Ucri, 100554 Preprint
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supporting Information For
Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Supporting Information for: 2- Quadruple-CO3 Bridged Octanuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behaviour Experimental Section Synthetic procedures All chemicals were of reagent grade and were used without any further purification. Synthesis of pyrazine-2-carbohydrazide The pyrazine-2-carboxylic acid methyl ester was prepared by a literature procedure described elsewhere. A mixture of pyrazine-2-carboxylic acid methyl ester (1.38 g, 10 mmol) and hydrazine hydrate (85%, 15 ml) in methanol (20 ml) was refluxed overnight, at a temperature somewhat below 80°C. The resulting pale-yellow solution set aside 12 hrs. During this period, a colorless product, i.e. pyrazine-2-carbohydrazide, precipitated from the reaction mixture as a crystalline solid (yield = 0.84 g, 61%). Synthesis of (E)-N'-(2-hyborxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide Pyrazine-2-carbohydrazide (2 mmol, 0.276 g) was suspended together with o-vanillin (2 mmol, 0.304 g) in methanol (20 ml), and the resulting mixture was stirred at the room temperature overnight. The pale yellow solid was collected by filtration (yield = 0.56 g, 83%). Elemental analysis (%) calcd for C13H12N4O3: C, 57.35, H, 4.44, N, 20.58: found C, 57.64, H, 4.59, N, 20.39. IR (KBr, cm-1): 3415(w), 3258(w), 1677(vs), 1610(s), 1579(m). 1530(s), 1464(s), 1363(m), 1255(vs), 1153(s), 1051(w), 1021(s), 986(w), 906(m), 938(w), 736(s), 596(m), 498(w). Synthesis of the complex 1 The solution of DyCl3⋅6H2O (56.5 mg, 0.15 mmol) and the H2L (40.5 mg, 0.15 mmol) in 15 ml CH3OH/CH2Cl2 (1:2 v/v) was stirred with triethylamine (0.4 mmol) for 6h. -
Atmospheric Pseudohalogen Chemistry
Atmospheric Pseudohalogen Chemistry David John Lary Accepted by: Atmospheric Chemistry and Physics Discussions Reference: Vol. 4, pp 5381-5405, 16-9-2004 Hydrogen cyanide is not usually considered in atmospheric chemical models. The paper presents three reasons why hydrogen cyanide is likely to be signiscant for atmospheric chemistry. Firstly, HCN is a product and marker of biomass burning. Secondly, it is also likely that lightning is producing HCN, and as HCN is sparingly soluble it could be a usell long-lived “smoking gun” marker of lightning activity. Thirdly, the chemical decomposition of HCN leads to the production of small amounts of the cyanide (0and NCO radicals. The NCO radical can be photolyzed in the visible portion of the spectrum yielding nitrogen atoms (N). The production of nitrogen atoms is significant as it leads to the titration of total nitrogen from the atmosphere via N+N->N2, where N2 is molecular nitrogen. , 1.. This manuscript was prepared for Atmos. Chem. Phys. (Discuss.) with version 7.0 of the egu L5TS class egu.cls. Date: September 14,2004 ACP-LOGO Atmospheric Pseudohalogen Chemistry D. J. 'Global Modelling and Assimilation Office, NASA Goddard Space Flight Center ([email protected]) 'GEST at the University of Maryland Baltimore County, MD, USA ([email protected]) 3Unilever Cambridge Centre, Department of Chemistry, University of Cambridge, England ([email protected]) Abstract. There are at least three reasons why hydrogen 1E-01 1 1E-010 1E-009 cyanide is likely to be significant for atmospheric chemistry. 10 The first is well known, HCN is a product and marker of biomass burning. -
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/Ceo2: Effect of Reaction Parameters on the Activity
