Grand Challenges in Microbial Symbiosis Research

Total Page:16

File Type:pdf, Size:1020Kb

Grand Challenges in Microbial Symbiosis Research SPECIALTY GRAND CHALLENGE ARTICLE published: 10 April 2014 doi: 10.3389/fmicb.2014.00164 Cooperation, communication, and co-evolution: grand challenges in microbial symbiosis research Nicole S. Webster* Australian Institute of Marine Science, Townsville, QLD, Australia *Correspondence: [email protected] Edited by: Martin G. Klotz, University of North Carolina at Charlotte, USA Reviewed by: Colleen Cavanaugh, Harvard University, USA Russell T. Hill, University of Maryland Center for Environmental Science, USA Keywords: symbiosis, microbe, host, challenge, holobiont, meta-organism, co-evolution Microorganisms form symbiotic partner- persistence and ultimately the survival of zooxanthellae which contribute photosyn- ships with eukaryotes that span all evo- their host (Horn et al., 2004). Microbial thates critical for growth and survival of lutionary stages, from simple amoebae parasitism has been (and is still) a pri- their coral hosts (Muscatine and Porter, through to humans. The term sym- mary focus of research into symbiotic 1977). Many of these examples involve biosis originates from the Greek word interactions largely due to the adverse only one, or relatively few, microbial sym- “Symbioun” meaning “to live together” impacts pathogens have on human health bionts and are therefore tractable models and was defined by Anton deBary in and the deleterious effects they have on for obtaining insights into host symbiont 1879 as “the living together of two dis- agricultural and animal stocks. However, ecology and evolution. Investigations of similar organisms, usually in intimate beneficial microbial infections whereby these low microbial diversity systems have association, and usually to the bene- hosts gain resources or services that greatly enhanced our understanding of fit of at least one partner” (De Bary, enhance their fitness are known to be mechanistic interactions, such as molec- 1879). Whilst the original deBary defi- just as ubiquitous as parasitic ones and are ular communication and co-metabolism, nition encompasses pathogens and com- rapidly gaining research traction. Research between the symbiotic partners (Dale and mensals, the term “microbial symbiont” on both parasitic and mutualistic associa- Moran, 2006). Novel evolutionary prin- is most commonly used to describe a tions provide insights into the mechanisms ciples such as genome reduction, which microorganism that forms a mutualism— of host-symbiont interactions, such as facilitates a transition of the symbiotic a specific, stable and beneficial associ- recognition / specificity adaptations etc., relationship from facultative to obligate, ation with its host (Nyholm and Graf, and challenges for the field of microbial have also been revealed by comparative 2012). Importantly, symbiotic members symbiosis research can therefore largely be genome analysis of single symbiont sys- are “partners” and whilst the term “host” considered independent of the nature of tems (Moran, 2002; Moran et al., 2008). may imply that one partner accommo- the interaction. However, microbial symbioses range dates or facilitates the association, both Symbiosis research has historically in complexity from those with a sin- members of microbial mutualisms actively focused on associations that (i) have eco- gle microorganism to those with many contribute to the relationship and the term nomic importance, e.g., nitrogen fixing hundreds or thousands of obligate or fac- “host” merely indicates the larger part- rhizobia in commercial legume species ultative symbionts, e.g., termite hindgut ner. This Grand Challenge Article briefly (Gage, 2004), (ii) have implications for (Hongoh, 2011), human gut (Marchesi, summarizes the current state of micro- human health, e.g., Helicobacter pylori 2010) and marine sponges (Webster and bial symbiosis research and identifies the which is responsible for duodenal and Taylor, 2012). The development of next methodological and conceptual challenges gastric ulcers in humans or (iii) offer generation sequencing (NGS) methods facing the field into the future. ecologically fascinating insights, e.g., has intensified research into these more Microbial symbioses are generally cat- Wolbachia that can significantly alter the complex microbial symbiont communi- egorized as parasitism, commensalism, reproductive capabilities of insect hosts