Ch.6 Alkenes: Structure and Reactivity Alkene = Olefin

Total Page:16

File Type:pdf, Size:1020Kb

Ch.6 Alkenes: Structure and Reactivity Alkene = Olefin Ch.6 Alkenes: Structure and Reactivity alkene = olefin H2CCH2 CH3 Ethylene α-Pinene β-Carotene (orange pigment and vitamin A precursor) Ch.6 Alkenes: Structure and Reactivity 6.1 Industrial Preparation and Use of Alkenes Compounds derived industrially from ethylene CH3CH2OH Ethanol CH3CHO Acetaldehyde CH3COOH Acetic acid HOCH2CH2OH Ethylene glycol ClCH2CH2Cl Ethylene dichloride H C=CHCl Vinyl chloride H2CCH2 2 O Ethylene oxide Ethylene (26 million tons / yr) O Vinyl acetate O Polyethylene Ch.6 Alkenes: Structure and Reactivity Compounds derived industrially from propylene OH Isopropyl alcohol H3CCH3 O Propylene oxide CH3 H3CCH CH2 Propylene Cumene (14 million tons / yr) CH3 CH3 Polypropylene Ch.6 Alkenes: Structure and Reactivity • Ethylene, propylene, and butene are synthesized industrially by thermal cracking of natural gas (C1-C4 alkanes) and straight-run gasoline (C4-C8 alkanes). 850-900oC CH (CH ) CH H + CH + H C=CH + CH CH=CH 3 2 n 3 steam 2 4 2 2 3 2 + CH3CH2CH=CH2 - the exact processes are complex; involve radical process H 900oC CH3CH2 CH2CH3 22H2CCH H2C=CH2 +H2 Ch.6 Alkenes: Structure and Reactivity • Thermal cracking is an example of a reaction whose energetics are dominated by entropy (∆So) rather than enthalpy (∆Ho) in the free-energy equation (∆Go = ∆Ho -T∆So) . ; C-C bond cleavage (positive ∆Ho) ; high T and increased number of molecules → larger T∆So Ch.6 Alkenes: Structure and Reactivity 6.2 Calculating Degree of Unsaturation unsaturated: formula of alkene CnH2n ; formula of alkane CnH2n+2 in general, each ring or double bond corresponds to a loss of two hydrogens from alkane formula degree of unsaturation: the number of rings and/or multiple bonds Ch.6 Alkenes: Structure and Reactivity unknown hydrocarbon with molecular weight 82; C6H10 corresponding alkane; C6H14 H14-H10 = H4 = 2H2 therefore, degree of unsaturation= 2 possible structures: Ch.6 Alkenes: Structure and Reactivity degree of unsaturation: containing elements other than just C, H ■ Organohalogen compounds (C, H, X, X= F, Cl, Br, I) Add the number of halogens to the number of hydrogens ; a halogen is simply a replacement of hydrogen BrCH2CH=CHCH2Br HCH2CH=CHCH2H C4H6Br2 = "C4H8" one unsaturation: one double bond or one cycle add Ch.6 Alkenes: Structure and Reactivity ■ Organooxygen compounds (C, H, O) Ignore the number of oxygens ; oxygen forms two bonds; C-C vs C-O-C or C-H vs C-O-H H2C=CHCH=CHCH2OH H2C=CHCH=CHCH2-H C5H8O= "C5H8" two unsaturation: two double bonds Ch.6 Alkenes: Structure and Reactivity ■ Organonitrogen compounds (C, H, N) Subtract the number of nitrogens from the number of hydrogens ; nitrogen forms three bonds; C-C vs C-NH-C or C-H vs C-NH2 H H NH2 H C5H9N= "C5H8" two unsaturation: one double bond and one ring Ch.6 Alkenes: Structure and Reactivity 6.3 Naming Alkenes Step 1 Name the parent hydrocarbon: Find the longest carbon chain containing the double bond and name the compound accordingly, using the suffix -ene: NOT pentene hexene Ch.6 Alkenes: Structure and Reactivity Step 2 Numbering: Begin at the end nearer the double bond or, if the double bond is equivalent from the two ends, begin at the end nearer the first branch point. This rule ensures that the double bond carbons receive the lowest possible numbers: 2 6 3 1 3 4 1 NOT 6 2 5 4 6 3 1 2 3 6 NOT 1 2 5 3 1 4 6 Ch.6 Alkenes: Structure and Reactivity Step 3 Write the full name: list substituents alphabetically ; indicate the position of double bond (the number of the first alkene carbon) immediately before the parent name ; more than one double bonds: -diene, triene... 