3. Manuscripts

Total Page:16

File Type:pdf, Size:1020Kb

3. Manuscripts Novel Benzindoloazecines and Dibenzazecines - Synthesis and Affinities for the Dopamine Receptors Dissertation zur Erlangen des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) Vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Dina Robaa geboren am 17. Oktober 1978 in Alexandria 1. Gutachter: Prof. Dr. Jochen Lehmann, Jena 2. Gutachter: Prof. Dr. Gerhard Scriba, Jena 3. Gutachter: Prof. Dr. Peter Gmeiner, Erlangen Tag der öffentlichen Verteidigung: 5. Mai 2011 I Table of contents 1. Introduction ................................................................................................................... 1 1.1. Receptor structure ....................................................................................................... 3 1.2. Tissue distribution ....................................................................................................... 4 1.3. Signal transduction ..................................................................................................... 6 1.4. Functions of the dopamine receptors and their therapeutic implications ............... 7 1.4.1. Control of locomotion and application in movement disorders ..................................... 7 1.4.2. Role in reward and reward-seeking behavior and clinical implication in drug abuse and addictive disorders ............................................................................. 8 1.4.3. Role in psychosis and schizophrenia ......... ............................................................... 10 1.5. Dopamine receptor ligands ........................................................................................ 12 1.5.1. Phenylbenzazepines ..................................................................................................12 1.5.2. Tetrahydroisoquinoline derivatives ............................................................................. 14 1.5.2.1. 1-Benzyl/1-phenyl tetrahydroisoquinolines .............................................................. 14 1.5.2.2. Aporphines ..............................................................................................................15 1.5.2.3. Tetrahydroprotoberberines (THPBs) ....................................................................... 16 1.5.2.4. Dihydrexidine and dinapsoline derivatives ............................................................... 17 1.5.3. Indolobenzazecines and Dibenzazecines ................................................................... 18 2. Aim of this work ..........................................................................................................23 3. Manuscripts .................................................................................................................27 Paper 1 Dopamine Receptor Ligands. Part 18: Modification of the Structural Skeleton of Indolobenzazecine-Type Dopamine Receptor Antagonists .................................................. 28 Paper 2 Residues at the Indole-NH of LE300 Modulate Affinities and Selectivities for Dopamine Receptors ...........................................................................................................29 Paper 3 Molecular Combination of the Dopamine and Serotonin Scaffolds Yields Novel Antipsychotic Drug Candidates – Characterization by in vivo Experiments .......................... 30 Paper 4 Synthesis and Dopamine Receptor Affinities of Racemic and Enantiopure Indolo[3,2-f][3]benzazecine Derivatives ............................................................................... 31 Paper 5 A Novel Nonphenolic Dibenzazecine Derivative with Nanomolar Affinities for Dopamine Receptors ...........................................................................................................32 II Table of Contents 4. Unpublished results ...................................................................................................33 4.1. Trials to synthesize the [4,3-ef][2]benzazecine and indolo[4,3-de][2]- benzazonine derivatives 3 and 4 ................................................................................33 4.2. LE300 substituted at the methylene bridge ...............................................................34 4.2.1. Substitution of LE300 with an ethyl group at the methylene bridge .............................34 4.2.2. Trials to synthesize an LE300 derivative bearing a methoxy group at the methylene bridge .......................................................................................................35 4.2.3. Affinities for the dopamine receptors ..........................................................................36 4.3. 8-Substituted benzindoloazecines .............................................................................37 4.3.1. Racemized benzindoloazecines derived from D- and L-tryptophan ............................37 4.3.2. Enantiopure 8R- and 8S-methyl benzindoloazecine: Understanding the reason behind the discrepancy in their affinities ....................................................40 4.4. Substitution of the alicyclic N with longer and functionalized side chains ............44 4.5. Synthetic procedures, spectral and analytical data .................................................47 5. Discussion ....................................................................................................................51 5.1. Synthesis of the different quinolizine derivatives as important precursors for the target azecines .............................................................................53 