ties, facilitating analysis of both diversity or mutualism, though some relation- (Serbus et al., 2008), bioluminescent vib- and functionality. ships may wander across these defined rio that occupy the light organ of bobtail The vast majority of microbial sym- boundaries depending on evolution- squid and provide luminescence for host bionts are not amenable to traditional ary processes, changes in environmental feeding and camouflage (McFall-Ngai, cultivation methods and the applica- conditions and/or health state of the 2008b), chemoautotrophic symbionts that tion of genetic and genomic approaches host/symbiont. These include cases such convert compounds like hydrogen sulfide has therefore dramatically accelerated as chlamydia where microbes initially and carbon dioxide into organic molecules research in the field of microbial sym- infect hosts as pathogens but over time on which their deep sea hydrothermal vent biosis (McFall-Ngai, 2008a). NGS projects have evolved mechanisms that assist their hosts can feed (Dubilier et al., 2008)and are producing an almost overwhelming www.frontiersin.org April 2014 | Volume 5 | Article 164 | 1 Webster Grand challenges in microbial symbiosis amount of data and this revolution in scolopes and its bioluminescent bacterial Symbionts can also be transmitted ver- delivery of molecular information has symbiont Vibrio fischeri is a classic exam- tically through reproductive cells and lar- fundamentally altered our understanding ple of “winnowing”- a gradual elimina- vae, as has been demonstrated in insects of microbial symbiosis. As an increas- tion of potential light organ colonizers (Moran and Baumann, 2000), ascidi- ing number of host-associated microbial that ensures separation of the specific ans (Kojima and Hirose, 2012), sponges environments are explored using NGS, strain of symbiotic V. fischer i from the (Usher et al., 2001; Webster et al., 2010) estimates of microbial diversity have milieu of environmental microbes present andadiverserangeofotherhigherorgan- exploded [e.g., a recent analysis of ascidian in the seawater (Nyholm and McFall-Ngai, isms (McFall-Ngai, 2002). In contrast to species documented 3217 unique bacterial 2004). The evolution of symbiont-specific the phylogenetically diverse communities OTU’S, (Erwin et al., 2014)], unexpected factors for colonization was also recently that can establish a symbiosis through hor- genomic features have been uncovered highlighted by analysis of Bacillus in the izontal acquisition, vertical transmission [e.g., extreme genome reduction has been mouse gut where novel molecular mecha- generally leads to more streamlined micro- reported in a wide range of bacterial sym- nisms in the symbiont were found to con- bial communities with reduced taxonomic bionts (McCutcheon and Moran, 2012)], trol the specificity and stability of other gut and functional complexity. A classic exam- functional equivalence and evolution- microbiota (Lee et al., 2013). ple of vertical transmission is the symbio- ary convergence has been reported in In terms of host acquisition, sym- sis between the pea aphid Acrythosiphon complex symbiont communities (Fan bionts can be acquired (i) horizontally pisum and its nutritional endosymbiont et al., 2012) and unexpected patterns from the environment, e.g., from food Buchnera aphidicola. This symbiosis was of host-specificity have been revealed in the human gut (Ley et al., 2008)or established over 160 million years ago [e.g., previously considered sponge— contemporaries, e.g., “egg smearing,” in and is maintained through strict verti- specific bacterial sequences have now stinkbugs which involves the female con- cal transmission (Baumann, 2005). The been recovered from the rare biosphere taminating the surface of her eggs with endosymbionts are contained within bac- of diverse marine environments (Taylor symbiont-laden feces during oviposition teriocytes in a region of the aphid body et al., 2013)]. These studies herald an era (reviewed in Funkhouser and Bordenstein, cavity that allows their successful transfer of unprecedented discovery in symbio- 2013), (ii) vertically from parental inher- to developing oocytes or embryos dur- sis research yet also reveal the daunting itance or (iii) via a combination of ing aphid reproduction (Baumann et al., scale of the task ahead in deciphering the these mechanisms (Bright and Bulgheresi, 1995). This mutualism is so obligate that forces that drive relationships within these 2010). Horizontal symbiont