<<

arXiv:2006.10128v1 [astro-ph.GA] 17 Jun 2020 emsiebakhl (SMBH, hole black permassive ttercne ( center their at ns rvn hscneto ean unclear. mech- remains physical connection the host this of the driving nature the of anism exact build-up to the mass coupled However, stellar intimately . and growth are rate and SMBH formation fueling central the the that suggestion of a rate to led also they n eain lo st predict to us allow relations ing ( (e.g., centration core stellar depleted num- velocity a stellar with including 2000 scale properties masses galaxy ( dispersion host SMBH of ber reviews. recent for of subject a been has since host interest, their and SMBHs 1998 otble(.. h nieglx ncs felliptical of case in galaxy entire see the galaxies), (i.e., bulge host omny&Rcsoe1995 Richstone & Kormendy ( mass SMBH tween 1989 Dressler H BAKHL MASS) HOLE (BLACK THE 1 lotallclglxe r eivdt abrasu- a harbor to believed are galaxies local all Almost crto fgsot MH rgesatv galactic active triggers SMBHs onto gas of Accretion rpittpstuigL using 2020 typeset 19, Preprint June version Draft eatmnod ´sc el irayAstrof´ısica, Instit y Tierra la F´ısica de de Departamento iiinT Dullo T. Bililign ,blelmnst ( luminosity bulge ), ; errs od2005 Ford & Ferrarese h aayclr utemr,w hwta hyaecpbeo e of SM capable galaxies. estimating are late-type headings: they of and Subject that early- prospect show low-mass, the we in Furthermore, offer masses color. relations the galaxy with new the consistent These galaxies, late-type and scenarios. early- for growth SMBH h etclsatro the of scatter vertical the eelacmaal ee fvria cte ntelog the in scatter vertical of level comparable a reveal tflosta h MHmse o aetp aaisehbtasteep a exhibit galaxies late-type The for galaxies. masses early-type SMBH for the those that follows it aeul esrdi ooeeu anruigteglxe’FUV galaxies’ the using manner homogeneous a in measured carefully o h w opooia ye aesoe htdffrat differ that slopes have types morphological two the for n 7lt-yeglxe)wt ietymeasured directly with galaxies) late-type 47 and h supinta h pcfi trfrainrt faglx (s galaxy a of rate formation star specific the that assumption the e eunei the in sequence red UV MH r otdb ery n aetp)glxe ihrde co redder with literat galaxies the late-type) and in (early- by decompositions hosted are structural SMBHs multi-component their and fglxe.Hr,w rsn el bevdcreain betwee correlations g observed the newly of present understanding we our Here, for implications galaxies. useful of have galaxy host ih orltosbtensprasv lc oe(MH as( mass (SMBH) hole black supermassive between correlations Tight rhme l 2001 al. et Graham σ − , rtrpre iercreainbe- correlation linear a reported first ) 36 oo ( color [3.6] errs ert 2000 Merritt & Ferrarese omny&Ho & Kormendy omny&Richstone & Kormendy aora ta.1998 al. et Magorrian 1. A INTRODUCTION M T 1 2 3 E , tl mltajv 12/16/11 v. emulateapj style X nttt eAto´sc eCnra,Vı ´ce /,E- V´ıa L´actea S/N, Canarias, Astrof´ısica de de Instituto BH eatmnod srfıia nvria eL aua E- Laguna, La de Astrof´ısica, Universidad de Departamento L lxnr .K Bouquin K. Y. Alexandre C bulge aais litcladlniua,c aais udmna parame fundamental galaxies: — cD lenticular, and elliptical galaxies: n h uioiyo the of luminosity the and ) e:nce aais htmty aais structure galaxies: photometry— galaxies: — nuclei ies: UV ul 2019 Dullo M .Tecneto between connection The ). , ; tot n ug as( mass