Registry File Basic Name Segment Dictionary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seco-Steroids C07C)
CPC - C07J - 2021.08 C07J STEROIDS (seco-steroids C07C) Definition statement This place covers: Compounds containing a cyclopenta[a]hydrophenanthrene skeleton (see below) or a ring structure derived therefrom: • by contraction or expansion of one ring by one or two atoms; • by contraction or expansion of two rings each by one atom; • by contraction of one ring by one atom and expansion of one ring by one atom; • by substitution of one or two carbon atoms of the cyclopenta[a]hydrophenanthrene skeleton, which are not shared by rings, by hetero atoms, in combination with the above defined contraction or expansion or not, or; • by condensation with carbocyclic or heterocyclic rings in combination with one or more of the foregoing alterations or not. Preparation of steroids including purification, separation, stabilisation or use of additives unless provided for elsewhere, as specified below. Treatment and modification of steroids provided that • the treatment is not provided for elsewhere and • the resultant product is a compound under the subclass definition. Relationships with other classification places In class C07, in the absence of an indication to the contrary, a compound is classified in the last appropriate place, i.e. in the last appropriate subclass. For example cyclopenta [a] hydrophenantrenes are classified in subclass C07J as steroids and not in subclasses C07C or C07D as carbocyclic or heterocyclic compounds. Subclass C07J is a function-oriented entry for the compounds themselves and does not cover the application or use of the compounds under the subclass definition. For classifying such information other entries in the IPC exist, for example: Subclass A01N: Preservation of bodies of humans or animals or plants or parts thereof; biocides, e.g. -
One-Pot Synthesis of Tetrasubstituted Imidazoles Catalyzed by Preyssler-Type Heteropoly Acid
ISSN: 0973-4945; CODEN ECJHAO E-Journal of Chemistry http://www.e-journals.net 2011, 8(2), 547-552 One-Pot Synthesis of Tetrasubstituted Imidazoles Catalyzed by Preyssler-Type Heteropoly Acid ALI JAVID §*, MAJID M. HERAVI #, F. F. BAMOHARRAM and MOHSEN NIKPOUR § §Department of Chemistry, School of Sciences Islamic Azad University, Ahvaz Branch, Ahvaz 6134968875, Iran #Department of Chemistry Azzahra University, Vanak, Tehran, Iran Department of Chemistry, School of Sciences Islamic Azad University, Mashhad Branch, Mashhad, Iran [email protected] Received 27 June 2010; Accepted 2 September 2010 Abstract: A simple one-pot four-component synthetic method was reported for the preparation of tetrasubstituted imidazole derivatives from benzil, aromatic aldehydes, primary amines and ammonium acetate in the presence of Preyssler-type heteropoly acid catalyst . This method was proved to be eco- benign, easy work-up, convenient, relatively short reaction times and the products were isolated with high yields. Keywords: Multi-component reactions (MCRs), One-pot synthesis, tetrasubstituted imidazoles, Preyssler catalyst, Heteropoly acid (HPA) Introduction Imidazole, at first, has been prepared by debus 1 in 1858. Over the century, imidazole derivatives have received significant attention due to their synthesis, reactions and biochemical properties. The imidazoles are one of the most important substructures found in a large number of natural products and pharmacologically active compounds. For example, histidine, histamine and biotin, an active component in several drug molecules 2, anti-allergic activity 3, hypnotic agent etomidate 4, proton pump inhibitor omeprazole 5 and the benzodiazepine antagonist flumazenil 6 are imidazole derivatives. Recent advances in green chemistry and organometallic catalysis has extended the application of imidazoles as ionic liquids 7 and N-heterocyclic carbenes 8. -
Anti-HIV Triterpenoid Components
Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(4):438-443 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 Anti-HIV triterpenoid components Benyong Han* and Zhenhua Peng Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P. R. China _____________________________________________________________________________________________ ABSTRACT AIDS is a pandemic immunosuppresive disease which results in life-threatening opportunistic infections and malignancies. Exploration of effective components with anti-HIV in native products is significant for prevention and therapy of AIDS. This review will focus on the mechanisms of action of anti-HIV triterpenes and the structural features that contribute to their anti-HIV activity and site of action and compare their concrete activity. Keywords: Triterpenes components, Anti-HIV, Activity _____________________________________________________________________________________________ INTRODUCTION HIV is the pathogenic of AIDS. In order to combat the debilitating disease acquired immune deficiency syndrome and the emergence of Anti-HIV, we search, research and develop the drug which can preventing and curing the disease. It is known that three enzyme play an important role in the development of HIV, such as nucleoside analogue HIV reverse transcriptase(RT), HIV integrase and HIV protease. However, the efficacy of these HIV enzyme inhibitors is limited by the development of drug resistance. The most potent HIV-1 protease inhibitor is components of polypeptide, however, the efficacy of components is low and expensive and the emergence of Anti- HIV is also their disadvantage.In the search of the drug of An-HIV, some triterpenoid components from nutural plant revealed good activity. TRITERPENES CHEMICAL CONSTITUTION The triterpenoid components distributing extensively in the nature which are consisted of thirty carbon atom are in the state of dissociation or indican, some combine with sugar are called triterpenoid saponins. -
Retention Indices for Frequently Reported Compounds of Plant Essential Oils
Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5. -
Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc. -
Author Index Volumes 201–244
Author Index Volumes 201–244 Author Index Vols. 26–50 see Vol. 50 Author Index Vols. 51–100 see Vol. 100 Author Index Vols. 101–150 see Vol. 150 Author Index Vols. 151–200 see Vol. 200 The volume numbers are printed in italics Achilefu S, Dorshow RB (2002) Dynamic and Continuous Monitoring of Renal and Hepatic Functions with Exogenous Markers. 222: 31–72 Albert M, see Dax K (2001) 215: 193–275 Albrecht M (2005) Supramolecular Templating in the Formation of Helicates. 248: 105–139 Ando T, Inomata S-I, Yamamoto M (2004) Lepidopteran Sex Pheromones. 239: 51–96 Angyal SJ (2001) The Lobry de Bruyn-Alberda van Ekenstein Transformation and Related Reactions. 215: 1–14 Antzutkin ON, see Ivanov AV (2005) 246: 271–337 Anupõld T, see Samoson A (2005) 246: 15–31 Armentrout PB (2003) Threshold Collision-Induced Dissociations for the Determination of Accurate Gas-Phase Binding Energies and Reaction Barriers. 225: 227–256 Astruc D, Blais J-C, Cloutet E, Djakovitch L, Rigaut S, Ruiz J, Sartor V,Valério C (2000) The First Organometallic Dendrimers: Design and Redox Functions. 210: 229–259 Augé J, see Lubineau A (1999) 206: 1–39 Baars MWPL, Meijer EW (2000) Host-Guest Chemistry of Dendritic Molecules. 210: 131– 182 Balazs G, Johnson BP, Scheer M (2003) Complexes with a Metal-Phosphorus Triple Bond. 232: 1–23 Balbo Block MA, Kaiser C, Khan A, Hecht S (2005) Discrete Organic Nanotubes Based on a Combination of Covalent and Non-Covalent Approaches. 245: 89–150 Balczewski P,see Mikoloajczyk M (2003) 223: 161–214 Ballauff M (2001) Structure of Dendrimers in Dilute Solution. -
540.14Pri.Pdf
Index Element names, parent hydride names and systematic names derived using any of the nomenclature systems described in this book are, with very few exceptions, not included explicitly in this index. If a name or term is referred to in several places in the book, the most informative references appear in bold type, and some of the less informative places are not cited in the index. Endings and suffixes are represented using a hyphen in the usual fashion, e.g. -01, and are indexed at the place where they would appear ignoring the hyphen. Names of compounds or groups not included in the index may be found in Tables P7 (p. 205), P9 (p. 232) and PIO (p. 234). ~, 3,87 