Everlyne Hayo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Icipe Quarterly E-Bulletin, Volume 9, Issue No. 2, 2019
Volume 10, Issue No. 2, 2019 FROM THE CHAIR, icipe THOUGHT LEADERSHIP COLUMN 2 GOVERNING COUNCIL BY THE DIRECTOR GENERAL 3 Re-thinking donor funding strategies Dr Lukas Bertschinger, Dr Segenet Kelemu Chair, icipe Governing Council Director General, icipe Donor: THRiVE-2 Career Development Award Donor: National High Magnetic Field Laboratory user proposal, INSTITUTIONAL NEWS University of Florida, USA Donor: Global Challenges Research Fund seed grant/ UniversityRECENTLY of Aberystwyth, FUNDED UK Donor: 5 Wellcome6 Trust - International Master’s Fellowship Donor: Expanding Excellence in England (E3) Fund/ Natural Resources Institute, University of Greenwich, UK Donor: Mozilla Foundation Donor: THRiVE Research Enrichment for Community and Public Engagement (RECPE) Award Donor: MasterCard Foundation Donor: Lundin Foundation and Africa Oil Ethiopia. Donor: African Academy of Sciences in partnership with Wellcome and Department for NEWSMAKERS International Development (DFID) Donor: European Commission through Kenya Agricultural and Livestock Research Organization (KALRO) Donor: THRiVE Research Enrichment for Community and Public Engagement (RECPE) Award Donor: Food and Agriculture Organization of the United Nations (FAO) Donor: USDA-Agricultural Research Service 9 RCU-RSIF 10 7 8 RESEARCH HIGHLIGHTS BIOINNOVATE AFRICA RECENTLY PUBLISHED 13 FROM OUR PARTNERS 11 CAPACITY BUILDING AND INSTITUTIONAL DEVELOPMENT In 2020, icipe will celebrate its Golden Jubilee, a major milestone for 15 SCENE 17 icipe an institution that was founded on audacious hope: “Get the very best people and then if you have more money, put buildings and AT icipe SCENE equipment around them.” As we launch the countdown to our 50th FROM IN anniversary, we are conscious of the numerous elements that have enabled icipe to flourish; to become a source of pride for Africa – a regionally and globally acclaimed centre of scientific excellence. -
Chapter 15. Central and Eastern Africa: Overview
Chapter 15 Chapter 15 CENTRAL AND EASTERN AFRICA: OVERVIEW The region as treated here is comprised mainly of Angola, Cameroon, Central African Republic, Congo (Brazzaville), Congo (Kinshasa) (formerly Zaire), Kenya, Malawi, Tanzania, Uganda, and Zambia. The wide variety of insects eaten includes at least 163 species, 121 genera, 34 families and 10 orders. Of this group the specific identity is known for 128 species, only the generic identity for another 21, only the family identity of another 12 and only the order identity of one. Gomez et al (1961) estimated that insects furnished 10% of the animal proteins produced annually in Congo (Kinshasa). Yet, in this region, as in others, insect use has been greatly under-reported and under-studied. Until recently, for example, the specific identity was known for fewer than twenty species of insects used in Congo (Kinshasa), but, in a careful study confined only to caterpillars and only to the southern part of the country, Malaisse and Parent (1980) distinguished 35 species of caterpillars used as food. The extent of insect use throughout the region is probably similar to that in Congo (Kinshasa) and Zambia, the best-studied countries. Research is needed. Caterpillars and termites are the most widely marketed insects in the region, but many others are also important from the food standpoint, nutritionally, economically or ecologically. As stated by this author (DeFoliart 1989): "One can't help but wonder what the ecological and nutritional maps of Africa might look like today if more effort had been directed toward developing some of these caterpillar, termite, and other food insect resources." The inclusion of food insects in the Africa-wide Exhibition on Indigenous Food Technologies held in Nairobi, Kenya, in 1995 is indicative of the resurgence of interest in this resource by the scientific community of the continent. -
Katydid (Orthoptera: Tettigoniidae) Bio-Ecology in Western Cape Vineyards
Katydid (Orthoptera: Tettigoniidae) bio-ecology in Western Cape vineyards by Marcé Doubell Thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Sciences at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr P. Addison Co-supervisors: Dr C. S. Bazelet and Prof J. S. Terblanche December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2017 Copyright © 2017 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Many orthopterans are associated with large scale destruction of crops, rangeland and pastures. Plangia graminea (Serville) (Orthoptera: Tettigoniidae) is considered a minor sporadic pest in vineyards of the Western Cape Province, South Africa, and was the focus of this study. In the past few seasons (since 2012) P. graminea appeared to have caused a substantial amount of damage leading to great concern among the wine farmers of the Western Cape Province. Very little was known about the biology and ecology of this species, and no monitoring method was available for this pest. The overall aim of the present study was, therefore, to investigate the biology and ecology of P. graminea in vineyards of the Western Cape to contribute knowledge towards the formulation of a sustainable integrated pest management program, as well as to establish an appropriate monitoring system. -
