1 f 3 - 1( 15. Reasilons of BecRiling Silicon Bteg with Phosphine Silane BBd Disilane 1 h -----=- -- --------- ---=--- ---=- =-=- =-------- -=---- --= -=----=- to (1) Financial support from the United States Atomic EnergyMASTERCommission 9K t is gratefully acknowledged. This is · AEC report No. COO-1713-16. -40 M 1 -0..1 The formation of disilane and silane H331 SiSiH3 the fast-neutro'n +d 31 SiH4 from CD , irradiation of phosphine-silane mixtures has been rationalized by proposing a ia. 0.V' set of product-determing steps involving the intermediate silylene: 31 SiH2 - which is the product of the primary reactions of recoiling silicon atoms.2 31PH + ·n ;631Si + p + 3 H: :':· ' 1, 1- 3 gi ...:»,. : 3·1 •••••••• ) :31 SiH 2 44 U 1 9.: . ..'. X"" f .:31 SiH2 + SiH4 ·H-31.1 SiSiHi v i - 6'' I b . 3 1 SiH · · , · :31 SiH2 + SiH4 4 ,4 31 SiH :31 SiH2 + PH3 4 ; involatile material :3 1 SiH2 ' ' PH3 ., L 0 1 . 9. (2) P.P. Gaspar, S.A. B·ock and W.. C. Eckelman, J. Amer. Chem. Soc., 22, 6914 (1968). ..R' The present report provides support,for the intermediacy of :31 SiH and suggests the occurence of a novel reaction:-.the insertion of :31 SiH into silicon- 2 silicon bonds. *$.An mechanism for the formation gf involving the ·1 . ternative H331SiSiH3 coupling of silyl radicals, '31 SiH3 with nonradioactive 'SiH3 formed from . : A: silane by radiation damage „ had been ·rendered unlikely by the failure of ' scavengers to-affect product yields. 2, '.However; the reaction , :- (NO,.C2H4-).
    [Show full text]
  • An Introduction to Basic Silicone Chemistry By
    [ 01 ft< 58449 > OU_1 [g ^ CD ^ C/) LI ' Call No. - ~L> Accession No. Author fidCJi*lO. Tak CL^v betew. This book should be re/Urned on or before the date last marked An Introduction to the CHEMISTRY of the SILICONES An Introduction to the CHEMISTRY of the SILICONES By EUGENE G. ROCHOW Research Laboratory, General Electric Company NEW YORK: JOHN WILEY & SONS, INC. LONDON: CHAPMAN & HALL, LIMITED COPYRIGHT, 1946 BY EUGENE G. ROCHOW AU Rights Reserved This book or any part thereof must not be reproduced in any form without the written permission of the publisher. SECOND PRINTING, MARCH, 1947 PRINTED IN THE UNITED STATES OF AMERICA To P. G. F. PREFACE The organic compounds of silicon, which have been the subject of many scholarly researches during the past 80 years, at last show promise of emerging from the laboratory and finding a place in industry. An understanding of the behavior of organosilicon materials is necessary to their intelligent use and, inasmuch as the chemistry of these substances ordinarily is not treated in our textbooks, it is possible that a compact yet comprehensive survey of our present knowledge in this field would be of service to chemists, engineers, and industrial designers. This volume has just such a purpose. The first few chapters review the silanes and their derivatives in some detail, in order to provide an understanding of the fundamental chemistry of the nonsilicate com- pounds of silicon. The later chapters emphasize the silicone polymers which have achieved commercial importance and deal with the methods for their preparation, their chemical and physical properties, and their possible usas.
    [Show full text]
  • Supporting Information To: Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections
    Supporting information to: Long-range corrected hybrid density functionals with improved dispersion corrections 1 1 1 1, 2, You-Sheng Lin, Guan-De Li, Shan-Ping Mao, and Jeng-Da Chai ⇤ 1Department of Physics, National Taiwan University, Taipei 10617, Taiwan 2Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan TABLE S1. Vertical IPs of IP131 database (page SI 2). TABLE S2. Vertical EAs of EA115 database (page SI 7). TABLE S3. Fundamental gaps of FG115 database (page SI 11). TABLE S4. Atomic energies from H to Ar (page SI 15). TABLE S5. NHTBH38/04 barrier heights (page SI 16). TABLE S6. HTBH38/04 barrier heights (page SI 17). TABLE S7. Interaction energies for S22 (page SI 18). TABLE S8. Reaction energies (page SI 19). TABLE S9. Binding energies of noncovalent interactions (page SI 19). Reference (page SI 21). ⇤ Author to whom correspondence should be addressed. Electronic mail: [email protected]. SI 2 TABLE S1: -✏N (N) (in eV) by DFT methods in the IP131 database. [1] Molecule Reference !M06-D3 !B97X-D3 M06-2X H (Hydrogen atom) 13.60 11.67 11.37 10.31 He (Helium atom) 24.59 21.24 20.62 20.56 Li (Lithium atom) 5.39 5.25 5.30 4.19 Be (Beryllium atom) 9.32 8.57 8.49 7.26 B (Boron atom) 8.30 7.70 7.51 6.17 C (Carbon atom) 11.26 10.23 9.87 8.84 N (Nitrogen atom) 14.53 12.92 12.46 11.78 O (Oxygen atom) 13.62 12.29 11.83 11.21 F (Fluorine atom) 17.42 15.53 14.96 14.82 Ne (Neon atom) 21.57 19.01 18.39 18.66 Na (Sodium atom) 5.14 5.09 4.92 4.19 Mg (Magnesium atom)
    [Show full text]