2 3 1 1 2 3 2-Hexene 2-Methyl-3-hexene 2 1 2 4 1 3 2-Ethyl-1-pentene 2-Methyl-1,3-butadiene Ch.6 Alkenes: Structure and Reactivity cycloalkanes are named similarly, but double bond is between C1 and C2 and the first substituent has as low a number as possible ; it's not necessary to indicate the position of the double bond in the name (always C1 and C2) 1 CH3 5 1 2 4 2 1-Methylcyclohexene 1,4-Cyclohexadiene CH3 5 CH3 1 3 2 CH3 CH3 2 1 1,5-Dimethylcyclopentene NOT Ch.6 Alkenes: Structure and Reactivity Common names IUPAC name Common name Ethene Ethylene Propene Propylene 2-Methylpropene Isobutylene 2-Methyl-1,3-butadiene Isoprene 1,3-Pentadiene Piperylene Ch.6 Alkenes: Structure and Reactivity Substituent Names H H2C H2C C A methylene group A vinyl group An allyl group Br CH2 Br Μethylenecyclopentane Vinyl bromide Allyl bromide Ch.6 Alkenes: Structure and Reactivity 6.4 Electronic Structure of Alkenes • Rotation around double bond is restricted: The π-bond must break for rotation to take place around a C=C double bond - 268 kJ/mol (64 kcal/mol) is required to break the π-bond - rotational energy barrier for ethane: only 12 kJ/mol C C 90o C rotation C π-bond broken π-bond after rotation (p-orbitals are parallel) (p-orbitals are perpendicular) Ch.6 Alkenes: Structure and Reactivity 6.5 Cis-Trans Isomerism in Alkenes H CCH H3CH 3 3 X HH HCH3 cis-2-Butene trans-2-Butene cis-trans isomerism: when both carbons are bonded to two different groups BD AD these two compounds are identical; BD ADthey are not cis-trans isomers AD BDthese two compounds are not identical; they are cis-trans isomers BE A E Ch.6 Alkenes: Structure and Reactivity 6.6 Sequence Rules: The E,Z Designation cis-trans isomerism: describe the disubstituted double bond geometries ; tri-and tetrasubstituted double bonds- a general method is needed H CCHCH CH H3CCH3 3 2 2 3 HCH HCH2CH2CH3 3 cis or trans ? cis or trans ? Ch.6 Alkenes: Structure and Reactivity E, Z isomerism: a more general method for describing double-bond geometry ; E (entgegen, "opposite"); Z (zusammen, "together") High High High Low Low Low Low High Z E the higher priority groups on the higher priority groups on each carbon are on the same each carbon are on the opposite side of the double bond side of the double bond Ch.6 Alkenes: Structure and Reactivity Sequence Rule (Cahn-Ingold-Prelog rule; CIP rule) ; priority of substituents Rule 1 Considering each of the double-bond carbons separately, identify the two atoms directly attached and rank them according to atomic number. 35 17 8 7 6 1 Br > Cl > O > N > C > H Cl H Cl CH3 H C CH H3CH 3 3 (Z)-2-Chloro-2-butene (E)-2-Chloro-2-butene Ch.6 Alkenes: Structure and Reactivity Rule 2 If a decision can't be reached by ranking the first atoms in the substituents, look at the second, third, or fourth atoms away from the double-bond carbons until the first difference is found. H H C H < C CH3 O H < O CH3 H H H CH3 CH3 H C CH3 < C CH3 C NH2 < C Cl H H H H Ch.6 Alkenes: Structure and Reactivity Rule 3 Multiple-bonded atoms are equivalent to the same number of single- bonded atoms. H H C O C O O C H H H H C C C C H H C C C C C C H C C H C C Ch.6 Alkenes: Structure and Reactivity H (E)-3-Methyl-1,3-pentadiene H3C CH3 Br (E)-1-Bromo-2-isopropyl-1,3-butadiene H O H C OH 3 (Z)-2-Hydroxymethyl-2-butenoic acid HOH Ch.6 Alkenes: Structure and Reactivity 6.7 Stability of Alkenes Relative stability from equilibrium constant: - cis-trans isomers