Metal Catalyzed Group 14 and 15 Bond Forming Reactions: Heterodehydrocoupling and Hydrophosphination Michael Cibuzar University of Vermont
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supporting Information For
Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Supporting Information for: 2- Quadruple-CO3 Bridged Octanuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behaviour Experimental Section Synthetic procedures All chemicals were of reagent grade and were used without any further purification. Synthesis of pyrazine-2-carbohydrazide The pyrazine-2-carboxylic acid methyl ester was prepared by a literature procedure described elsewhere. A mixture of pyrazine-2-carboxylic acid methyl ester (1.38 g, 10 mmol) and hydrazine hydrate (85%, 15 ml) in methanol (20 ml) was refluxed overnight, at a temperature somewhat below 80°C. The resulting pale-yellow solution set aside 12 hrs. During this period, a colorless product, i.e. pyrazine-2-carbohydrazide, precipitated from the reaction mixture as a crystalline solid (yield = 0.84 g, 61%). Synthesis of (E)-N'-(2-hyborxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide Pyrazine-2-carbohydrazide (2 mmol, 0.276 g) was suspended together with o-vanillin (2 mmol, 0.304 g) in methanol (20 ml), and the resulting mixture was stirred at the room temperature overnight. The pale yellow solid was collected by filtration (yield = 0.56 g, 83%). Elemental analysis (%) calcd for C13H12N4O3: C, 57.35, H, 4.44, N, 20.58: found C, 57.64, H, 4.59, N, 20.39. IR (KBr, cm-1): 3415(w), 3258(w), 1677(vs), 1610(s), 1579(m). 1530(s), 1464(s), 1363(m), 1255(vs), 1153(s), 1051(w), 1021(s), 986(w), 906(m), 938(w), 736(s), 596(m), 498(w). Synthesis of the complex 1 The solution of DyCl3⋅6H2O (56.5 mg, 0.15 mmol) and the H2L (40.5 mg, 0.15 mmol) in 15 ml CH3OH/CH2Cl2 (1:2 v/v) was stirred with triethylamine (0.4 mmol) for 6h. -
Determination of Parent and Alkylated Polycyclic Aromatic Hydrocarbons (Pahs) in Biota and Sediment
ICES TECHNIQUES IN MARINE ENVIRONMENTAL SCIENCES NO. 45 NOVEMBER 2009 Determination of parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in biota and sediment L. WEBSTER • J. TRONCZYNSKI P. KORYTAR • K. BOOIJ • R. LAW International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44 – 46 DK‐1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Our cover photo was taken by N. Penny Holliday aboard the RRS “Discovery” in rough seas in the Rockall Trough. Recommended format for purposes of citation: Webster, L., Tronczynski, J., Korytar, P., Booij, K., and Law, R. 2010. Determination of parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in biota and sediment. ICES Techniques in Marine Environmental Sciences. No. 45. 26 pp. Series Editor: Paul D. Keizer For permission to reproduce material from this publication, please apply directly to the General Secretary. Correspondence concerning the details of any method or procedure should be directed to the author(s). This series presents detailed descriptions of methods and procedures relating to chemical and biological measurements in the marine environment. Most techniques described have been selected for documentation based on performance in ICES or other intercalibration or intercomparison exercises: they have been carefully evaluated and shown to yield good results when correctly applied. They have also been subject to review by relevant ICES working groups, but this is not to be construed as constituting official recommendation by the Council. ISBN 978-87-7482-074-1 978-87-7482-297-4 https://doi.org/10.17895/ices.pub.5070 ISSN 0903 – 2606 2707-6997 © 2010 International Council for the Exploration of the Sea ICES Techniques in Marine Environmental Sciences No. -
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/Ceo2: Effect of Reaction Parameters on the Activity
nanomaterials Article Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity Davide Motta 1, Ilaria Barlocco 2 , Silvio Bellomi 2, Alberto Villa 2,* and Nikolaos Dimitratos 3,* 1 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK; [email protected] 2 Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; [email protected] (I.B.); [email protected] (S.B.) 3 Dipartimento di Chimica Industriale e dei Materiali, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy * Correspondence: [email protected] (A.V.); [email protected] (N.D.) Abstract: In the present work, an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen, which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques, i.e., X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study, modifying parameters such as temperature, the mass of the catalyst, stirring speed and concentration of base in order to find the optimal conditions of reaction, which allow performing the test in a kinetically limited regime. Citation: Motta, D.; Barlocco, I.; Bellomi, S.; Villa, A.; Dimitratos, N. Keywords: iridium; cerium oxide; hydrous hydrazine; hydrogen production Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity. -