Os Nomes Galegos Dos Insectos 2020 2ª Ed
Os nomes galegos dos insectos 2020 2ª ed. Citación recomendada / Recommended citation: A Chave (20202): Os nomes galegos dos insectos. Xinzo de Limia (Ourense): A Chave. https://www.achave.ga /wp!content/up oads/achave_osnomesga egosdos"insectos"2020.pd# Fotografía: abella (Apis mellifera ). Autor: Jordi Bas. $sta o%ra est& su'eita a unha licenza Creative Commons de uso a%erto( con reco)ecemento da autor*a e sen o%ra derivada nin usos comerciais. +esumo da licenza: https://creativecommons.org/ icences/%,!nc-nd/-.0/deed.g . 1 Notas introdutorias O que cont n este documento Na primeira edición deste recurso léxico (2018) fornecéronse denominacións para as especies máis coñecidas de insectos galegos (e) ou europeos, e tamén para algúns insectos exóticos (mostrados en ám itos divulgativos polo seu interese iolóxico, agr"cola, sil!"cola, médico ou industrial, ou por seren moi comúns noutras áreas xeográficas)# Nesta segunda edición (2020) incorpórase o logo da $%a!e ao deseño do documento, corr"xese algunha gralla, reescr" ense as notas introdutorias e engádense algunhas especies e algún nome galego máis# &n total, ac%éganse nomes galegos para 89( especies de insectos# No planeta téñense descrito aproximadamente un millón de especies, e moitas están a"nda por descubrir# Na )en"nsula * érica %a itan preto de +0#000 insectos diferentes# Os nomes das ol oretas non se inclúen neste recurso léxico da $%a!e, foron o xecto doutro tra allo e preséntanse noutro documento da $%a!e dedicado exclusivamente ás ol oretas, a!ela"ñas e trazas . Os nomes galegos -
Aquatic Insects and Their Potential to Contribute to the Diet of the Globally Expanding Human Population
insects Review Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population D. Dudley Williams 1,* and Siân S. Williams 2 1 Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada 2 The Wildlife Trust, The Manor House, Broad Street, Great Cambourne, Cambridge CB23 6DH, UK; [email protected] * Correspondence: [email protected] Academic Editors: Kerry Wilkinson and Heather Bray Received: 28 April 2017; Accepted: 19 July 2017; Published: 21 July 2017 Abstract: Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this? Keywords: aquatic insects; entomophagy; human diet; animal feed; life histories; environmental requirements 1. Introduction Entomophagy (from the Greek ‘entoma’, meaning ‘insects’ and ‘phagein’, meaning ‘to eat’) is a trait that we Homo sapiens have inherited from our early hominid ancestors. -
Possibilities of the Development of Edible Insect-Based Foods in Europe
foods Review Possibilities of the Development of Edible Insect-Based Foods in Europe Magdalena Skotnicka 1,* , Kaja Karwowska 1, Filip Kłobukowski 1, Aleksandra Borkowska 1 and Magdalena Pieszko 2 1 Departament of Commodity Science, Faculty of Health Sciences, Medical University of Gda´nsk, 80-210 Gda´nsk,Poland; [email protected] (K.K.); [email protected] (F.K.); [email protected] (A.B.) 2 Departament of Clinical Nutrition and Dietetics, Faculty of Health Sciences, Medical University of Gda´nsk, 80-210 Gda´nsk,Poland; [email protected] * Correspondence: [email protected] Abstract: All over the world, a large proportion of the population consume insects as part of their diet. In Western countries, however, the consumption of insects is perceived as a negative phenomenon. The consumption of insects worldwide can be considered in two ways: on the one hand, as a source of protein in countries affected by hunger, while, on the other, as an alternative protein in highly- developed regions, in response to the need for implementing policies of sustainable development. This review focused on both the regulations concerning the production and marketing of insects in Europe and the characteristics of edible insects that are most likely to establish a presence on the European market. The paper indicates numerous advantages of the consumption of insects, not only as a valuable source of protein but also as a raw material rich in valuable fatty acids, vitamins, and mineral salts. Attention was paid to the functional properties of proteins derived from insects, Citation: Skotnicka, M.; Karwowska, and to the possibility for using them in the production of functional food. -
Edible Insects