bulge and ) .Ntol i hs scal- these did only Not ). BH aora ta.1998 al. et Magorrian ( CLR EAIN O AL-ADLT-YEGLXE:RDAN RED GALAXIES: LATE-TYPE AND EARLY- FOR RELATIONS (COLOR) M ero’ 0 = r Pearson’s , 2013 M C − M BH BH BH UV ); n tla con- stellar and ) ∼ ; − ; nglxe,but galaxies, in , Graham al. et Richstone ( ehrte al. et Gebhardt tot σ 1995 10 M eain Our relation. eMdi,E200Mdi,Spain Madrid, E-28040 Madrid, de 5 igas hl aetp aaistaeabu eune Within sequence. blue a trace galaxies late-type while diagrams, BH − e also see , rf eso ue1,2020 19, June version Draft C − LESEQUENCES BLUE 10 M . ( 6 9 2016 t eFıiad atıua e omsIACS Universi IPARCOS, Cosmos del Part´ıculas F´ısica y de de uto bulge UV M 1 − ABSTRACT , 2 ⊙ , , Gorgas 0 3 tot ), ) ) , , . )frasml f6 aais(0erytp galaxies early-type (20 galaxies 67 of sample a for 7) rad i ePaz de Gil Armando M and M BH yeglxe r ul hog egr fsmaller of mergers through built are galaxies type accre- types gas morphological two may of the galaxies channels for (see growth late-type different SMBH and and two tion early- reflect of therefore properties tural h trfrainadgot ftehs aay(e.g., galaxy host of the of regulation growth the and for formation star critical the feedback, (AGN) nucleus iei lecod(e.g., 2009 re- al. cloud 1977 color- et which Brammer blue the galaxies Griersmith & a in Visvanathan late-type red- in galaxies from a rise side and of separate gives define dichotomy colors galaxies distribution sequence This diagram—early-type blue bimodal magnitude have a forming. galaxies star to star-formation actively late-type level galax- low are while with spiral) red rate, typically (i.e., are in galaxies late-type 2018 SMBHs as al. with Krajnovi´c (e.g., and et correlate manner do lenticular ies not same (i.e., do the early-type galaxies that elliptical) show servations 2010 al. et Schawinski 2005 2006 al. et Matteo 1998 Di Rees & Silk BH M 1 C − nteheacia aayfrainseai,early- scenario, formation galaxy hierarchical the In M BH nthe in BH UV .Tedsic omto itre,clr n struc- and colors histories, formation distinct The ). okn enus 2009 Hernquist & Hopkins − ∼ , tot ieto,ruhy5% roughly direction, L 2 3 GALEX σ 80 aLgn,Sanand Spain Laguna, La 38205 eain ugs ieetcanl of channels different suggest relations . 6 , os u the but lors, tot ee.Erytp aaisdfiea define galaxies Early-type level. conl a2013 Ma & McConnell rdsic omto n evolution and formation distinct ir n F)i eltae by traced well is SFR) tmtn nemdaebakhole black intermediate stimating 80 aLgn,Spain Laguna, La 38206 r.W n htmr massive more that find We ure. M ot fSBsadevolution and SMBHs of rowth eain o h apegalaxies sample the for relations M Hmse eibyuigonly using reliably masses BH 1 U n 3.6 and NUV , ; , BH rdpnec nsF than sSFR on dependence er BH /S oa .Knapen H. Johan ain1999 Fabian ). ; n h rpriso the of properties the and ) 4 n h otglx total galaxy host the and ; , uvy h oosare colors The survey. G rtne l 2006 al. et Croton 2014 aue l 2019 al. et Sahu M BH ; rjoice l 2018 al. Krajnovi´c et −C − hse oet 1964 Roberts & Chester µ 7 oethan more 27% ; ; UV ; magnitudes m hna ta.2009 al. et Shankar 2005 al. et Springel e galax- — ter , adye l 2004 al. et Baldry ; tot 2 L alae l 2016 al. et Saglia , 3 UV relations and , .Early-type ). ; a Complutense dad /L okn tal. et Hopkins 3 . Javier 6 , .Ob- ). D ; ; ; ; ; 2 Dullo et al. systems and accretion events (e.g., White & Rees