acac, 93 *, 95 -acene, 66 \ +, 7,106 acetals, 160-161 - (minus), 7, 106 acetate, 45 - (en dash), 124-126 acetic acid, 45, 78 - (em dash), 41, 91, 107, 115-116, 188 acetic anhydride, 83 --+, 161,169-170 acetoacetic acid, 73 ct, 139, 159, 162, 164, 167-168 acetone, 78 ~, 159, 164, 167-168 acetonitrile, 79 y, 164 acetyl, III, 160, 163 11, 105, 110, 114-115, 117, 119-128, 185 acetyl chloride, 83, 183 K, 98,104-106,117,120,124-125, 185 acetylene, 78 A, 59, 130 acetylide, 41 11, 89-90,98, 104, 107, 113-116, 125-126, 146-147, acid anhydrides, see anhydrides 154, 185 acid halides, 75,83, 182-183 TC, 119 acid hydrogen, 16 cr, 119 acids ~, 167 amino acids, 25, 162-163 00, 139 carboxylic acids, 19,72-73,75--80, 165 fatty acids, 165 A sulfonic acids, 75 ct, 139,159,162,164,167-168 see also at single compounds A, 33-34 acrylic acid, 73, 78 A Guide to IUPAC Nomenclature of Organic actinide, 231 Compounds, 4, 36, 195 actinoids (vs. -
Flavonoids and Flavan-3-Ol from Aerial Part of Agrimonia Pilosa LEDEB
Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 4 Issue 10, October - 2017 Flavonoids and flavan-3-ol from aerial part of Agrimonia pilosa LEDEB. Hoang Le Tuan Anh Nguyen Van Linh Mientrung Institute for Scientific Research Military Institute of Traditional Medicine Vietnam Academy of Science and Technology 442 Kim Giang, Hoang Mai, Hanoi, Vietnam 321 Huynh Thuc Khang, Hue City [email protected] [email protected] Abstract—Using various chromatography mesh, Merck) or RP-18 resins (30-50 µm, Fujisilisa methods, three flavonoids, quercetin-3-O- Chemical Ltd.). Thin layer chromatography (TLC) was rutinoside (1), quercetin-3-O-β-D- performed using pre-coated silica gel 60 F254 (0.25 galactopyranoside (2), quercetin (3), and a flavan- mm, Merck) and RP-18 F254S plates (0.25 mm, Merck). 3-ol, catechin (4) were isolated from methanol Spots were visualized under UV radiation (254 and extract of Agrimonia pilosa. Their structures were 365 nm) and sprayed with aqueous solution of H2SO4 elucidated by 1D- and 2D-NMR spectroscopic (10%), heating with a heat gun. analyses and comparison with those reported in B. Plant materials the literature. Compound 2 was reported from A. pilosa for the first time. The aerial parts of A. pilosa were collected at Trung Khanh, Cao Bang province, Vietnam in August 2013. Keywords—Agrimonia pilosa; flavonoid; Its scientific name was identified by Dr. Pham Thanh quercetin-3-O-β-D-galactopyranoside; quercetin Huyen, Institute of Ecology and Biological Resources, derivatives. VAST. A voucher specimen (6695A) is deposited at I. INTRODUCTION the Herbarium of Military Institute of Traditional Medicine. -
RIFM Fragrance Ingredient Safety Assessment, 2-Isopropyl-4- Methylanisole, CAS Registry Number 31574-44-4
Food and Chemical Toxicology 110 (2017) S545eS551 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Short review RIFM fragrance ingredient safety assessment, 2-isopropyl-4- methylanisole, CAS Registry Number 31574-44-4 * A.M. Api a, , D. Belsito b, D. Botelho a, D. Browne a, M. Bruze c, G.A. Burton Jr. d, J. Buschmann e, M.L. Dagli f, M. Date a, W. Dekant g, C. Deodhar a, M. Francis a, A.D. Fryer h, K. Joshi a,S.LaCavaa, A. Lapczynski a, D.C. Liebler i,D.O’Brien a, R. Parakhia a,A.Patela, T.M. Penning j, G. Ritacco a, J. Romine a, D. Salvito a, T.W. Schultz k, I.G. Sipes l, Y. Thakkar a, E.H. Theophilus a, A.K. Tiethof a, Y. Tokura m, S. Tsang a, J. Wahler a a Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA b Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY 10032, USA c Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden d School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI 58109, USA e Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany f University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo CEP 05508-900, Brazil g University of Wuerzburg, Department of Toxicology, Versbacher Str. -
Intereferents in Condensed Tannins Quantification by the Vanillin Assay