5.2. Modulation of the annulation pattern of LE300 .........................................................55 5.3. Substitution of LE300 at different positions .............................................................57 5.3.1. N14-substituted LE300 derivatives .............................................................................57 5.3.2. LE300 bearing substituents between the aromatic rings.............................................58 5.3.3. LE300 substituted at position 8 ..................................................................................59 5.4. Methylenedioxydibenzazecine derivative ..................................................................62 5.5. Antipsychotic potential ...............................................................................................63 6. Conclusion ...................................................................................................................68 7. Zusammenfassung .....................................................................................................71 8. References ...................................................................................................................74 9. Appendix .....................................................................................................................82 List of abbreviations Curriculum vitae List of publications Selbstständigkeitserklärung Acknowledgement 1 1. Introduction It was in the late 1950’s after the discovery of dopamine’s wide distribution in the brain1, that dopamine’s function as a neurotransmitter and not as previously believed a mere precursor in the biosynthesis of epinephrine and norepinephrine was first recognized. Interest in dopamine grew after subsequent findings of its role in the pathogenesis of Parkinson’s disease2 and schizophrenia3. Today, dopamine is known as a major neurotransmitter in the CNS, where it controls a myriad of physiological functions, including locomotion, behavior, emotion, cognition, learning and motivation in addition to endocrine secretion. Dysfunctions of the dopaminergic system have been linked with several neurological and psychiatric disorders in addition to Parkinson’s disease and schizophrenia. These include depression4, Tourette’s syndrome5, attention-deficit hyperactivity disorder (ADHD)6 as well as drug and alcohol dependence7. Modulation of the dopamine transmission by targeting either the dopamine receptors or its transporter is hence a main strategy or central focus of research in the treatment of these disorders. The search for new ligands acting at the different dopamine receptors is for several reasons still of major importance. The lack of subtype selective ligands, especially those which are able to differentiate between D1 and D5 receptors, has been a major impediment in the way of clarifying the physiological role of the individual receptors. Most of the studies concerning the functions of the dopamine receptors have been carried out using genetically modified mice. Although valuable information has been obtained, the inconsistency of the results and the limitations of this strategy have proven that subtype selective ligands are indispensible as pharmacological tools to study both the physiological role and the possible clinical implication of the different dopamine receptor subtypes. Subtype selective ligands would also be of major value in exploring the binding site of the dopamine receptors. They can help determine the structural, spatial and stereochemical features necessary for distinguishing between the different receptor subtypes. This will in turn help get further insights into the binding site of the receptor subtypes. Dopamine receptor ligands have long been used in the therapy of neurological diseases, in particular of Parkinson’s disease (agonists) and schizophrenia (antagonists). Despite the availability of numerous dopamine antagonists, used in the therapy of schizophrenia,
Recommended publications
  • Author Index Volumes 201–244
    Author Index Volumes 201–244 Author Index Vols. 26–50 see Vol. 50 Author Index Vols. 51–100 see Vol. 100 Author Index Vols. 101–150 see Vol. 150 Author Index Vols. 151–200 see Vol. 200 The volume numbers are printed in italics Achilefu S, Dorshow RB (2002) Dynamic and Continuous Monitoring of Renal and Hepatic Functions with Exogenous Markers. 222: 31–72 Albert M, see Dax K (2001) 215: 193–275 Albrecht M (2005) Supramolecular Templating in the Formation of Helicates. 248: 105–139 Ando T, Inomata S-I, Yamamoto M (2004) Lepidopteran Sex Pheromones. 239: 51–96 Angyal SJ (2001) The Lobry de Bruyn-Alberda van Ekenstein Transformation and Related Reactions. 215: 1–14 Antzutkin ON, see Ivanov AV (2005) 246: 271–337 Anupõld T, see Samoson A (2005) 246: 15–31 Armentrout PB (2003) Threshold Collision-Induced Dissociations for the Determination of Accurate Gas-Phase Binding Energies and Reaction Barriers. 225: 227–256 Astruc D, Blais J-C, Cloutet E, Djakovitch L, Rigaut S, Ruiz J, Sartor V,Valério C (2000) The First Organometallic Dendrimers: Design and Redox Functions. 210: 229–259 Augé J, see Lubineau A (1999) 206: 1–39 Baars MWPL, Meijer EW (2000) Host-Guest Chemistry of Dendritic Molecules. 210: 131– 182 Balazs G, Johnson BP, Scheer M (2003) Complexes with a Metal-Phosphorus Triple Bond. 232: 1–23 Balbo Block MA, Kaiser C, Khan A, Hecht S (2005) Discrete Organic Nanotubes Based on a Combination of Covalent and Non-Covalent Approaches. 245: 89–150 Balczewski P,see Mikoloajczyk M (2003) 223: 161–214 Ballauff M (2001) Structure of Dendrimers in Dilute Solution.