interconvert under strong acid condition acid H3CCH3 H3C H HH catalyst H CH3 cis (24 %) trans (76%) Erel= + 2.8 kJ/mol (0.66 kcal/mol) Erel= 0.0 kcal/mol Ch.6 Alkenes: Structure and Reactivity H H H H H H H H C H CCH H H HH C H H cis trans Ch.6 Alkenes: Structure and Reactivity From heat of combustion H3CCH3 H3CH HH HCH3 o o ∆H combustion= -2685.5 kJ/mol ∆H combustion= -2682.2 kJ/mol E = +0.0 kJ/mol Erel = +3.3 kJ/mol rel Ch.6 Alkenes: Structure and Reactivity From heat of hydrogenation H3CH H3CCH3 H2 H2 CH3CH2CH2CH3 HH Pd Pd HCH3 o o ∆H hydro = -116 kJ/mol ∆H hydro = -120 kJ/mol 4 kJ/mol difference Ch.6 Alkenes: Structure and Reactivity Energy profile for hydrogenation Cis Energy Trans o o ∆G cis ∆G trans Butane Reaction progress Ch.6 Alkenes: Structure and Reactivity Stabilities of alkenes: increasing the degree of substitution leads further stabilization RR RR H R R H R H > > ~ > RR R H R H R H H H tetrasubstituted trisubstituted disubstituted monosubstituted Ch.6 Alkenes: Structure and Reactivity Explanations of alkene stabilities 1. Hyperconjugation: a stabilizing interaction between the unfilled antibonding C=C p bond and a filled C-H s bond orbital on a neighboring substituent. The more substutuents that are present, the more opportunities exist for hyperconjugation, and the more stable the alkene. bonding C-H σ orbital (filled) π* H CC σ C antibonding C-C π orbital (unfilled) Ch.6 Alkenes: Structure and Reactivity 2. Bond strength: sp2-sp3 C-C bond is stronger than sp3-sp3 C-C bond ; more highly substituted alkenes always have a higher ratio of sp2-sp3 bonds to sp3-sp3 bonds sp3-sp3 CH3 CH CH CH3 CH3 CH2 CH CH2 3 2 sp3-sp2 sp3-sp2 sp -sp Ch.6 Alkenes: Structure and Reactivity 6.8 Electrophilic Addition of HX to Alkenes • alkenes: electron rich, nucleophilic Electrophilic addition reaction: addition of electrophiles to nucleophilic alkenes Br- H Br H Br H H3CH H C 3 H C H 3 H H C H H3C H3C H 3 H carbocation intermediate The electrophile HBr is attacked by the The Br- donates an electron pair to the p-electrons of the double bond, and a positively charged carbon atom, new C-H σ-bond is formed.
Recommended publications
  • Proton Nmr Spectroscopy
    1H NMR Spectroscopy (#1c) The technique of 1H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It is based on the same principle as magnetic resonance imaging (MRI). This laboratory exercise reviews the principles of interpreting 1H NMR spectra that you should be learning right now in Chemistry 302. There are four questions you should ask when you are trying to interpret an NMR spectrum. Each of these will be discussed in detail. The Four Questions to Ask While Interpreting Spectra 1. How many different environments are there? The number of peaks or resonances (signals) in the spectrum indicates the number of nonequivalent protons in a molecule. Chemically equivalent protons (magnetically equivalent protons) give the same signal in the NMR whereas nonequivalent protons give different signals. 1 For example, the compounds CH3CH3 and BrCH2CH2Br all have one peak in their H NMR spectra because all of the protons in each molecule are equivalent. The compound below, 1,2- dibromo-2-methylpropane, has two peaks: one at 1.87 ppm (the equivalent CH3’s) and the other at 3.86 ppm (the CH2). 1.87 1.87 ppm CH 3 3.86 ppm Br Br CH3 1.87 ppm 3.86 10 9 8 7 6 5 4 3 2 1 0 2. How many 1H are in each environment? The relative intensities of the signals indicate the numbers of protons that are responsible for individual signals. The area under each peak is measured in the form of an integral line.