mass. Mart´ın-Navarro et al. (2018) observed a trend 1978; Naab et al. 2006b; Hopkins et al. 2009a,b; between SMBH mass and host galaxy Rodriguez-Gomez et al. 2016; Mundy et al. 2017). histories, where the star formation in galaxies hosting Major merger driven inflow of gas into the nuclear more massive SMBHs was quenched early and more effi- regions of the newly formed merger remnant can ciently than in those with less massive SMBHs (see also produce rapid bursts of star formation and fuel the van Son et al. 2019). Given the UV− [3.6] color (CUV) is SMBH (Barnes & Hernquist 1991, 1996; Naab et al. a good proxy for sSFR (e.g., Bouquin et al. 2018), a cor- 2006a; Hopkins & Quataert 2010). For late-type relation between MBH and UV− [3.6] color is expected. (i.e., spiral) galaxies, one of the most advocated The UV flux is a proxy for the current star formation formation scenarios is secular evolution involving non- rate since it traces massive, young . The emission axisymmetric stellar structures, such as bars and spiral at 3.6 µm, which is less affected by dust extinction, is arms which can drive an inflow of gas from the disk a good proxy for stellar mass since it traces primar- into the nuclear region and onto the central SMBH ily older stellar populations. However, a small fraction (Kormendy 1982; Courteau et al. 1996; Carollo et al. (5%−15%) of the 3.6 µm flux can be due to contributions 1997; Kormendy & Kennicutt 2004; Athanassoula from intermediate-age stars, polycyclic aromatic hydro- 2005; Laurikainen et al. 2007; Fisher & Drory 2008; carbons and hot dust (Meidt et al. 2012). Hitherto, the Graham & Worley 2008; Gadotti 2009; Tonini et al. MBH − color relation was overlooked, in part, owing to 2016; Dullo et al. 2016, 2019). the narrow wavelength baselines commonly used to de- A related issue is the observed departures from sin- termine colors. gle power-law relations (e.g., bends and offsets) in In this paper, we present (for the first time) SMBH scaling diagrams at the low-mass and high- correlations between MBH and CUV colors for 67 mass ends or when the galaxy sample contains S´ersic GALEX /S4G galaxies with directly measured SMBH and core-S´ersic galaxies. In particular, Graham (2012, masses (van den Bosch 2016) and homogeneously deter- see also Graham & Scott 2013) reported two separate mined GALEX FUV and NUV, and Spitzer 3.6 µm MBH − Lbulge relations with distinct slopes for S´ersic magnitudes (Bouquin et al. 2018). Dividing the sample and core-S´ersic galaxies. Core-S´ersic galaxies are lu- galaxies by morphology, we fit two different MBH −CUV minous (MB . −20.5 ± 0.5 mag) galaxies which ex- relations with distinct slopes for early- and late-type hibit a flattening in their inner stellar light distri- galaxies. bution due to a central deficit of light relative to The MBH −CUV relation has multiple, important ap- the inward extrapolation of their outer S´ersic (1968) plications. It allows the SMBHs in early- and late-type light profile (Faber et al. 1997; Graham et al. 2003; galaxies to be predicted free from uncertainties due to Hopkins et al. 2009b; Dullo & Graham 2012, 2013, 2014, distances and mass-to-light ratios, although there are un- 2015; Dullo et al. 2017, 2018; Dullo 2019). They are certainties due to K-corrections for more distant galaxies. thought to have formed from a few number of gas-poor Furthermore, using MBH −CUV relation we hope to un- major