    [Show full text]
  • Serotonin Functioning and Adolescents' Alcohol
    Development and Psychopathology, 2017, page 1 of 21 # Cambridge University Press 2017 doi:10.1017/S095457941700058X Serotonin functioning and adolescents’ alcohol use: A genetically informed study examining mechanisms of risk FRANCES L. WANG,a LAURIE CHASSIN,a JOHN E. BATES,b DANIELLE DICK,c JENNIFER E. LANSFORD,d e d GREGORY S. PETTIT, AND KENNETH A. DODGE aArizona State University; bIndiana University Bloomington; cVirginia Commonwealth University; dDuke University; and eAuburn University Abstract The current study used data from two longitudinal samples to test whether self-regulation, depressive symptoms, and aggression/antisociality were mediators in the relation between a polygenic score indexing serotonin (5-HT) functioning and alcohol use in adolescence. The results from an independent genome-wide association study of 5-hydroxyindoleacetic acid in the cerebrospinal fluid were used to create 5-HT polygenic risk scores. Adolescents and/or parents reported on adolescents’ self-regulation (Time 1), depressive symptoms (Time 2), aggression/antisociality (Time 2), and alcohol use (Time 3). The results showed that 5-HT polygenic risk did not predict self-regulation. However, adolescents with higher levels of 5-HT polygenic risk showed greater depression and aggression/antisociality. Adolescents’ aggression/antisociality mediated the relation between 5-HT polygenic risk and later alcohol use. Deficits in self- regulation also predicted depression and aggression/antisociality, and indirectly predicted alcohol use through aggression/antisociality. Pathways to alcohol use were especially salient for males from families with low parental education in one of the two samples. The results provide insights into the longitudinal mechanisms underlying the relation between 5-HT functioning and alcohol use (i.e., earlier aggression/antisociality).
    [Show full text]
  • Enantioenriched Positive Allosteric Modulators Display Distinct Pharmacology at the Dopamine D1 Receptor
    molecules Article Enantioenriched Positive Allosteric Modulators Display Distinct Pharmacology at the Dopamine D1 Receptor Tim J. Fyfe 1, Peter J. Scammells 1, J. Robert Lane 2,3,* and Ben Capuano 1,* 1 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; tim.fyfe@griffithhack.com (T.J.F.); [email protected] (P.J.S.) 2 Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia 3 School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK * Correspondence: [email protected] (J.R.L.); [email protected] (B.C.) Abstract: (1) Background: Two first-in-class racemic dopamine D1 receptor (D1R) positive allosteric modulator (PAM) chemotypes (1 and 2) were identified from a high-throughput screen. In particular, due to its selectivity for the D1R and reported lack of intrinsic activity, compound 2 shows promise as a starting point toward the development of small molecule allosteric modulators to ameliorate the cognitive deficits associated with some neuropsychiatric disease states; (2) Methods: Herein, we describe the enantioenrichment of optical isomers of 2 using chiral auxiliaries derived from (R)- and (S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (D- and L-pantolactone, respectively); (3) Results: We confirm both the racemate and enantiomers of 2 are active and selective for the D1R, but that the respective stereoisomers show a significant difference in their affinity and magnitude of positive allosteric cooperativity with dopamine; (4) Conclusions: These data warrant further investigation Citation: Fyfe, T.J.; Scammells, P.J.; of asymmetric syntheses of optically pure analogues of 2 for the development of D1R PAMs with Lane, J.R.; Capuano, B.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Activation of 5-HT2C (But Not 5-HT1A) Receptors in the Amygdala Enhances Fear-Induced Antinociception: Blockade with Local 5-HT2C Antagonist Or Systemic fluoxetine