nanomaterials Article Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity Davide Motta 1, Ilaria Barlocco 2 , Silvio Bellomi 2, Alberto Villa 2,* and Nikolaos Dimitratos 3,* 1 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK; [email protected] 2 Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; [email protected] (I.B.); [email protected] (S.B.) 3 Dipartimento di Chimica Industriale e dei Materiali, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy * Correspondence: [email protected] (A.V.); [email protected] (N.D.) Abstract: In the present work, an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen, which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques, i.e., X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study, modifying parameters such as temperature, the mass of the catalyst, stirring speed and concentration of base in order to find the optimal conditions of reaction, which allow performing the test in a kinetically limited regime. Citation: Motta, D.; Barlocco, I.; Bellomi, S.; Villa, A.; Dimitratos, N. Keywords: iridium; cerium oxide; hydrous hydrazine; hydrogen production Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity. -
Periodic Trends in the Main Group Elements
Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds. -
Final Program
1 General Information SCOPE OF THE CONFERENCE The 11th Joint MMM/Intermag Conference is sponsored jointly by the American Institute of Physics (PCI) and the Magnetics Society of the IEEE, in cooperation with The American Physical Society. Members of the inter- national scientific and engineering communities interested in recent devel- opments in fundamental and applied magnetism are invited to attend the Conference and contribute to its technical sessions. Sessions will include invited and contributed papers, oral and poster presentations and invited symposia. This Conference provides an outstanding opportunity for partici- pants to meet their colleagues and discuss new, advanced and controversial developments. WASHINGTON, DC The 2010 Joint Conference will be held in the nation’s capital. The city wel- comes 15 million visitors each year of which 1.2 million are international. There are more than 100 restaurants located in the downtown area alone, and the city has been called “one of the most exciting restaurant cities on the East Coast” by Travel & Leisure. To obtain an in-depth and current view of what to see and do while you are here, visit the official website at: http://www.washington.org. Here you will find information on how to trav- el to the Marriott Washington Wardman Park from any of the three local air- ports; you can check on the weather in mid-January, and can request a free Visitors Guide prior to making your trip. VISA REQUIREMENTS The US has updated its visa policies to increase security, so it may take you 3-6 months to apply for and receive your visa. -
Hydrogen Cyanide Product –Type 18 25 May 2012
Hydrogen cyanide Product –type 18 25 May 2012 Directive 98/8/EC concerning the placing biocidal products on the market Inclusion of active substances in Annex I or I A to Directive 98/8/EC Assessment Report Hydrogen cyanide Product–type 18 25 May 2012 Annex I – the Czech Republic 1 Hydrogen cyanide Product –type 18 25 May 2012 1 STATEMENT OF SUBJECT MATTER AND PURPOSE .................................................................4 1.1 Procedure Followed .....................................................................................................................4 1.2 Purpose of the assesment report ...................................................................................................6 1.3 Overall conclusion in the context of Directive 98/8/EC ..............................................................6 2 OVERALL SUMMARY AND CONCLUSION ..................................................................................7 2.1 Presenatation of the Active Substance ........................................................................................7 2.1.1 Identity, Physico-Chemical Properties & Methods of Analyssis .............................................7 2.1.2 Intended Uses and Effficacy ....................................................................................................8 2.1.3 Classification and labelling .....................................................................................................9 2.2 Summary of the Risk Assessment ..............................................................................................10 -
Water Splitting by Heterogeneous Catalysis