1.04cm spine for 208pg on 90g eco paper ISSN 0258-6150 FAO 171 FORESTRY 171 PAPER FAO FORESTRY PAPER 171 Edible insects Edible insects Future prospects for food and feed security Future prospects for food and feed security Edible insects have always been a part of human diets, but in some societies there remains a degree of disdain Edible insects: future prospects for food and feed security and disgust for their consumption. Although the majority of consumed insects are gathered in forest habitats, mass-rearing systems are being developed in many countries. Insects offer a significant opportunity to merge traditional knowledge and modern science to improve human food security worldwide. This publication describes the contribution of insects to food security and examines future prospects for raising insects at a commercial scale to improve food and feed production, diversify diets, and support livelihoods in both developing and developed countries. It shows the many traditional and potential new uses of insects for direct human consumption and the opportunities for and constraints to farming them for food and feed. It examines the body of research on issues such as insect nutrition and food safety, the use of insects as animal feed, and the processing and preservation of insects and their products. It highlights the need to develop a regulatory framework to govern the use of insects for food security. And it presents case studies and examples from around the world. Edible insects are a promising alternative to the conventional production of meat, either for direct human consumption or for indirect use as feedstock. -
Technical Brief #1
Technical Brief #1: Ruspolia grasshopper production systems in East Africa and their nutritional properties Authors: John Kinyuru Jozef Vanden Broeck Monicah Ayieko Forkwa Fombong Jeremiah Ng’ang’a December 2018 Introduction The consumption of the naturally occurring longhorn grasshopper, Ruspolia differens locally known as senene, is an important part of food culture in several regions of East- Africa and contributes significant protein intake of the rural and urban population. For many households, trade in edible insects is a major source of income and considerably contributes to improvements in livelihood (Agea, Biryomumaisho, Buyinza, & Nabanoga, 2008). Grasshoppers have traditionally been harvested seasonally from the wild. This method of collection can be unsustainable for the wider ecosystem due to overharvesting or destructive techniques. One of the main benefits of utilizing insects as part of the human diet has been their beneficial nutritional profile, comparable to conventional meats such as chicken and beef (Rumpold & Schlüter, 2013). Although farming technologies for other insects like the cricket (Orthoptera; Gryllidae) are fairly advanced in Asia (e.g. Thailand, Laos) and East Africa, equivalent knowledge for its grasshopper is lacking, especially given the popularity of its consumption. In the case of grasshoppers, preliminary studies performed in Uganda have shown that R. differens can be produced under small-scale laboratory conditions but several aspects of its biology need to be evaluated to optimize production techniques. This brief provides an overview of harvesting and rearing systems for the Ruspolia grasshopper. It provides an outline of wild harvesting, rearing facilities and management practices, as well as how to rear insects under the prevailing local conditions. -
The Human Use of Insects As Food and Animal Feed
The Human Use of Insects as Food and as Animal Feed GeNr R. DnFolnnr Edible insects are afood resource tbat continues to be tapped extensiuely by populations in tbe rural Third World, wbile continuing to be ignored by food and agricultural scientists. Tbe unfounded V'estern auersion to insects asfood sbould no longer stand in the way of attempts, tbrougb ad- L)ocacy, research, and extetzsion, to increase tbe contribution tbat insects can make to buman nutrition. OST EUROPEANS AND NORTH AMERICANS are barely, if sect species used has proven surprisingly large. Previous inr,esti- at all, a'ware that insectS have played an important role in gators of Yukpa food habits mentioned fewer than a dozen varieties human nutrition. The older literature contains numerous of insect and the specific identity of only one, but Ruddle's data in- accounts provided by explorers, naturalists, anthropologists, and dicate that 25-35 species are eaten, 13 of which could be identified assorted travelers describing the use of insects as food by the indig- to species. Most of the others belonged to one or another of nine enous peoples of most of the world. genera. lnZaire, one ofthe better studied countries from the stand- The desert loclst, Scbistocerca gregaria (ForskAl) (Orthoptera: point of food insect use, Bequaert ( 1921 ) and other early observers provided information on 14 species, including the caterpillars of six Acrididae), well-known as a destroyer of crops, was itself in earlier , times a maior source of food in northern Africa and the Middle East. species of Lepidoptera. In a recent careful study confined only to Ktinckel d'Herculais (1891; vide Bodenheimer 1951,205-206) gave caterpillars and only to the scluthern part of Zaire, however, Ma- the following account from Algeria: laisse & Parent (1980) distinguished 35 species that are used as The natives are well disposed to carry out orders for the de- food. -
Insects As Food in Sub-Saharan Africa