merger events1, but a small fraction of them can derstand properly the poorly constrained low-mass end host molecular gas reservoirs that feeds an ongoing, low of the SMBH scaling relations. In so doing, we can pre- level star formation (Davis et al. 2019). In contrast, the dict SMBHs or intermediate-mass black holes (IMBHs) 5 low- and intermediate luminosity (MB & −20.5 mag) with masses ∼ 100−10 M⊙ in low-mass systems and bul- S´ersic galaxies, with no depleted cores, are product of geless spiral galaxies. In addition, since colors are easy gas-rich mergers (Hopkins et al. 2009a; Dullo & Graham to measure even for high- galaxies, studying the 2012, 2014; Dullo et al. 2016, 2019). Departures from galaxy color and BH mass evolution at different epochs the best-fitting single power-law relation in a BH scaling may provide further clues on the different channels of BH diagram may hold implications for SMBH and galaxy growth. co-evolution, however, as the majority of SMBH scaling The paper is organized as follows. Section 2.1 describes relations to date are based on host galaxy properties that the sample selection. Sections 2.2 and 2.3 describe the trace solely the old stellar populations, disregarding the SMBH data, and the UV and 3.6 µm apparent, asymp- young and intermediate-aged stars, the exact mechanism totic magnitudes. The derivation of bulge, disk and total establishing the supposed coupling between the growth magnitudes for the sample galaxies along with the cor- of the SMBHs and the build-up of their host galaxies is responding dust corrections and error measurements are unclear. discussed in Sections 3.1 and 3.2, respectively. We go Here, we explore a scenario in which the complex inter- on to discuss the regression techniques employed for fit- play between the details of the SMBH growth, efficiency ting the BH scaling relations in Section 3.3 and present of AGN feedback, regulated star formation histories and the results from our regression analyses in Sections 3.4 major merger histories of the host galaxy establish a re- and 3.5. Section 4 provides a discussion of our results, lation between the SMBH and color of the host galaxy including the origin and implications of the MBH −CUV (see also Schawinski et al. 2010, 2014). There are emerg- relations. Section 5 summarizes our main conclusions. ing evidences showing a link between MBH and the star There are four appendices at the end of this paper (Ap- formation rate in nearby galaxies. Terrazas et al. (2017) pendices A, B, C and D). Appendix A discuses our im- reported an inverse correlation between specific star for- plementation of the MCMC Bayesian statistical method. mation rate (sSFR) and specific Notes on five notable outliers in the MBH −CUV relations are given in Appendix B. Appendix C includes a table, 1 The depleted cores of core-S´ersic galaxies are thought to be listing apparent total magnitudes, flux ratios, dust cor- scoured by coalescing binary SMBHs formed in the gas-poor merger rections and direct SMBH masses for our sample galax- events (Begelman et al. 1980; Ebisuzaki et al. 1991; Merritt 2006). Black hole mass color correlation 3