transmission neither the host nor the symbiont can complex symbiotic systems. often leads to selection based on sym- reproduce independently. Genome anal- Lifestyles of bacterial symbionts can biont function rather than symbiont tax- ysis of the symbiont revealed genes for vary in four important ways, all of which onomy (Turnbaugh and Gordon, 2009; biosyntheses of amino acids required by contribute to the long term evolution of Burke et al., 2011). Establishing horizon- the host and an absence of non-essential symbiotic microbial lineages as well as the tally acquired symbioses presents consid- amino acids, indicating complementarity co-evolution of the holobiont: (1) host- erable challenges for both the host and and
Recommended publications
  • USF Board of Trustees ( March 7, 2013)
    Agenda item: (to be completed by Board staff) USF Board of Trustees ( March 7, 2013) Issue: Proposed Ph.D. in Integrative Biology ________________________________________________________________ Proposed action: New Degree Program Approval ________________________________________________________________ Background information: This application for a new Ph.D is driven by a recent reorganization of the Department of Biology. The reorganization began in 2006 and was completed in 2009. The reorganization of the Department of Biology, in part, reflected the enormity of the biological sciences, and in part, different research perspectives and directions taken by the faculty in each of the respective areas of biology. Part of the reorganization was to replace the original Ph.D. in Biology with two new doctoral degrees that better serve the needs of the State and our current graduate students by enabling greater focus of the research performed to earn the Ph.D. The well-established and highly productive faculty attracts students to the Tampa Campus from all over the United States as well as from foreign countries. The resources to support the two Ph.D. programs have already been established in the Department of Biology and are sufficient to support the two new degree programs. The reorganization created two new departments; the Department of Cell Biology, Microbiology, and Molecular Biology (CMMB) and the Department of Integrative Biology (IB). This proposal addresses the creation of a new Ph.D., in Integrative Biology offered by the Department of Integrative Biology (CIP Code 26.1399). The name of the Department, Integrative Biology, reflects the belief that the study of biological processes and systems can best be accomplished by the incorporation of numerous integrated approaches Strategic Goal(s) Item Supports: The proposed program directly supports the following: Goal 1 and Goal 2 Workgroup Review: ACE March 7, 2013 Supporting Documentation: See Complete Proposal below Prepared by: Dr.
    [Show full text]
  • Session 2 Classifying Living Things
    Session 2 Classifying Living Things Our Earth hosts an astonishing diversity of life forms. We can find plants, animals, and other types of organisms in almost every habitat that we encounter. In Session 1, characteristics shared by all life forms were introduced as features that unify the living world. Session 2 focuses on how life’s diversity arises from variation on these same unifying features. A closer look at cells, in particular, introduces fundamental differences among life forms that have become one basis for biological classification. The Video How do we answer the question: What is it? Just what makes a plant a plant, or an animal an animal? Sally Goetz Shuler, representing Science and Technology for Children (STC), highlights questions like these as she introduces us to activities in the Organisms unit. The children in the Science Studio give us insight into how second and third graders define plants and animals, as well as their awareness of other life forms. Stephanie Selznick’s first graders in Dorchester, Massachusetts use Venn diagrams to determine how plants and animals are alike and different. Their early ideas are based on observations of class terrariums and aquariums, where they’ve observed these life forms over time. Dr. Paul Williams returns to share what’s going on in Bottle Biology—an ongoing Web site-based activity designed to apply session topics and to serve as a K–6 resource as well. We hear from Dr. Colleen Cavanaugh as she takes us to the deepest parts of the ocean to introduce us to her favorite group of living things—life forms that aren’t classified as plants or animals.
