antioxidants Article Flavonoids’ Effects on Caenorhabditis elegans’ Longevity, Fat Accumulation, Stress Resistance and Gene Modulation Involve mTOR, SKN-1 and DAF-16 María Alejandra Guerrero-Rubio † , Samanta Hernández-García , Francisco García-Carmona and Fernando Gandía-Herrero * Unidad Docente de Biología, Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain;
[email protected] (M.A.G.-R.);
[email protected] (S.H.-G.);
[email protected] (F.G.-C.) * Correspondence:
[email protected]; Tel.: +34-868-889592 † Current address: Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK;
[email protected]. Abstract: Flavonoids are potential nutraceutical compounds present in diary food. They are consid- ered health-promoting compounds and promising drugs for different diseases, such as neurological and inflammatory diseases, diabetes and cancer. Therefore, toxicological and mechanistic studies should be done to assert the biological effects and identify the molecular targets of these compounds. Citation: Guerrero-Rubio, M.A.; In this work we describe the effects of six structurally-related flavonoids—baicalein, chrysin, scutel- Hernández-García, S.; larein, 6-hydroxyflavone, 6,7-dihydroxyflavone and 7,8-dihydroxyflavone—on Caenorhabditis elegans’ García-Carmona, F.; Gandía-Herrero, F. Flavonoids’ Effects on lifespan and stress resistance. The results showed that chrysin, 6-hydroxyflavone and baicalein Caenorhabditis elegans’ Longevity, Fat prolonged C. elegans’ lifespan by up to 8.5%, 11.8% and 18.6%, respectively. The lifespan extensions Accumulation, Stress Resistance and caused by these flavonoids are dependent on different signaling pathways. The results suggested Gene Modulation Involve mTOR, that chrysin’s effects are dependent on the insulin signaling pathway via DAF-16/FOXO.