Fig. 1.— Galaxies with measured SMBH masses (MBH). MBH plotted as a function of (a) total Ks-band luminosity and (b) the half-light radius (Re) for a sample of 245 galaxies with measured MBH (van den Bosch 2016, his Table 2). Colored symbols denote our sample of 67 galaxies, whereas filled gray circles show the remaining 178 galaxies with measured MBH in van den Bosch (2016, his Table 2). Panel (c): MBH versus total Ks-band stellar mass (M∗,k) for our sample derived from the total Ks-band luminosities assuming the Ks-band 0.45 mass-to-light ratio M∗/Lk = 0.10σ (van den Bosch 2016). Morphological classifications are from HyperLeda. ies. We tentatively predict BH masses in a sample of 1382 and their properties are presented in Appendix C. GALEX /S4G galaxies with no measured BH masses us- In Fig. 1, we check on potential sample selection bi- ing our MBH −CUV relations and tabulated them in Ap- ases by comparing MBH, Re, and Lk of our sample and pendix D. those of other (178) known galaxies with measured black 2. hole masses using data from van den Bosch (2016, his SAMPLE AND DATA Table 2). Both the early- and late-type galaxies in our 2.1. Sample Selection sample probe large range in MBH, Re, and Lk to allow a Our investigation of correlations between the SMBH robust investigation of the MBH −C relations. We also find that our early- and late-type galaxies span a wide mass (MBH) and (UV − [3.6]) galaxy color uses UV and 3.6 µm magnitudes, determined in a homogeneous man- range in stellar mass (M∗,k), Fig. 1 c. The galaxy stellar masses we compute using Lk and assuming the Ks-band ner, for a large sample of galaxies with measured SMBH 0.45 masses. Henceforth, we designate the (UV − [3.6]) color mass-to-light ratio M∗/Lk = 0.10σ (van den Bosch as C. Bouquin et al. (2015, 2018) provided far-UV (FUV, 2016). Late-type galaxies in our sample have M∗,k that 9 11 ˚ ˚ range from 10 M⊙ to 2 × 10 M⊙, and for 75% of λeff ∼ 1526 A), near-UV (NUV, λeff ∼ 2267 A) and 10 3.6 µm asymptotic magnitudes for a sample of 1931 them M∗,k/M⊙ & 2 × 10 . For the early-type galax- 10 12 nearby galaxies taken from the Spitzer Survey of Stellar ies, 10 . M∗,k/M⊙ . 10 , and 90% of these galax- 4 10 Structure in Galaxies (S G) sample (Sheth et al. 2010). ies have M∗,k/M⊙ & 2 × 10 . It worth noting that They used ultraviolet (UV) and near- (3.6 µm) the GALEX /S4G sample galaxies (Bouquin et al. 2018) imaging data obtained with the Galaxy Evolution Ex- were chosen to have radio-derived radial velocities of −1 plorer, GALEX, (Martin et al. 2005; Gil de Paz et al. Vradio < 3000 Km s in HyperLEDA. As such, the sam- 2007) and the Infrared Array Camera (IRAC) on the ple lacks hi-poor, extremely massive galaxies including , respectively. We use the SMBH brightest cluster galaxies (BCGs). sample presented in van den Bosch (2016, his Table 2). They publish a compilation of directly measured SMBH 2.2. Black hole masses masses (MBH), half-light radii (Re), and total Ks- Among our selected sample of 67 galaxies, 64 have band luminosities (Lk) for a large sample of 245 galax- SMBH masses (MBH) determined from stellar, gas or ies. We selected all galaxies that were in common maser kinematic measurements. For the remaining 3/67 to Bouquin et al. (2018) and van den Bosch (2016), re- galaxies (NGC 4051, NGC 4593 and NGC 5273), MBH sulting in a sample of 67 galaxies studied in this pa- were based on reverberation mapping (Bahcall et al. per. Homogenized mean central velocity dispersions (σ) 1972; Peterson 1993). Of the 67 galaxies, 62 harbor and morphological classifications (elliptical E, elliptical- 6 black holes that are supermassive (i.e., MBH & 10 M⊙); lenticular E-S0, lenticular S0, lenticular-spiral S0-a and see Appendix C. While the remaining 5 sample galaxies 4 5 spiral S) the sample galaxies were obtained from Hyper- have 2 × 10 M⊙ . (M ) . 