    [Show full text]
  • Download PDF of Summer 2016 Colloquy
    Nonprofit Organization summer 2016 US Postage HONORING EXCELLENCE p.20 ONE DAY IN MAY p.24 PAID North Reading, MA Permit No.8 What’s the BUZZ? Bees, behavior & pollination p.12 What’s the Buzz? 12 Bees, Behavior, and Pollination ONE GRADUATE STUDENT’S INVESTIGATION INTO BUMBLEBEE BEHAVIOR The 2016 Centennial Medalists 20 HONORING FRANCIS FUKUYAMA, DAVID MUMFORD, JOHN O’MALLEY, AND CECILIA ROUSE Intellectual Assembly 22 ALUMNI DAY 2016 One Day in May 24 COMMENCEMENT 2016 summer/16 An alumni publication of Harvard University’s Graduate School of Arts and Sciences 3 FROM UNIVERSITY HALL 4 NEWS & NOTES Harvard Horizons, Health Policy turns 25, new Alumni Council leadership. 8 Q&A WITH COLLEEN CAVANAUGH A path-breaking biologist provides new evolutionary insights. 10 SHELF LIFE Elephants, Manchuria, the Uyghur nation and more. 26 NOTED News from our alumni. 28 ALUMNI CONNECTIONS Dudley 25th, Life Lab launches, and recent graduates gathering. summer Cover Image: Patrick Hruby Facing Image: Commencement Begins /16 Photograph by Tony Rinaldo CONTRIBUTORS Xiao-Li Meng dean, PhD ’90 Jon Petitt director of alumni relations and publications Patrick Hruby is a Los Angeles–based Ann Hall editor freelance illustrator and designer with Visual Dialogue design an insatiable appetite for color. His work Colloquy is published three times a year by the Graduate School Alumni has appeared in The New York Times, Association (GSAA). Governed by its Alumni Council, the GSAA represents Fortune Magazine, and WIRED, among and advances the interests of alumni of the Graduate School of Arts and Sciences through alumni events and publications. others.
    [Show full text]
  • Download Printed Program
    AUG 27 – SEP 1 2017 Woods Hole, Mass. USA 6th International Symposium on Chemosynthesis-Based Ecosystems at Woods Hole Oceanographic Institution CBE6, Woods Hole, MA, USA, Aug 27 – Sep 1 2017 Table of Contents Welcome to CBE6 2017 . 1 Scientific Committee . 2 Local Organizing Committee . 2 Symposium Schedule at a Glance . 3 Full Symposium Schedule* . 4 Sunday, August 27 . 4 Monday, August 28 . 4 Tuesday, August 29 . 5 Wednesday, August 30 . 7 Thursday, August 31 . 7 Friday, September 1 . 9 Poster session I . 11 Poster session II . 13 Excursions . 16 Sponsors . 17 Participants . 18 Logistics Symposium Transportation and Parking . 22 WHOI Passenger Shuttle Schedule . 22 Hotel Shuttle Bus Schedule . 23 Falmouth Map . 24 Public Transportation . 24 Hotel Information . 25 Some Suggested Local Restaurants . 26 This program is current as of August 22,2017 . Please refer to cbe2017 org. for up-to-date information . – 3 – CBE6, Woods Hole, MA, USA, Aug 27 – Sep 1 2017 Welcome to CBE6 2017 On behalf of everyone who was involved in the organization of the Sixth International Symposium on Chemosynthesis-Based Ecosystems, we are very happy to welcome you to Woods Hole on beautiful Cape Cod. The timing could not be better, as this year marks the 40th anniversary of the groundbreaking discovery of hydrothermal vents and chemosynthetic communities at the Galápagos Spreading Center, in which Woods Hole Oceanographic Institution played an important role. We have come a long way since then, and it is exciting to gather on this occasion to celebrate the discovery, while at the same time discussing the newest findings and developments in studying chemosynthesis-based ecosystems and their societal relevance.