    Neuropharmacology 135 (2018) 376e385 Contents lists available at ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm Activation of 5-HT2C (but not 5-HT1A) receptors in the amygdala enhances fear-induced antinociception: Blockade with local 5-HT2C antagonist or systemic fluoxetine Lígia Renata Rodrigues Tavares a, b, Daniela Baptista-de-Souza a, c, * Azair Canto-de-Souza a, b, c, d, a Psychobiology Group, Department of Psychology/CECH- Federal University of Sao~ Carlos-UFSCar, Sao~ Carlos, Sao~ Paulo, 13565-905, Brazil b Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Sao~ Carlos, Sao~ Paulo, 13565-905, Brazil c Neuroscience and Behavioral Institute-IneC, Ribeirao~ Preto, Sao~ Paulo, 14040-901, Brazil d Program in Psychology UFSCar, Sao~ Carlos, Sao~ Paulo, 13565-905, Brazil article info abstract Article history: It is well-known that the exposure of rodents to threatening environments [e.g., the open arm of the Received 17 August 2017 elevated-plus maze (EPM)] elicits pain inhibition. Systemic and/or intracerebral [e.g., periaqueductal gray Received in revised form matter, amygdala) injections of antiaversive drugs [e.g., serotonin (5-HT) ligands, selective serotonin 5 March 2018 reuptake inhibitors (SSRIs)] have been used to change EPM-open arm confinement induced anti- Accepted 6 March 2018 nociception (OAA). Here, we investigated (i) the role of the 5-HT and 5-HT receptors located in the Available online 13 March 2018 1A 2C amygdaloid complex on OAA as well as (ii) the effects of systemic pretreatment with fluoxetine (an SSRI) on the effects of intra-amygdala injections of 8-OH-DPAT (a 5-HT1A agonist) or MK-212 (a 5-HT2C agonist) Keywords: fi Amygdala on nociception in mice con ned to the open arm or enclosed arm of the EPM.
    [Show full text]
  • Paradoxical Actions of the Serotonin Precursor 5-Hydroxytryptophan on the Activity of Identified Serotonergic Neurons in a Simple Motor Circuit
    The Journal of Neuroscience, February 15, 2000, 20(4):1622–1634 Paradoxical Actions of the Serotonin Precursor 5-hydroxytryptophan on the Activity of Identified Serotonergic Neurons in a Simple Motor Circuit David J. Fickbohm and Paul S. Katz Department of Biology, Georgia State University, Atlanta, Georgia 30302 Neurotransmitter synthesis is regulated by a variety of factors, cated an increase in a putative 5-HT electrochemical signal yet the effect of altering transmitter content on the operation of during swim CPG activation. Paradoxically, the spiking activity neuronal circuits has been relatively unexplored. We used elec- of the serotonergic neurons decreased to a single burst at the trophysiological, electrochemical, and immunohistochemical onset of the rhythmic motor program, whereas the overall techniques to investigate the effects of augmenting the seroto- duration of the episode remained about the same. 5-HTP treat- nin (5-HT) content of identified serotonergic neurons embed- ment gradually reduced the rhythmicity of the CPG output. ded in a simple motor circuit. The dorsal swim interneurons Thus, more serotonin did not result in a more robust swim (DSIs) are serotonergic neurons intrinsic to the central pattern motor program, suggesting that serotonin synthesis must be generator (CPG) for swimming in the mollusc Tritonia diom- kept within certain limits for the circuit to function correctly and edea. As expected, treatment with the serotonin precursor indicating that altering neurotransmitter synthesis can have 5-hydroxytryptophan (5-HTP) increased the intensity of seroto- serious consequences for the output of neural networks. nin immunolabeling and enhanced the potency of synaptic and Key words: intrinsic neuromodulation; central pattern gener- modulatory actions elicited by the DSIs.
    [Show full text]
  • (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact
    pharmaceuticals Review Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact Andreia Machado Brito-da-Costa 1 , Diana Dias-da-Silva 1,2,* , Nelson G. M. Gomes 1,3 , Ricardo Jorge Dinis-Oliveira 1,2,4,* and Áurea Madureira-Carvalho 1,3 1 Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; [email protected] (A.M.B.-d.-C.); ngomes@ff.up.pt (N.G.M.G.); [email protected] (Á.M.-C.) 2 UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 3 LAQV-REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 4 Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal * Correspondence: [email protected] (D.D.-d.-S.); [email protected] (R.J.D.-O.); Tel.: +351-224-157-216 (R.J.D.-O.) Received: 21 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: Ayahuasca is a hallucinogenic botanical beverage originally used by indigenous Amazonian tribes in religious ceremonies and therapeutic practices. While ethnobotanical surveys still indicate its spiritual and medicinal uses, consumption of ayahuasca has been progressively related with a recreational purpose, particularly in Western societies. The ayahuasca aqueous concoction is typically prepared from the leaves of the N,N-dimethyltryptamine (DMT)-containing Psychotria viridis, and the stem and bark of Banisteriopsis caapi, the plant source of harmala alkaloids.