INTEREFERENTS IN CONDENSED TANNINS QUANTIFICATION BY THE VANILLIN ASSAY IOANNA MAVRIKOU Dissertação para obtenção do Grau de Mestre em Vinifera EuroMaster – European Master of Sciences of Viticulture and Oenology Orientador: Professor Jorge Ricardo da Silva Júri: Presidente: Olga Laureano, Investigadora Coordenadora, UTL/ISA Vogais: - Antonio Morata, Professor, Universidad Politecnica de Madrid - Jorge Ricardo da Silva, Professor, UTL/ISA Lisboa, 2012 Acknowledgments First and foremost, I would like to thank the Vinifera EuroMaster consortium for giving me the opportunity to participate in the M.Sc. of Viticulture and Enology. Moreover, I would like to express my appreciation to the leading universities and the professors from all around the world for sharing their scientific knowledge and experiences with us and improving day by day the program through mobility. Furthermore, I would like to thank the ISA/UTL University of Lisbon and the personnel working in the laboratory of Enology for providing me with tools, help and a great working environment during the experimental period of this thesis. Special acknowledge to my Professor Jorge Ricardo Da Silva for tutoring me throughout my experiment, but also for the chance to think freely and go deeper to the field of phenols. Last but most important, I would like to extend my special thanks to my family and friends for being a true support and inspiration in every doubt and decision. 1 UTL/ISA University of Lisbon “Vinifera Euromaster” European Master of Science in Viticulture&Oenology Ioanna Mavrikou: Inteferents in condensed tannins quantification with vanillin assay MSc Thesis: 67 pages Key Words: Proanthocyanidins; Interference substances; Phenols; Vanillin assay Abstract Different methods have been established in order to perform accurately the quantification of the condensed tannins in various plant products and beverages. -
Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Yuri Alexeev Iowa State University
Chemistry Publications Chemistry 8-2003 Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Yuri Alexeev Iowa State University Mark S. Gordon Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs Part of the Chemistry Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/419. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Abstract Titanium dichloride was investigated as a potential catalyst for the bis-silylation reaction of ethylene with hexachlorodisilane. Ab initio electronic structure calculations at the restricted Hartree−Fock (RHF), density functional (DFT), second-order perturbation (MP2), and couple cluster (CCSD) levels of theory were used to find optimized structures, saddle points, and minimum-energy paths that connect them. The er action was found to have a net zero barrier at the DFT, MP2, and CCSD levels of theory. Dynamic correlation is found to be important for this reaction. Disciplines Chemistry Comments Reprinted (adapted) with permission from Organometallics 22 (2003): 4111, doi:10.1021/om0303350. Copyright 2014 American Chemical Society. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/chem_pubs/419 Organometallics 2003, 22, 4111-4117 4111 Theoretical Study of the Bis-Silylation Reaction of Ethylene Catalyzed by Titanium Dichloride Yuri Alexeev and Mark S. -
Transition Metal Complexes of Dicyanoacetylene
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1971 Transition Metal Complexes of Dicyanoacetylene: a Study of the Reaction Chemistry of Low Valence States of the Transition Metals, Platinum, Palladium, Nickel, Rhodium, and Iridium. Gregory Lloyd Mcclure Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mcclure, Gregory Lloyd, "Transition Metal Complexes of Dicyanoacetylene: a Study of the Reaction Chemistry of Low Valence States of the Transition Metals, Platinum, Palladium, Nickel, Rhodium, and Iridium." (1971). LSU Historical Dissertations and Theses. 2001. https://digitalcommons.lsu.edu/gradschool_disstheses/2001 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 71-29,382 McCLURE, Gregory Lloyd, 1993- TRANSITION METAL COMPLEXES OF DICYANOACETYLENE: A STUDY OF THE REACTION CHEMISTRY OF LOW VALENCE STATES OF THE TRANSITION METALS, PLATINUM, PALLADIUM, NICKEL, RHODIUM, AND IRIDIUM. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1971 C hem i stry, inorgan ic University Microfilms, A XEROX Company , Ann Arbor. Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED TRANSITION