    [Show full text]
  • How Giant Tube Worms Survive at Hydrothermal Vents Short Film
    How Giant Tube Worms Survive at Hydrothermal Vents Animated Short Transcript [Ed talks to camera in front of graffiti wall. Montage of 1970s disco dancers, moving R2-D2 replica at contemporary Star Wars convention, 1980s Macintosh computer with animated talking head, zoom in on a picture of a boom box, animation of Voyager 1 in space. Ed talks to camera while holding model of Alvin and drops it.] Ed Yong: 1977. A big year. Saturday Night Fever. Star Wars. Apple becomes a company. The first boomboxes take to the street. Voyager 1 launches on an expedition into the outer solar system. And a small submersible named Alvin begins a dive to the bottom of the Pacific Ocean. [Archival footage of Alvin prepping for diving and in the ocean in a circular insert that’s surrounded by a view of the surface of water while underwater.] Ed Yong: February 1977. 250 miles north of the Galapagos islands. A place where two continental plates are pulling away from each other on the ocean floor. Three men in a miniature sub set off on an expedition that would completely change our view of how extreme life on earth can be. They were on the hunt for deep-sea hydrothermal vents caused by the rift between those continental plates. [Archival footage of Alvin’s view of the ocean floor. Plumes of vents on ocean floor. Archival footage of life on the ocean floor.] Ed Yong: Their existence had been predicted for decades, but no one had ever seen them. At a depth of 7,500 feet, their temperature sensors spiked – they had reached volcanically superheated water gushing through the ocean floor.
    [Show full text]
  • Frank James Stewart Address Professional Education
    FRANK JAMES STEWART ADDRESS School of Biology [email protected] Georgia Institute of Technology www.fjstewart.org Ford ES&T Building, Office 1242 404-894-5819 311 Ferst Drive Atlanta GA 30332-0230 PROFESSIONAL Assistant Professor, School of Biology, Georgia Institute of Technology, Jan. 2011 Postdoctoral associate, Massachusetts Institute of Technology, 2008-2010 EDUCATION Ph.D. Harvard University, Biology, 2008 A.M. Harvard University, Biology, 2005 M.S. University of Nevada-Reno, Environmental Science, 2002 B.A. Middlebury College, Biology, minor in Religion, summa cum laude, 2000 FELLOWSHIPS AND HONORS Sloan Fellowship – Ocean Sciences, 2012 Class of 1969 Teaching Fellow, Georgia Tech, 2011 Harvard NSF IGERT Fellowship - Biomechanics, 2007 NIH Genetics Training Grant, 2003-2005 Phi Kappa Phi induction, 2002 NASA Spacegrant Fellowship, 2001-2002 Governor Kenny Guinn Environmental Research Fellowship, 2001-2002 Outstanding Student Poster Award - 2001 ASLO Aquatic Sciences Meeting, 2001 Sierra Pacific Fellowship, 2000-2001 Phi Beta Kappa induction, 2000 Barry Goldwater Scholarship, 1999-2000 HHMI Undergraduate Research Fellowship, 1998 Paul W. Ward Memorial Writing Award, Honorable Mention, Middlebury College, 1997 RESEARCH INTERESTS Marine microbiology and deep-sea biology Marine oxygen minimum zones Genome evolution and ecology of microbial symbioses Functional diversity and gene expression in natural microbial communities Molecular evolution through genomics RESEARCH EXPERIENCE Postdoctoral Associate, Civil and Environmental Engineering Department, MIT (advisor: Ed DeLong), 1) Meta- transcriptomics of bacterioplankton from an Oxygen Minimum Zone in the eastern South Pacific, 2) Sample-specific methods for rRNA subtraction in environmental metatranscriptomics Ph.D Student, Organismic and Evolutionary Biology Department, Harvard University (advisor: Colleen Cavanaugh), Thesis: "Evolution of chemosynthetic endosymbionts of deep-sea clams," 2003-2008 Lab Technician, Microbial Systems Laboratory, Desert Research Institute, PI: Christian H.
