Hydrophobic chitosan derivatives for liposome modification O.O. Koloskova, U.A. Budanova, Yu.L. Sebyakin Moscow/Russia Moscow state university of fine chemical technology named after M.V. Lomonosov, prospekt Vernadskogo 86, 119571, Moscow
[email protected] Chitosan is an abundant natural polysaccharide with huge availability and potential for biomedical applications due to its biocompatibility, biodegradability, and bioactivity, but its utilization in pharmaceutical formulations has been greatly limited by its intractability. Owing to its semicrystalline nature and multiple H-bond forming groups, chitosan is insoluble in water (when pH > 6.2) and all common organic solvents. Therefore, many works are dedicated to synthesis of new chitosan derivatives to improve its properties for the applications. For example, chitosan is an attractive polymer for liposome modification to obtain a steric stabilized particles. In this work we synthesized a chitosan derivative with residue of palmitic acid as a hydrophobic anchor (which will penetrate into liposomal bilayer and fixate chitosan on the surface). The reaction was carried out in the presence of EDC in the mixture of acetonitrile and a low-concentration solution of acetic acid. The product was purified by washing with non-polar solvents. The structure of the target compound was confirmed by 1H- NMR spectroscopy. As a result, the derivative of chitosan have been synthesized and it can be used to create a steric barrier on the surface of liposomes. This work was supported by the Russian Foundation for Basic Research (grant № 13- 04-00841). Photocatalysis with Visible Light – a Sustainable Application for the Falling Film Microreactor Rehm, T. H.