Periodic Trends in the Main Group Elements
Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds. -
Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Yuri Alexeev Iowa State University
Chemistry Publications Chemistry 8-2003 Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Yuri Alexeev Iowa State University Mark S. Gordon Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs Part of the Chemistry Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/419. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Abstract Titanium dichloride was investigated as a potential catalyst for the bis-silylation reaction of ethylene with hexachlorodisilane. Ab initio electronic structure calculations at the restricted Hartree−Fock (RHF), density functional (DFT), second-order perturbation (MP2), and couple cluster (CCSD) levels of theory were used to find optimized structures, saddle points, and minimum-energy paths that connect them. The er action was found to have a net zero barrier at the DFT, MP2, and CCSD levels of theory. Dynamic correlation is found to be important for this reaction. Disciplines Chemistry Comments Reprinted (adapted) with permission from Organometallics 22 (2003): 4111, doi:10.1021/om0303350. Copyright 2014 American Chemical Society. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/chem_pubs/419 Organometallics 2003, 22, 4111-4117 4111 Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Yuri Alexeev and Mark S. -
Organic Chemistry Name Formula Isomers Methane CH 1 Ethane C H
Organic Chemistry Organic chemistry is the chemistry of carbon. The simplest carbon molecules are compounds of just carbon and hydrogen, hydrocarbons. We name the compounds based on the length of the longest carbon chain. We then add prefixes and suffixes to describe the types of bonds and any add-ons the molecule has. When the molecule has just single bonds we use the -ane suffix. Name Formula Isomers Methane CH4 1 Ethane C2H6 1 Propane C3H8 1 Butane C4H10 2 Pentane C5H12 3 Hexane C6H14 5 Heptane C7H16 9 Octane C8H18 18 Nonane C9H20 35 Decane C10H22 75 Isomers are compounds that have the same formula but different bonding. isobutane n-butane 1 Naming Alkanes Hydrocarbons are always named based on the longest carbon chain. When an alkane is a substituent group they are named using the -yl ending instead of the -ane ending. So, -CH3 would be a methyl group. The substituent groups are named by numbering the carbons on the longest chain so that the first branching gets the lowest number possible. The substituents are listed alphabetically with out regard to the number prefixes that might be used. 3-methylhexane 1 2 3 4 5 6 6 5 4 3 2 1 Alkenes and Alkynes When a hydrocarbon has a double bond we replace the -ane ending with -ene. When the hydrocarbon has more than three carbon the position of the double bond must be specified with a number. 1-butene 2-butene Hydrocarbons with triple bonds are named basically the same, we replace the -ane ending with -yne. -
Stoichiometric and Catalytic Reactions Involving Si-H Bond Activations by Rh and Ir Complexes Containing a Pyridylindolide Ligand Dmitry Karshtedt,†,‡ Alexis T
Organometallics 2006, 25, 4471-4482 4471 Stoichiometric and Catalytic Reactions Involving Si-H Bond Activations by Rh and Ir Complexes Containing a Pyridylindolide Ligand Dmitry Karshtedt,†,‡ Alexis T. Bell,*,§,‡ and T. Don Tilley*,†,‡ Departments of Chemistry and Chemical Engineering, UniVersity of California, Berkeley, Berkeley, California 94720, and Chemical Sciences DiVision, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 ReceiVed June 5, 2006 New rhodium and iridium complexes containing the bidentate, monoanionic 2-(2′-pyridyl)indolide (PyInd) ligand were prepared. The bis(ethylene) complex (PyInd)Rh(C2H4)2 (3) reacted with triethylsilane at 60 °C to produce the 16-electron Rh(V) bis(silyl)dihydride complex (PyInd)RhH2(SiEt3)2 (4). Both 3 and 4 catalyzed the chloride transfer reaction of chlorobenzene and Et3SiH to give Et3SiCl and benzene i in the absence of base. In the presence of LiN Pr2, catalytic C-Si coupling was observed, to produce Et3SiPh. Analogous