    [Show full text]
  • CURRICULUM VITAE NICOLE DUBILIER Address Max-Planck
    CURRICULUM VITAE NICOLE DUBILIER Address Max-Planck-Institute for Marine Microbiology (MPI-MM) Celsiusstr. 1, D-28359 Bremen Tel. +49 421 2028-932 email: [email protected] Academic Training 1985 University of Hamburg Zoology, Biochemistry, Diplom Microbiology 1992 University of Hamburg Marine Biology PhD Dissertation Title: Adaptations of the Marine Oligochaete Tubificoides benedii to Sulfide-rich Sediments: Results from Ecophysiological and Morphological Studies. Current Position Director of the Max Planck Institute for Marine Microbiology (MPI-MM) Head of the Symbiosis Department at the MPI-MM (W3 position) Professor for Microbial Symbiosis at the University of Bremen, Germany Academic Positions Since 2013 Director of the Symbiosis Department at the MPI-MM (W3 position) Since 2012 Professor for Microbial Symbiosis at the University of Bremen, Germany Since 2012 Affiliate Professor at MARUM, University of Bremen 2007 - 2013 Head of the Symbiosis Group at the MPI-MM (W2 position) 2002 - 2006 Coordinator of the International Max Planck Research School of Marine Microbiology 2004 - 2005 Invited Visiting Professor at the University of Pierre and Marie Curie, Paris, France (2 months) 2001 - 2006 Research Associate in the Department of Molecular Ecology at the MPI-MM 1998 - 2001 Postdoctoral Fellow at the MPI-MM in the DFG Project: "Evolution of symbioses between chemoautotrophic bacteria and gutless marine worms" 1997 Parental leave 1995 - 1996 Research Assistant at the University of Hamburg in the BMBF project: "Hydrothermal fluid development and material balance in the North Fiji Basin" 1993 - 1995 Postdoctoral Fellow in the laboratory of Dr. Colleen Cavanaugh, Harvard University, MA, USA in the NSF project "Biogeography of chemoautotrophic symbioses in marine oligochaetes" 1990 - 1993 Research Assistant at the University of Hamburg in the EU project 0044: Sulphide- and methane-based ecosystems.
    [Show full text]
  • Directors of the National Primate Research Centers
    National Association of Marine Laboratories February 28, 2008 PRESIDENT Dr. David Fluharty, Chairman James Sanders NOAA Science Advisory Board Skidaway Institute of Oceanography 10 Ocean Science Circle c/o Dr. Cynthia Decker Savannah, GA 31411 1315 East-West Highway p 912-598-2400 · f 912-598-2310 [email protected] Room 11142 Silver Spring, MD 20190 COMMITTEE ON PUBLIC POLICY Dear Mr. Chairman: CHAIRMAN Ivar Babb National Undersea Research Center This letter is in response to the Notice of Solicitation for Members of the University of Connecticut, Avery Point NOAA Science Advisory Board posted in the Federal Register (Vol. 73, No. 1080 Shennecossett Road 21) dated Thursday, January 31, 2008. Groton, Connecticut 06340 p 860-405-9119 · f 860-445-2969 [email protected] On behalf of the National Association of Marine Laboratories (NAML) I respectfully submit four (4) nominees for consideration for appointment to the NOAA Science Advisory Board (SAB). Each of these individuals is an PAST PRESIDENT Anthony Michaels excellent scientist with a multi-disciplinary perspective and a keen sense of Wrigley Institute for Environmental the link between science and the needs of society. In one form or another, Studies University of Southern California each has dedicated his or her career to ocean, coastal and Great Lakes P.O. Box 5069 research and education. Each would provide a unique dynamic and Avalon, CA 90704 p 213-740-6780 · f 213-740-7620 perspective to the SAB in its role as advisor to the NOAA Administrator on [email protected] issues pertaining to research, education, and the application of science to meeting the resource management and environmental assessment and protection needs of the Nation.