    [Show full text]
  • A Serotonin Receptor with a Possible Role in Joint Diseases
    Anders Kling 5-HT2 A – a serotonin receptor with a possible role in joint diseases role with a possible receptor – a serotonin 5-HT2A – a serotonin receptor with a possible role in joint diseases Anders Kling Umeå University 2013 Umeå University Department of Pharmacology and Clinical Neuroscience New Serie 1547 Department of Pharmacology and Clinical Neurosciences Umeå University ISSN: 0346-6612 Umeå University, Sweden 2013 SE-901 87 Umeå, Sweden ISBN 978-91-7459-549-9 5-HT2A – a serotonin receptor with a possible role in joint diseases Anders Kling Institutionen för farmakologi och klinisk neurovetenskap, Klinisk farmakologi/ Department of Pharmacology and Clinical Neuroscience, Clinical Pharmacology Umeå universitet/ Umeå University Umeå 2013 Responsible publisher under swedish law: the Dean of the Medical Faculty This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7459-549-9 ISSN: 0346-6612 New series No: 1547 Elektronisk version tillgänglig på http://umu.diva-portal.org/ Tryck/Printed by: Print och Media, Umeå universitet Umeå, Sweden 2013 Innehåll/Table of Contents Innehåll/Table of Contents i Abstract iv Abbreviations vi List of studies viii Populärvetenskaplig sammanfattning ix 5-HT2A – en serotoninreceptor med möjlig betydelse för ledsjukdomar ix Introduction 1 The serotonin system 1 Serotonin 1 Serotonin receptors 2 The serotonin system and platelets 2 Serotonin receptor 5-HT2A 3 Localisation/expression of 5-HT2A receptors 3 Functions of the 5-HT2A receptor 4 Regulation of the 5-HT2A receptor
    [Show full text]
  • Tryptophan and 5-Hydroxytryptophan for Depression (Review)
    Cochrane Database of Systematic Reviews Tryptophan and 5-Hydroxytryptophan for depression (Review) Shaw KA, Turner J, Del Mar C Shaw KA, Turner J, Del Mar C. Tryptophan and 5-Hydroxytryptophan for depression. Cochrane Database of Systematic Reviews 2002, Issue 1. Art. No.: CD003198. DOI: 10.1002/14651858.CD003198. www.cochranelibrary.com Tryptophan and 5-Hydroxytryptophan for depression (Review) Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 3 METHODS ...................................... 3 RESULTS....................................... 4 DISCUSSION ..................................... 4 AUTHORS’CONCLUSIONS . 5 ACKNOWLEDGEMENTS . 5 REFERENCES ..................................... 6 CHARACTERISTICSOFSTUDIES . 10 DATAANDANALYSES. 15 Analysis 1.1. Comparison 1 L-Tryptophan and 5-HTP versus placebo for the treatment of depression, Outcome 1 Numbers ofresponders................................... 15 Analysis 2.1. Comparison 2 Side-effects of L-Tryptophan and 5-HTP versus placebo, Outcome 1 Numbers with side- effects. .................................... 16 FEEDBACK...................................... 16 WHAT’SNEW..................................... 16 HISTORY....................................... 17 CONTRIBUTIONSOFAUTHORS . 17 DECLARATIONSOFINTEREST . 17 SOURCESOFSUPPORT
    [Show full text]
  • Treating Smoking Dependence in Depressed Alcoholics
    Treating Smoking Dependence in Depressed Alcoholics Nassima Ait-Daoud, M.D.; Wendy J. Lynch, Ph.D.; J. Kim Penberthy, Ph.D.; Alison B. Breland, Ph.D.; Gabrielle R. Marzani-Nissen, M.D.; and Bankole A. Johnson, D.Sc., M.D., Ph.D. Alcoholism and nicotine dependence share many neurobiological underpinnings; the presence of one drug can cause a person to crave the other. Depressive illness can complicate comorbid alcohol and nicotine dependence by exacerbating the negative affect encountered during attempts to abstain from one or both drugs. Given the morbidity and mortality associated with cigarette smoking, it is imperative to identify treatments to promote smoking cessation and address comorbid psychiatric conditions contemporaneously. Pharmacotherapeutic options demonstrating varying degrees of efficacy and promise in preclinical and clinical studies include nicotine replacement therapy (NRT), selective serotonin reuptake inhibitors (SSRIs), bupropion, varenicline, tricyclic antidepressants, and bupropion plus NRT. Topiramate has shown potential for promoting smoking cessation in alcoholics, although its safety in depressed patients has not been fully explored. The efficacy of medications for treating nicotine dependence is generally enhanced by the inclusion of behavioral interventions such as cognitive behavioral therapy. When group cohesion and social support are stressed, success rates increase among depressed smokers undergoing smoking cessation treatment. Additional treatment strategies targeting dually dependent individuals with