Ir complexes of the type (PyInd)IrH2(SiR3)2, where R3 ) Et3 (6a), Me2Ph (6b), Ph2Me (6c), or Ph3 (6d), were not catalytically active in this chloride transfer chemistry. The molecular structure of 6c, determined by X-ray crystallography, may be described as having a highly unusual bicapped tetrahedral geometry. DFT calculations indicate that this distortion is associated with the d4 electron count and the presence of highly trans-influencing silyl ligands. The reaction of 6a with PMe3 (5 equiv) produced (PyInd)IrH(SiEt3)(PMe3)2 (7), while the reaction with PPh3 (1 equiv) generated a mixture of isomers that was converted to (PyInd)IrH(SiEt3)(PPh3)(8) upon heating in benzene at 80 °C. -
Addition of Hydrogen Bromide to Unsymmetrical Olefins
AN ABSTRACT OF TH TESIS OF Charles runior Rogers for the Ph.D. in Chemistry (Name) (Degree) (Lajor1 Date thesis is presented August 22, 1952 - Title ADDITION OF HYDROGEN BROMIDE Abstract approved Redacted for privacy (Ljr Pro'essor) (j In this investigation the addition o1 hydrogen bromide to 3-methylcyclohexene has been studied in order to see if the theory of hyperconjugation could be extended to include olefins of' this type. Since the olefin has an equal number of hydrogens on both carbons carrying the double bond, a mixture o± bromides was expected in the addition product. The bromides expected were cis-2- or trans-2-bromomethyl- cyclobexane or a mixture of the isomers and ois-3- or trans-3-broraomethylcyclohexane or a mixture or those isomers. An infrared method ol' analyzing the addition product was used. To use this method it was necessary to make up 1own mixtures of the compounds expected in the addition product. In order to prepare some of the isomeric bromides, trams-2- and trans-3-rnethylcyclohexanol were prepared. Then, because no good. methods could be found in the literature for the conversion of isomeric alcohols to isonieric bromides, the alcohols were not used. Instead, the Imown mixtures for the infrared work were prepared from 2-bromo- and 3-bromo- methylcyclohexanes, both containing unknown amounts of the cis-trans isomers. The 3-methylcyclohexene used in the hydrogen bromide addition was prepared from. 3-bromom.ethylcyclohexene and methylnìagnesium iodide. The addition of hydrogen bromide was conducted at 0°C and at room temperature using glacial acetic acid as a solvent. -
Dihydrazides - the Versatile Curing Agent for Solid Dispersion Systems
Dihydrazides - The Versatile Curing Agent for Solid Dispersion Systems Abe Goldstein A&C Catalysts, Inc Abstract This paper will introduce dihydrazides, a relatively obscure class of curing agents useful in virtually all thermoset resin systems. First described in 1958, by Wear, et al.(1) dihydrazides are useful curing agents for epoxy resins, chain extenders for polyurethanes, and excellent crosslinking agents for acrylics. In one-part epoxy systems, depending on the backbone chain of the chosen dihydrazide, Tg's over 150°C and pot life over 6 months as cure time of less than a minute can be seen. In acrylic emulsions, dihydrazides can be dissolved into the water phase and serve as an additional crosslinker, as the emulsion coalesces and cures. As a chain extender for poylurethanes, dihydrazides can be used to increase toughness and reduce yellowing. Introduction O O | | | | Dihydrazides are represented by the active group: H2NHNC(R) CNHNH2, where R is can be any polyvalent organic radical preferably derived from a carboxylic acid. Carboxylic acid esters are reacted with hydrazine hydrate in an alcohol solution using a catalyst and a water extraction step. The most common dihydrazides include adipic acid dihydrazide (ADH), derived from adipic acid, sebacic acid dihydrazide (SDH), valine dihydrazide (VDH), derived from the amino acid valine, and isophthalic dihydrazide (IDH). The aliphatic R group can be of any length. For example, when R group is just carbon, the resulting compound is carbodihydrazide (CDH), the fastest dihydrazide. Or R as long as C-18 has been reported as in icosanedioic acid dihydrazide (LDH). Some of the more common dihydrazides are represented in Figure 1. -