    [Show full text]
  • Course Material 2.Pdf
    Reactive Intermediates Source: https://www.askiitians.com/iit-jee-chemistry/organic-chemistry/iupac- and-goc/reaction-intermediates/ Table of Content • Carbocations • Carbanions • Free Radicals • Carbenes • Arenium Ions • Benzynes Synthetic intermediate are stable products which are prepared, isolated and purified and subsequently used as starting materials in a synthetic sequence. Reactive intermediate, on the other hand, are short lived and their importance lies in the assignment of reaction mechanisms on the pathway from the starting substrate to stable products. These reactive intermediates are not isolated, but are detected by spectroscopic methods, or trapped chemically or their presence is confirmed by indirect evidence. • Carbocations Carbocations are the key intermediates in several reactions and particularly in nucleophilic substitution reactions. Structure of Carbocations : Generally, in the carbocations the positively charged carbon atom is bonded to three other atoms and has no nonbonding electrons. It is sp 2 hybridized with a planar structure and bond angles of about 120°. There is a + vacant unhybridized p orbital which in the case of CH 3 lies perpendicular to the plane of C—H bonds. Stability of Carbocations: There is an increase in carbocation stability with additional alkyl substitution. Thus one finds that addition of HX to three typical olefins decreases in the order (CH 3)2C=CH 2>CH 3—CH = CH 2 > CH 2 = CH 2. This is due to the relative stabilities of the carbocations formed in the rate determining step which in turn follows from the fact that the stability is increased by the electron releasing methyl group (+I), three such groups being more effective than two, and two more effective than one.
    [Show full text]
  • Reactions of Benzene & Its Derivatives
    Organic Lecture Series ReactionsReactions ofof BenzeneBenzene && ItsIts DerivativesDerivatives Chapter 22 1 Organic Lecture Series Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon: Halogenation: FeCl3 H + Cl2 Cl + HCl Chlorobenzene Nitration: H2 SO4 HNO+ HNO3 2 + H2 O Nitrobenzene 2 Organic Lecture Series Reactions of Benzene Sulfonation: H 2 SO4 HSO+ SO3 3 H Benzenesulfonic acid Alkylation: AlX3 H + RX R + HX An alkylbenzene Acylation: O O AlX H + RCX 3 CR + HX An acylbenzene 3 Organic Lecture Series Carbon-Carbon Bond Formations: R RCl AlCl3 Arenes Alkylbenzenes 4 Organic Lecture Series Electrophilic Aromatic Substitution • Electrophilic aromatic substitution: a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile H E + + + E + H • In this section: – several common types of electrophiles – how each is generated – the mechanism by which each replaces hydrogen 5 Organic Lecture Series EAS: General Mechanism • A general mechanism slow, rate + determining H Step 1: H + E+ E El e ctro - Resonance-stabilized phile cation intermediate + H fast Step 2: E + H+ E • Key question: What is the electrophile and how is it generated? 6 Organic Lecture Series + + 7 Organic Lecture Series Chlorination Step 1: formation of a chloronium ion Cl Cl + + - - Cl Cl+ Fe Cl Cl Cl Fe Cl Cl Fe Cl4 Cl Cl Chlorine Ferric chloride A molecular complex An ion pair (a Lewis (a Lewis with a positive charge containing a base) acid) on ch lorine ch loronium ion Step 2: attack of
    [Show full text]
  • Lecture Outline a Closer Look at Carbocation Stabilities and SN1/E1 Reaction Rates We Learned That an Important Factor in the SN
    Lecture outline A closer look at carbocation stabilities and SN1/E1 reaction rates We learned that an important factor in the SN1/E1 reaction pathway is the stability of the carbocation intermediate. The more stable the carbocation, the faster the reaction. But how do we know anything about the stabilities of carbocations? After all, they are very unstable, high-energy species that can't be observed directly under ordinary reaction conditions. In protic solvents, carbocations typically survive only for picoseconds (1 ps - 10–12s). Much of what we know (or assume we know) about carbocation stabilities comes from measurements of the rates of reactions that form them, like the ionization of an alkyl halide in a polar solvent. The key to connecting reaction rates (kinetics) with the stability of high-energy intermediates (thermodynamics) is the Hammond postulate. The Hammond postulate says that if two consecutive structures on a reaction coordinate are similar in energy, they are also similar in structure. For example, in the SN1/E1 reactions, we know that the carbocation intermediate is much higher in energy than the alkyl halide reactant, so the transition state for the ionization step must lie closer in energy to the carbocation than the alkyl halide. The Hammond postulate says that the transition state should therefore resemble the carbocation in structure. So factors that stabilize the carbocation also stabilize the transition state leading to it. Here are two examples of rxn coordinate diagrams for the ionization step that are reasonable and unreasonable according to the Hammond postulate. We use the Hammond postulate frequently in making assumptions about the nature of transition states and how reaction rates should be influenced by structural features in the reactants or products.