    [Show full text]
  • Researchers Take a Closer Look at the Genomes of Microbial Communities in the Human Mouth 19 December 2020
    Researchers take a closer look at the genomes of microbial communities in the human mouth 19 December 2020 living in certain areas of the mouth. "As microbial ecologists, we are fascinated by how bacteria can seemingly divide up any habitat into various niches, but as humans ourselves, we also have this innate curiosity about how microbes pattern themselves within our bodies," said lead author Daniel R. Utter, Ph.D. candidate in the Department of Organismic and Evolutionary Biology, Harvard University. Recent developments in sequencing and bioinformatic approaches have offered new ways to untangle the complexity of bacterial communities. Micrograph showing Rothia cells (light blue) in their Utter and Colleen Cavanaugh, Edward C. Jeffrey native habitat, a bacterial biofilm scraped from the Professor of Biology in the Department of human tongue. Credit: Jessica Mark Welch, Marine Organismic and Evolutionary Biology, Harvard Biological Laboratory. University, teamed up with researchers at the Marine Biological Laboratory, Woods Hole, University of Chicago, and The Forsyth Institute to apply these state-of-the-art sequencing and Bacteria often show very strong analysis approaches to get a better picture of the biogeography—some bacteria are abundant in oral microbiome. specific locations while absent from others—leading to major questions when applying microbiology to "The mouth is the perfect place to study microbial therapeutics or probiotics: how did the bacteria get communities," according to co-author A. Murat into the wrong place? How do we add the right Eren, assistant professor in the Department of bacteria into the right place when the Medicine at the University of Chicago.
    [Show full text]
  • Helps You Create a Resume Tailored to Your Experience
    Major Emily L. Lilly Contact Assistant Professor Phone: 540-464-7423 Information Biology Department Fax: 540-464-7661 Virginia Military Institute Email: [email protected] Lexington, VA 24550 Education Harvard University Cambridge, MA NASA Exobiology Postdoctoral Fellow , 2003 - 2005 Advisor: Colleen Cavanaugh Massachusetts Institute of Technology and Cambridge and Woods Hole Oceanographic Institution Joint Program Woods Hole, MA Ph.D. in Biological Oceanography , 2003 Advisor: Donald M. Anderson Dissertation: Phylogeny & Biogeography of the Toxic Dinoflagellate Alexandrium Smith College Northampton, MA B.A. summa cum laude , with highest honors in Biology , 1998 Thesis Advisor: Paulette M. Peckol Honors Thesis: Physiological Responses of the Coral Porites asteroides and its Algal Symbionts to Moderate Phosphate Enrichment Simon’s Rock College of Bard Great Barrington, MA A.A. with distinction , 1996 Appointments 2010-present Assistant Professor Biology Department, Virginia Military Institute 2009-2010 Lecturer Department of Biological and Environmental Sciences, Longwood University 2008-2009 Visiting Lecturer Biology Department, University of Virginia 2005-2009 Assistant Professor Biology Department, University of Massachusetts Dartmouth 2003-2005 Postdoctoral Fellow Department of Organismic and Evolutionary Biology, Harvard University 2002-2003 Visiting Professor Department of Natural Sciences, Babson College 2000 Guest Student Centre for Marine Studies, University of Queensland 1998-2003 Graduate Research Fellow Biology Department, Woods Hole Oceanographic Institution 1997-1998 Undergraduate Research Intern Divisions of Marine Biology and Fisheries Rosenstiel School of Marine and Atmospheric Science 1997 Howard Hughes Undergraduate Research Fellow Biology Department, Smith College Lilly, E.L. CV page 2 Courses Assistant Professor, Virginia Military Institute , 2010-present Taught Genetics : a required course for all Biology Majors, including both theoretical and practical applications of Mendelian and modern molecular genetics.