!"#$ #"%"" &' () * ( +# ,% - . ( (.( ( . %/ .0! 1 ( % 2 3 . 4 . 5 % . . % . . . . . . 3 % !# 3 ( 3 ( 3 ( 3 %/. . - % . (. 6 7 % ( 2!0! . (/ (3 . 7 % ( ( 3 % . 3 ( %/ . 8 9 3 8 % ( :;0 9 . <= 3 9 . % ( . ( 3 > % !"#$ ?@@ %% @ A B ?? ? ? #;C#C# ,8D$CD#$$D$":D! ,8D$CD#$$D$";"C ! " # $ (#" D# WATER SPLITTING BY HETEROGENEOUS CATALYSIS Henrik Svengren Water splitting by heterogeneous catalysis Henrik Svengren ©Henrik Svengren, Stockholm University 2017 ISBN print 978-91-7797-039-2 ISBN PDF 978-91-7797-040-8 Printed in Sweden by Universitetsservice US-AB, Stockholm 2017 Distributed by the Department of Materials and Environmental Chemistry To my beloved family Cover image + Heterogeneous catalysis of water oxidation according to 2H2O ĺ O2 + 4H on CoSbO4/CoSb2O6, investigated in Paper II. The figure is composed of SEM- and TEM images, structural drawings, reactant- and product molecules. i Examination Faculty opponent Docent Tomas Edvinsson Solid State Physics Department of Engineering Sciences Uppsala University, -
A Review of the Structural Architecture of Tellurium Oxycompounds
Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances. -
Dihydrazides - the Versatile Curing Agent for Solid Dispersion Systems
Dihydrazides - The Versatile Curing Agent for Solid Dispersion Systems Abe Goldstein A&C Catalysts, Inc Abstract This paper will introduce dihydrazides, a relatively obscure class of curing agents useful in virtually all thermoset resin systems. First described in 1958, by Wear, et al.(1) dihydrazides are useful curing agents for epoxy resins, chain extenders for polyurethanes, and excellent crosslinking agents for acrylics. In one-part epoxy systems, depending on the backbone chain of the chosen dihydrazide, Tg's over 150°C and pot life over 6 months as cure time of less than a minute can be seen. In acrylic emulsions, dihydrazides can be dissolved into the water phase and serve as an additional crosslinker, as the emulsion coalesces and cures. As a chain extender for poylurethanes, dihydrazides can be used to increase toughness and reduce yellowing. Introduction O O | | | | Dihydrazides are represented by the active group: H2NHNC(R) CNHNH2, where R is can be any polyvalent organic radical preferably derived from a carboxylic acid. Carboxylic acid esters are reacted with hydrazine hydrate in an alcohol solution using a catalyst and a water extraction step. The most common dihydrazides include adipic acid dihydrazide (ADH), derived from adipic acid, sebacic acid dihydrazide (SDH), valine dihydrazide (VDH), derived from the amino acid valine, and isophthalic dihydrazide (IDH). The aliphatic R group can be of any length. For example, when R group is just carbon, the resulting compound is carbodihydrazide (CDH), the fastest dihydrazide. Or R as long as C-18 has been reported as in icosanedioic acid dihydrazide (LDH). Some of the more common dihydrazides are represented in Figure 1. -
Hydrazine, Monomethylhydrazine, Dimethylhydrazine and Binary Mixtures Containing These Compounds
Fluid Phase Behavior from Molecular Simulation: Hydrazine, Monomethylhydrazine, Dimethylhydrazine and Binary Mixtures Containing These Compounds Ekaterina Elts1, Thorsten Windmann1, Daniel Staak2, Jadran Vrabec1 ∗ 1 Lehrstuhl f¨ur Thermodynamik und Energietechnik, Universit¨at Paderborn, Warburger Straße 100, 33098 Paderborn, Germany 2 Lonza AG, Chemical Research and Development, CH-3930 Visp, Switzerland Keywords: Molecular modeling and simulation; vapor-liquid equilibrium; Henry’s law constant; Hy- drazine; Monomethylhydrazine; Dimethylhydrazine; Argon; Nitrogen; Carbon Monoxide; Ammonia; Water Abstract New molecular models for Hydrazine and its two most important methylized derivatives (Monomethyl- hydrazine and Dimethylhydrazine) are proposed to study the fluid phase behavior of these hazardous compounds. A parameterization of the classical molecular interaction models is carried out by using quan- tum chemical calculations and subsequent fitting to experimental vapor pressure and saturated liquid density data. To validate the molecular models, vapor-liquid equilibria for the pure hydrazines and binary hydrazine mixtures with Water and Ammonia are calculated and compared with the available