    [Show full text]
  • Spectroscopic and Photophysical Properties of the Trioxatriangulenium Carbocation and Its Interactions with Supramolecular Systems
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk May 03, 2019 brought to you by CORE provided by Online Research Database In Technology Spectroscopic and Photophysical Properties of the Trioxatriangulenium Carbocation and its Interactions with Supramolecular Systems Reynisson, Johannes Publication date: 2000 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Reynisson, J. (2000). Spectroscopic and Photophysical Properties of the Trioxatriangulenium Carbocation and its Interactions with Supramolecular Systems. Roskilde: Risø National Laboratory. Denmark. Forskningscenter Risoe. Risoe-R, No. 1191(EN) General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Spectroscopic and Photophysical Properties of the Trioxatriangulenium Carbocation and its Interactions with Supramolecular Systems Jóhannes Reynisson OO O Risø National Laboratory, Roskilde, Denmark June 2000 1 Abstract Trioxatriangulenium (TOTA+, 4,8,12-trioxa-4,8,12,12c-tetrahydro- dibenzo[cd,mn]-pyrenylium) is a closed shell carbocation which is stable in its crystalline form and in polar solvents at ambient temperatures.
    [Show full text]
  • Nonclassical Carbocations: from Controversy to Convention
    Nonclassical Carbocations H H C From Controversy to Convention H H H A Stoltz Group Literature Meeting brought to you by Chris Gilmore June 26, 2006 8 PM 147 Noyes Outline 1. Introduction 2. The Nonclassical Carbocation Controversy - Winstein, Brown, and the Great Debate - George Olah and ending the discussion - Important nonclassical carbocations 3. The Nature of the Nonclassical Carbocation - The 3-center, 2-electron bond - Cleaving C-C and C-H σ−bonds - Intermediate or Transition state? Changing the way we think about carbocations 4. Carbocations, nonclassical intermediates, and synthetic chemistry - Biosynthetic Pathways - Steroids, by W.S. Johnson - Corey's foray into carbocationic cascades - Interesting rearrangements - Overman and the Prins-Pinacol Carbocations: An Introduction Traditional carbocation is a low-valent, trisubstituted electron-deficient carbon center: R superacid R R LG R R R R R R "carbenium LGH ion" - 6 valence e- - planar structure - empty p orbital Modes of stabilization: Heteroatomic Assistance π-bond Resonance σ-bond Participation R X H2C X Allylic Lone Pair Anchimeric Homoconjugation Hyperconjugation Non-Classical Resonance Assistance Stabilization Interaction Outline 1. Introduction 2. The Nonclassical Carbocation Controversy - Winstein, Brown, and the Great Debate - George Olah and ending the discussion - Important nonclassical carbocations 3. The Nature of the Nonclassical Carbocation - The 3-center, 2-electron bond - Cleaving C-C and C-H σ−bonds - Intermediate or Transition state? Changing the way we think about carbocations 4. Carbocations, nonclassical intermediates, and synthetic chemistry - Biosynthetic Pathways - Steroids, by W.S. Johnson - Corey's foray into carbocationic cascades - Interesting rearrangements - Overman and the Prins-Pinacol The Nonclassical Problem: Early Curiosities Wagner, 1899: 1,2 shift OH H - H+ Meerwein, 1922: 1,2 shift OH Meerwin, H.