Insect Sci. Applic. Vol. 23, No. 3, pp. 163–185,Insects 2003 as food in Africa 0191-9040/03 $3.00 + 0.00 163 Printed in Kenya. All rights reserved © 2003 ICIPE REVIEW ARTICLE INSECTS AS FOOD IN SUB-SAHARAN AFRICA A. VAN HUIS Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, the Netherlands. E-mail: [email protected] (Accepted 14 August 2003) Abstract—Data on insects as food in sub-Saharan Africa were collected by reviewing the literature and conducting interviews in a number of African countries. A list of about 250 edible insect species from Africa was compiled. Of these, 78 percent are Lepidoptera (30%), Orthoptera (29%) and Coleoptera (19%), and 22 percent Isoptera, Homoptera, Hymenoptera, Heteroptera, Diptera and Odonota. Insects are rich in protein, vitamins and minerals, and a good source of iron and B-vitamins. Examples of insects being toxic are given, but often traditional methods are used to remove the poison. Whether or not insects are eaten depends not only on taste and nutritional value, but also on customs, ethnic preferences or prohibitions. The harvesting of insects is often done by women. The way of collecting depends on insects’ behaviour. For example, inactivity at low temperatures enables easy catching of locusts and grasshoppers in the morning. Night flyers (termites, some grasshoppers) can be lured into traps by light and some insects like palm weevils can be attracted to artificially created breeding sites. Some species (crickets, cicadas) can be located by the sound they make. A number of tools are used to facilitate capturing such as glue, sticks, nets and baskets. -
“Swarming Conehead” Ruspolia Differens Serville, 1838 (Orthoptera: Tettigoniidae) Occurring in the Afro-Tropical Region
International Journal of Zoology and Animal Biology ISSN: 2639-216X A Comprehensive Key for Identification of the “Swarming Conehead” Ruspolia Differens Serville, 1838 (Orthoptera: Tettigoniidae) Occurring in the Afro-Tropical Region Matojo ND* Review Article Department of Biological Sciences, Mkwawa University College of Education, Volume 3 Issue 1 Tanzania Received Date: December 10, 2019 Published Date: January 17, 2020 *Corresponding author: Nicodemus D Matojo, Department of Biological Sciences, DOI: 10.23880/izab-16000200 Mkwawa University College of Education, University of Dar es Salaam, P.O. Box 2513 Iringa, Tanzania, Tel: 255784710506; Email: [email protected] Abstract This work reviewed the behavioural, morphological and molecular characteristics of the long-horned grasshopper Ruspolia differens Serville or “senene” in Swahili name (Orthoptera Tettigoniidae), as apparent in literature. On that basis, the work has generated a comprehensive key for identification of this species. As widely known, this insect native to Afro-tropical region where it is widely edible and it has a characteristic swarming behaviour that strikingly occurs during rainy season. Also, it has colour polymorphism with a total of six key sympatric colour forms, sex dimorphism with males possessing longer antennae and a unique pair of active tongue-like metathoracic flaps whereas the females have a corresponding pair of vestigial metathoracic nodules. Furthermore, the species has a pair of distinct subequal black markings on the mid and hind tibia near the knee joint and a white inter-ocular oval mark that appears like a simple eye. Its sister species which is Ruspolia nitidula Scopoli as verified by molecular phylogenetics is exclusively solitary, mostly greenish and Palearctic ranging in Asia, Europe and Northern Africa. -
Journal of the East Africa Natural History Society and National Museum
JOURNAL OF THE EAST AFRICA NATURAL HISTORY SOCIETY AND NATIONAL MUSEUM 30 December 1982 No. 178 CHARACTERISTICS OF SWARMING IN THE AFRICAN EDIBLE BUSH-CRICKET RUSPOLIA D1FFERENS (SERVILLE) (ORTHOPTERA, TETTIGONIOIDEA) Angus W.R. McCrae ICIPE Coastal Field Station, Mombasa, Kenya· ABSTRACT Previous reports on the African Edible Bush-cricket or 'nsenene', Ruspolia dljferens·(Serville) (formerly Homorocoryphus nitidulus ssp. vicinus Walker>, have left many questions unanswered as to the nocturnal behaviour of its swarms when uninfluenced by urban lights. Because large, dense swarms are widely known to arrive on hills at night it is tempting to infer that they traverse the skies in similarly compact formations. The present paper reviews the relevant background and reports new observations made on a massive swarm in the Shimba Hills of coastal Kenya, when no evidence of interaction between individuals was seen over the staggered post-sunset time of lift-off, and the swarm seemed unlikely to gain compactness through the insects' own behavioural responses since they showed no tendency to aggregate in flight. If these observations are widely valid, nocturnal compactness of rural R. dljferens swarms would seem to depend upon fortuitous characteristics of wind and topography acting upon intrinsically non-aggregative flight behaviour. Further reports are much needed. INTRODUCTION The African Edible Bush-cricket Ruspolia dljferens (Serville), now widely known by its Luganda name nsenene, is a slender insect some 4-6.5 cm in length with thread-like antennae of similar length. It occurs throughout the Afrotropical region including Madagascar, Mauritius, the Seychelles and the south-west Arabian Peninsula. It is among the very few species of Tet• tigonioidea which appear to form flying swarms of a high density, and where these swarms occur they are often gathered as a highly prized item of human food.