experimen- tal data. In addition, the Henry’s law constant for the physical solubility of Argon, Nitrogen and Carbon Monoxide in liquid Hydrazine, Monomethylhydrazine and Dimethylhydrazine is computed. In general, the simulation results are in very good agreement with the experimental data. ∗ corresponding author, tel.: +49-5251/60-2421, fax: +49-5251/60-3522, email: [email protected] 1 1 Introduction On October 24, 1960, the greatest disaster in the history of rocketry, now also known as Nedelin disaster, occurred [1–3]. At that time, the Soviet newspapers published only a short communique informing that Marshall of Artillery Mitrofan Nedelin has died in an airplane crash. -
Lactoperoxidase: Physico-Chemical Properties, Occurrence, Mechanism of Action and Applications
Downloaded from British Journal of Nutrition (2000), 84, Suppl. 1, S19±S25 S19 https://www.cambridge.org/core Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications Klaas D. Kussendrager* and A. C. M. van Hooijdonk . IP address: DMV-International, R&D Center, PO Box 13, 5460 BA Veghel, The Netherlands Lactoperoxidase (LP) is one of the most prominent enzymes in bovine milk and catalyses the 170.106.202.58 inactivation of a wide range of micro-organisms in the lactoperoxidase system (LP-s). LP- systems are also identified as natural antimicrobial systems in human secretions such as saliva, tear-fluid and milk and are found to be harmless to mammalian cells. The detailed molecular structure of LP is identified and the major products generated by the LP-s and their , on antimicrobial action have been elucidated for the greater part. In this paper several aspects of 27 Sep 2021 at 23:05:51 bovine LP and LP-s are discussed, including physico-chemical properties, occurrence in milk and colostrum and mechanisms of action. Since the introduction of industrial processes for the isolation of LP from milk and whey the interest in this enzyme has increased considerably and attention will be paid to potential and actual applications of LP-systems as biopreservatives in food and other products. , subject to the Cambridge Core terms of use, available at Lactoperoxidase: LP-system: Antimicrobial properties: Applications Introduction Physico-chemical properties Lactoperoxidase (EC 1.11.1.7) (LP) is a member of the A number of specific physico-chemical characteristics of peroxidase family, a group of natural enzymes, widely bovine lactoperoxidase are summarised in Table 1. -
Ammonium Thiocyanate
AMMONIUM THIOCYANATE PRODUCT IDENTIFICATION CAS NO. 1762-95-4 EINECS NO. 217-175-6 FORMULA NH 4SCN MOL WT. 76.12 H.S. CODE 2838.00 TOXICITY Oral Rat LD50: 750 mg/kg SYNONYMS Thiocyanic acid, ammonium salt; Amthio; ammonium sulfocanide; ammonium sulphocyanide; ammonium rhodanide; ammonium sulphocyanate; Ammonium Rhodonide; Amthio; Ammonium sulfocyanate; DERIVATION CLASSIFICATION PHYSICAL AND CHEMICAL PROPERTIES PHYSICAL STATE Colorless, deliquescent crystals MELTING POINT 150 C BOILING POINT SPECIFIC GRAVITY 1.31 SOLUBILITY IN WATER Soluble SOLVENT SOLUBILITY Soluble : acetone, alcohol, and ammonia pH 4.5-6.0 (5% sol) VAPOR DENSITY AUTOIGNITION NFPA RATINGS Health: 2 Flammability: 1 Reactivity: 1 REFRACTIVE INDEX FLASH POINT 190 C STABILITY Stable under ordinary conditions APPLICATIONS Cyanic acid (the isomer of fulminic acid) is an unstable (explosive), poisonous, volatile, clear liquid with the structure of H-O-C¡ÕN (the oxoacid formed from the pseudohalogen cyanide), which is readily converted to cyamelide and fulminic acid. There is another isomeric cyanic acid with the structure of H-N=C=O, called isocyanic acid. Cyanate group (and isocyanate group) can react with itself. Cyanuric acid (also called pyrolithic acid), white monoclinic crystal with the structure of [HOC(NCOH) 2N], is the trimer of cyanic acid. The trimer of isocyanic acid is called biuret. • Cyanic acid: H-N=C=O or H-O-C¡ÕN • Fulminic acid: (H-C=N-O) or H-C¡ÕN-O • Isocyanic acid: H-N=C=O • Cyanuric acid: HOC(NCOH) 2N • Biuret: (NH 2)CO) 2 NH Cyanic acid hydrolyses to ammonia and carbon dioxide in water. The salts and esters of cyanic acid are cyanates.