    [Show full text]
  • George A. Olah 151
    MY SEARCH FOR CARBOCATIONS AND THEIR ROLE IN CHEMISTRY Nobel Lecture, December 8, 1994 by G EORGE A. O L A H Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661, USA “Every generation of scientific men (i.e. scientists) starts where the previous generation left off; and the most advanced discov- eries of one age constitute elementary axioms of the next. - - - Aldous Huxley INTRODUCTION Hydrocarbons are compounds of the elements carbon and hydrogen. They make up natural gas and oil and thus are essential for our modern life. Burning of hydrocarbons is used to generate energy in our power plants and heat our homes. Derived gasoline and diesel oil propel our cars, trucks, air- planes. Hydrocarbons are also the feed-stock for practically every man-made material from plastics to pharmaceuticals. What nature is giving us needs, however, to be processed and modified. We will eventually also need to make hydrocarbons ourselves, as our natural resources are depleted. Many of the used processes are acid catalyzed involving chemical reactions proceeding through positive ion intermediates. Consequently, the knowledge of these intermediates and their chemistry is of substantial significance both as fun- damental, as well as practical science. Carbocations are the positive ions of carbon compounds. It was in 1901 that Norris la and Kehrman lb independently discovered that colorless triphe- nylmethyl alcohol gave deep yellow solutions in concentrated sulfuric acid. Triphenylmethyl chloride similarly formed orange complexes with alumi- num and tin chlorides. von Baeyer (Nobel Prize, 1905) should be credited for having recognized in 1902 the salt like character of the compounds for- med (equation 1).
    [Show full text]
  • Introduction to Alkenes and Alkynes in an Alkane, All Covalent Bonds
    Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene, however, only three σ bonds are formed from the alkene carbon -the carbon thus adopts an sp2 hybridization Ethene (common name ethylene) has a molecular formula of CH2CH2 Each carbon is sp2 hybridized with a σ bond to two hydrogens and the other carbon Hybridized orbital allows stronger bonds due to more overlap H H C C H H Structure of Ethylene In addition to the σ framework of ethylene, each carbon has an atomic p orbital not used in hybridization The two p orbitals (each with one electron) overlap to form a π bond (p bonds are not symmetric about the internuclear axis) π bonds are not as strong as σ bonds (in ethylene, the σ bond is ~90 Kcal/mol and the π bond is ~66 Kcal/mol) Thus while σ bonds are stable and very few reactions occur with C-C bonds, π bonds are much more reactive and many reactions occur with C=C π bonds Nomenclature of Alkenes August Wilhelm Hofmann’s attempt for systematic hydrocarbon nomenclature (1866) Attempted to use a systematic name by naming all possible structures with 4 carbons Quartane a alkane C4H10 Quartyl C4H9 Quartene e alkene C4H8 Quartenyl C4H7 Quartine i alkine → alkyne C4H6 Quartinyl C4H5 Quartone o C4H4 Quartonyl C4H3 Quartune u C4H2 Quartunyl C4H1 Wanted to use Quart from the Latin for 4 – this method was not embraced and BUT has remained Used English order of vowels, however, to name the groups
    [Show full text]
  • Ganic Compounds
    6-1 SECTION 6 NOMENCLATURE AND STRUCTURE OF ORGANIC COMPOUNDS Many organic compounds have common names which have arisen historically, or have been given to them when the compound has been isolated from a natural product or first synthesised. As there are so many organic compounds chemists have developed rules for naming a compound systematically, so that it structure can be deduced from its name. This section introduces this systematic nomenclature, and the ways the structure of organic compounds can be depicted more simply than by full Lewis structures. The language is based on Latin, Greek and German in addition to English, so a classical education is beneficial for chemists! Greek and Latin prefixes play an important role in nomenclature: Greek Latin ½ hemi semi 1 mono uni 1½ sesqui 2 di bi 3 tri ter 4 tetra quadri 5 penta quinque 6 hexa sexi 7 hepta septi 8 octa octo 9 ennea nona 10 deca deci Organic compounds: Compounds containing the element carbon [e.g. methane, butanol]. (CO, CO2 and carbonates are classified as inorganic.) See page 1-4. Special characteristics of many organic compounds are chains or rings of carbon atoms bonded together, which provides the basis for naming, and the presence of many carbon- hydrogen bonds. The valency of carbon in organic compounds is 4. Hydrocarbons: Compounds containing only the elements C and H. Straight chain hydrocarbons are named according to the number of carbon atoms: CH4, methane; C2H6 or H3C-CH3, ethane; C3H8 or H3C-CH2-CH3, propane; C4H10 or H3C-CH2- CH2-CH3, butane; C5H12 or CH3CH2CH2CH2CH3, pentane; C6H14 or CH3(CH2)4CH3, hexane; C7H16, heptane; C8H18, octane; C9H20, nonane; C10H22, CH3(CH2)8CH3, decane.