    [Show full text]
  • L‐Tryptophan As the Origin of Psilocybe Natural Products
    Minireviews ChemPlusChem doi.org/10.1002/cplu.202000581 1 2 3 Taking Different Roads: l-Tryptophan as the Origin of 4 5 Psilocybe Natural Products 6 [a] [b] [b] [a] 7 Claudius Lenz, Alexander Sherwood, Robert Kargbo, and Dirk Hoffmeister* 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ChemPlusChem 2021, 86, 28–35 28 © 2020 The Authors. ChemPlusChem published by Wiley-VCH GmbH Wiley VCH Mittwoch, 30.12.2020 2101 / 181786 [S. 28/35] 1 Minireviews ChemPlusChem doi.org/10.1002/cplu.202000581 1 Psychotropic fungi of the genus Psilocybe, colloquially referred highlighted. Psilocybin and its congeners, the heterogeneous 2 to as „magic mushrooms”, are best known for their l- blue-colored psilocyl oligomers, alongside β-carbolines and 3 tryptophan-derived major natural product, psilocybin. Yet, N,N-dimethyl-l-tryptophan, are presented as well as current 4 recent research has revealed a more diverse secondary knowledge on their biosynthesis is provided. The multidiscipli- 5 metabolism that originates from this amino acid. In this nary character of natural product research is demonstrated, and 6 minireview, the focus is laid on l-tryptophan and the various pharmacological, medicinal, ecological, biochemical, and evolu- 7 Psilocybe natural products and their metabolic routes are tionary aspects are included. 8 9 1. Introduction In this minireview, we focus on the biosynthetic routes of L- 10 tryptophan-derived natural products in Psilocybe mushrooms.
    [Show full text]
  • Serotonin Autoreceptors on Dorsal Raphe Neurons: Structure-Activity Relationships of Tryptamine Analogs’
    0270.6474/81/0110-1148$o2.oo/0 The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 1, No. 10, pp. 1148-1154 Printed in U.S.A. October 1981 SEROTONIN AUTORECEPTORS ON DORSAL RAPHE NEURONS: STRUCTURE-ACTIVITY RELATIONSHIPS OF TRYPTAMINE ANALOGS’ MICHAEL A. ROGAWSKI’ AND GEORGE K. AGHAJANIAN Departments of Pharmacology and Psychiatry, Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut 06510 Abstract A series of indole-ethylamines were tested for their ability to suppress the spontaneous firing of single dorsal raphe serotonergic neurons in the rat. The compounds were all derivatives of either tryptamine or N,N-dimethyltryptamine possessing hydroxy or methoxy substituents on the benzene ring portion of the indole nucleus. Their activity was assessed using quantitative microiontophoresis or following systemic (intravenous) administration. The serotonin autoreceptor or so-called “S2 receptor” mediating the inhibition of raphe serotonergic neurons was found to exhibit a high degree of structural specificity among the closely related tryptamine analogs. The following structure- activity rules were demonstrated: (1) for either hydroxy or methoxy derivatives, the relative favorability of the ring positions conforms to the series 5 >> 4 > 6; (2) methoxy derivatives are more sensitive to a shift of the ring substituent from the 5- to the 4- or 6-positions than are hydroxy compounds; and (3) activity is enhanced by N,N-dimethylation. Furthermore, addition of a methyl group at the 7-position of 5-methoxy-N,N-dimethyltryptamine markedly reduces the activity of this potent agonist. Of the radioligands which label brain serotonin receptors, the pharmacological characteristics of D-[“HIlysergic acid diethylamide binding best correspond to those displayed by the SZ receptor as determined in the present physiological analysis, although sufficient data are not yet available to make a complete comparison.
    [Show full text]