Low Pressure Chemical Vapor Deposition of A-Si:H from Disilane Cole Petersburg Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Low pressure chemical vapor deposition of a-Si:H from disilane Cole Petersburg Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons, and the Materials Science and Engineering Commons Recommended Citation Petersburg, Cole, "Low pressure chemical vapor deposition of a-Si:H from disilane" (2007). Retrospective Theses and Dissertations. 14557. https://lib.dr.iastate.edu/rtd/14557 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Low pressure chemical vapor deposition of a-Si:H from disilane by Cole Petersburg A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Vikram Dalal, Major Professor Kristen Constant Santosh Pandey Iowa State University Ames, Iowa 2007 Copyright c Cole Petersburg, 2007. All rights reserved. UMI Number: 1443091 UMI Microform 1443091 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii TABLE OF CONTENTS LIST OF TABLES . iv LIST OF FIGURES . -
Hydrazine, Monomethylhydrazine, Dimethylhydrazine and Binary Mixtures Containing These Compounds
Fluid Phase Behavior from Molecular Simulation: Hydrazine, Monomethylhydrazine, Dimethylhydrazine and Binary Mixtures Containing These Compounds Ekaterina Elts1, Thorsten Windmann1, Daniel Staak2, Jadran Vrabec1 ∗ 1 Lehrstuhl f¨ur Thermodynamik und Energietechnik, Universit¨at Paderborn, Warburger Straße 100, 33098 Paderborn, Germany 2 Lonza AG, Chemical Research and Development, CH-3930 Visp, Switzerland Keywords: Molecular modeling and simulation; vapor-liquid equilibrium; Henry’s law constant; Hy- drazine; Monomethylhydrazine; Dimethylhydrazine; Argon; Nitrogen; Carbon Monoxide; Ammonia; Water Abstract New molecular models for Hydrazine and its two most important methylized derivatives (Monomethyl- hydrazine and Dimethylhydrazine) are proposed to study the fluid phase behavior of these hazardous compounds. A parameterization of the classical molecular interaction models is carried out by using quan- tum chemical calculations and subsequent fitting to experimental vapor pressure and saturated liquid density data. To validate the molecular models, vapor-liquid equilibria for the pure hydrazines and binary hydrazine mixtures with Water and Ammonia are calculated and compared with the available experimen- tal data. In addition, the Henry’s law constant for the physical solubility of Argon, Nitrogen and Carbon Monoxide in liquid Hydrazine, Monomethylhydrazine and Dimethylhydrazine is computed. In general, the simulation results are in very good agreement with the experimental data. ∗ corresponding author, tel.: +49-5251/60-2421, fax: +49-5251/60-3522, email: [email protected] 1 1 Introduction On October 24, 1960, the greatest disaster in the history of rocketry, now also known as Nedelin disaster, occurred [1–3]. At that time, the Soviet newspapers published only a short communique informing that Marshall of Artillery Mitrofan Nedelin has died in an airplane crash. -
Ethane / Nitrous Oxide Mixtures As a Green Propellant to Substitute Hydrazine: Validation of Reaction Mechanism C
Ethane / Nitrous Oxide Mixtures as a Green Propellant to Substitute Hydrazine: Validation of Reaction Mechanism C. Naumann*, C. Janzer, U. Riedel German Aerospace Center (DLR), Institute of Combustion Technology Pfaffenwaldring 38-40, 70569 Stuttgart, Germany Abstract The combustion properties of propellants like ethane / nitrous oxide mixtures that have the potential to substitute hydrazine or hydrazine / dinitrogen tetroxide in chemical propulsion systems are investigated. In support of CFD- simulations of new rocket engines powered by green propellants ignition delay times of ethane / nitrous oxide mixtures diluted with nitrogen have been measured behind reflected shock waves at atmospheric and elevated pressures, at stoichiometric and fuel-rich conditions aimed for the validation of reaction mechanism. In addition, ignition delay time measurements of ethene / nitrous oxide mixtures and ethane / O2 / N2 - mixtures with an O2:N2 ratio of 1:2 as oxidant at the same level of dilution are shown for comparison. Finally, the ignition delay time predictions of a recently published reaction mechanism by Glarborg et al. are compared with the experimental results. Introduction waves at initial pressures of pnominal = 1, 4, and 16 bar. Hydrazine and hydrazine derivatives like The results are compared to ignition delay time monomethyl hydrazine (MMH) and unsymmetrical measurements of stoichiometric C2H4 / N2O mixtures dimethyl hydrazine (UDMH) are used for spacecraft (see [6], [7], [8]). Complementary, ignition delay times propulsion applications in various technological of the corresponding oxygen based reactive mixture contexts despite their drawback of being highly toxic. C2H6 / (1/3 O2 + 2/3 N2) have been measured, too. Today, hydrazine consumption for European space Thereafter, the predictions of a recently published activities is on the order of 2-5 tons per year.