    [Show full text]
  • Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of  Electrons Above and Below Its Sigma Bond Framework
    Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product.
    [Show full text]
  • Surface Chemistry Changes of Weathered HDPE/Wood-Flour
    Polymer Degradation and Stability 86 (2004) 1–9 www.elsevier.com/locate/polydegstab Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy* Nicole M. Starka,), Laurent M. Matuanab aU.S. Department of Agriculture, Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726-2398, United States bDepartment of Forestry, Michigan State University, East Lansing, MI 48824-1222, United States Received 7 August 2003; received in revised form 3 November 2003; accepted 4 November 2003 Abstract The use of wood-derived fillers by the thermoplastic industry has been growing, fueled in part by the use of wood-fiber– thermoplastic composites by the construction industry. As a result, the durability of wood-fiber–thermoplastic composites after ultraviolet exposure has become a concern. Samples of 100% high-density polyethylene (HDPE) and HDPE filled with 50% wood- flour (WF) were weathered in a xenon arc-type accelerated weathering apparatus for 2000 h. Changes in surface chemistry were studied using spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) was used to verify the occurrence of surface oxidation. Fourier transform infrared (FTIR) spectroscopy was used to monitor the development of degradation products, such as carbonyl groups and vinyl groups, and to determine changes in HDPE crystallinity. The results indicate that surface oxidation occurred immediately after exposure for both the neat HDPE and WF/HDPE composites; the surface of the WF/HDPE composites was oxidized to a greater extent than that of the neat HDPE. This suggests that the addition of WF to the HDPE matrix results in more weather-related damage.
    [Show full text]
  • Novel Poly(Vinyl Alcohol)-Based Column Coating for Capillary Electrophoresis of Proteins
    Biochemical Engineering Journal 53 (2010) 137–142 Contents lists available at ScienceDirect Biochemical Engineering Journal journal homepage: www.elsevier.com/locate/bej Novel poly(vinyl alcohol)-based column coating for capillary electrophoresis of proteins Liang Xu, Xiao-Yan Dong, Yan Sun ∗ Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China article info abstract Article history: A novel and simple method for the preparation of chemically bonded poly(vinyl alcohol) (PVA) coat- Received 30 June 2010 ing to silica capillary inner wall was developed, and the PVA-coated capillary columns were employed Received in revised form for capillary electrophoresis (CE). The coating procedure included pretreatment of the capillary inner 30 September 2010 wall, silanization, aldehyde group functionalization and PVA immobilization. Electroosmotic flow of the Accepted 6 October 2010 coated capillary was almost suppressed over a wide pH range (pH 3–10). High-efficiency separations of cationic proteins (including cytochrome c, lysozyme, ␣-chymotrypsinogen A) at pH 3.0–5.0 and of anionic proteins (including myoglobin and trypsin inhibitor) at pH 10.0 were achieved with the PVA-coated cap- Keywords: Protein illary. Moreover, a “dual-opposite-injection” approach was adopted for simultaneous separations of both Separation cationic and anionic proteins at neutral pH with the prepared column. In this CE mode, positively charged Bioprocess Monitoring proteins migrated from one end of the column to the detector while negatively charged proteins from Adsorption the other end to the detection window. Good run-to-run repeatability was obtained in all of the protein Capillary electrophoresis CE separations performed in this work.
    [Show full text]