    [Show full text]
  • Deep Submergence Science Committee Planning Meeting Minutes
    DEEP SUBMERGENCE SCIENCE COMMITTEE PLANNING MEETING MINUTES DECEMBER 14, 1996 Moscone Center, Room 256 San Francisco, CA APPENDICES I. Meeting Agenda II. Attendance List III. Paul Johnson Cruise Highlights IV. Haymon/MacDonald Cruise Plan V. Bill Martin Cruise Highlights VI. Greg Ravizza Vent Fluid Data VII. LUSTRE '96 Cruise Summary VIII. Colleen Cavanaugh Cruise Highlights IX. 1996-7 ALVIN/ROV/ATLANTIS Operations X. WHOI Integrated Deep Submergence Plan XI. WHOI Archives XII. ALVIN Overhaul and Upgrades XIII. ROV Status and Upgrades XIV. NSF Report XV. NURP Message to DESSC XVI. DSOG Equipment Upgrade Proposal XVII. ALVIN/ROV Letter of Interest Summary XVIII. DESSC Preliminary Response Regarding Long Range Plans XIX. Preliminary Response from DESSC to Fred Saalfeld dated 12/5/96 XX. Navy Development Group 1 - Report XXI. MBARI Facilities Report XXII. ROPOS Status XXIII. Deep Tow Statistics WELCOME, INTRODUCTORY REMARKS: The Fall Deep Submergence Science Committee (DESSC) Planning Meeting was held on December 14, 1996 in Room 256 of the Moscone Center, San Francisco, CA. The meeting was called to order at 8:30 a.m. Mike Perfit, DESSC Chair, welcomed the meeting participants and introduced new DESSC members Marv Lilley and Patty Fryer. He also noted that Dan Orange, Jim Bellingham and Bob Collier had been asked and agreed to serve on DESSC for second, three year terms. Mike reviewed the meeting agenda, Appendix I and summarized the major issues that have concerned DESSC during the past year. The list of meeting participants is included as Appendix II. 1996 SCIENCE REPORTS: PIs who conducted science cruises using deep submergence assets over the past year were invited to present brief overviews of their science programs along with critiques of the facility operations.
    [Show full text]
  • How Giant Tube Worms Survive at Hydrothermal Vents Film Guide Educator Materials
    How Giant Tube Worms Survive at Hydrothermal Vents Film Guide Educator Materials OVERVIEW The HHMI film How Giant Tube Worms Survive at Hydrothermal Vents is one of 12 videos in the series “I Contain Multitudes,” which explores the fascinating powers of the microbiome—the world of bacteria, fungi and other microbes that live on and within larger forms of life, including ourselves. In 1977, scientists discovered a diverse community of organisms inhabiting the deep-sea hydrothermal vents of the Pacific Ocean. While they had long predicted the presence of deep-sea vents on the ocean floor, they did not expect to find animal life there in the absence of sunlight. The sources of energy in these ecosystems are hydrogen sulfide (H2S) and other inorganic chemicals that are abundant in the water that rises from the vents. Some species of bacteria can use these inorganic compounds in chemical reactions to produce sugar and other organic molecules in a process called chemosynthesis. The surprising discovery was that chemosynthesis could support a large and diverse ecosystem. Some animals living near hydrothermal vents, such as the giant tube worm, Riftia pachyptila, have a symbiotic relationship with species of chemosynthetic bacteria. In How Giant Tube Worms Survive at Hydrothermal Vents, Dr. Colleen Cavenaugh describes how she first uncovered this symbiotic relationship and what it means for life deep in the ocean. KEY CONCEPTS A. Through advances in engineering and technology, scientists have been able to explore new habitats and discover new life forms and metabolic strategies. B. Most ecosystems on Earth are sustained by photosynthesis at the base of the food chain.
    [Show full text]