3 × 10 M⊙, we also refer 2 BH leda (Paturel et al. 2003; Makarov et al. 2014). In the to these black holes as SMBHs. The sample includes 25 analysis of the scaling relations (Tables 1, 2, 3 and 4), galaxies with MBH upper limits, comprised of 23 late- the galaxies are divided into two, broad morphological type galaxies and 2 early-type galaxies. We discuss how classes, early-type galaxies (9 Es, 2 E-S0s, 2 S0s and 7 the inclusion of upper limits affects the BH scaling rela- S0-a) and late-type galaxies (47 Ss). Most of our late- tions in Section 3. The uncertainties on MBH were taken type galaxies are disk dominated. The full from van den Bosch (2016). 2 http://leda.univ-lyon1.fr 4 Dullo et al. . BH N N N N M bisector ed lopes and 20 18 22 45 18 19 18 45 . . . . 0 0 0 0 bces ± ± ± ± [dex] [dex] [dex] [dex] ǫ ǫ ǫ ǫ 69 69 66 66 tted . . . . total apparent magnitudes m ∆ [dex] ∆ [dex] ∆ [dex] ∆ [dex] µ ntributing to the regression fits. ) regressions. Cols. (4) and (5) 6 . 3 X | r r r r m Y 0.61 0.86 — 18 0.60 0.87 —0.70 45 0.72 —0.65 19 0.86 — 45 0.41 0.13 0.28 0.23 0.13 — 0.83 — 45 0.27 — 0.870.12 — — 18 0.870.20 — — 45 0.68 — 19 0.26 — 0.85 — 45 0.51 — — 0 0.27 — — 0 0.60 — — 0 0.63 — 0.850.17 — — 18 0.810.74 — — 45 0.82 — 19 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ) from the ( β BH BH BH BH , left , left , right =log M =log M 2 =log M =log M , right 2 2 are the FUV, NUV and 2 0.14 1.03 0.17 1.95 0.15 1.38 0.20 1.75 Y Y 0.13 1.24 0.18 1.57 0.14 1.05 0.16 1.76 0.13 1.35 0.25 2.06 0.11 0.87 0.26 2.33 Y Y m ± ± ± ± ± ± ± ± ± ± ± ± ) and slopes ( µ Bisector Bisector Bisector Bisector α 5.0, 2.7, 6.5, 3.3, 6 . − − − − from the symmetrical bisector regressions. The preferred s 3 Symmetric Symmetric Symmetric Symmetric 8.18 7.03 8.12 6.96 tot tot tot tot m β ) for our early- and late-type galaxies with directly measur , , , , cepts ( tot , and and FUV FUV NUV NUV C C C C UV 0.35 6.94 0.84 — 1.71 0.38 — 1.17 0.79 — 2.04 0.41 — — — — 0 0.82 0.36 0.99 0.33 0.77 8.17 0.36 7.02 0.68 8.11 α C = = = = ± ± ± ± ± ± ± ± ± ± ± ± X X NUV X X ). Cols. (9) the root-mean-square (rms) scatter around the fi , , , , r m α α α α , + + + + TABLE 1 late-type galaxies, Fig. FUV early-type galaxies, Fig. βX βX late-type galaxies, Fig. βX βX early-type galaxies, Fig. Y Y Y Y [3.6] color ( = = m | | = | = | Y Y Y Y 0.18 1.94 0.23 2.47 0.13 1.59 0.20 2.63 0.27 1.86 0.31 2.65 0.19 1.35 0.29 2.74 0.17 1.61 0.27 2.59 0.22 1.82 0.24 2.65 − ), see the text for details. Col. (11) number of data points co ǫ ± ± ± ± ± ± ± ± ± ± ± ± , where m lation coefficient ( scaling relations for early- and late-type galaxies. µ 6 . tot 3 , m 0.17 6.94 0.44 8.34 0.26 7.09 0.55 8.19 0.30 8.32 0.40 8.30 0.20 7.06 0.36 8.21 0.35 6.96 0.30 8.32 0.16 7.10 0.28 8.18 FUV − ) and total UV ± ± ± ± ± ± ± ± ± ± ± ± − C BH NUV M BH m M = X X X X XX X X | | | | tot Y Y Y Y , ) regression fits, while cols. (6) and (7) show X αβ αβ αβ αβ αβαβ αβ αβ αβ αβ αβ αβ | 0.12 0.82 0.22 1.25 0.13 0.87 0.20 1.66 0.12 1.08 0.18 1.28 0.13 0.82 0.15 1.57 0.15 1.24 0.17 1.04 0.12 0.62 0.15 1.27 NUV Y C ± ± ± ± ± ± ± ± ± ± ± ± , m µ 8.15 7.07 8.10 7.02 6 . direction (∆). Col. (10) intrinsic scatter ( ). Col. (1) regression method. Cols. (2) and (3) are the inter 3 5 m BH − M FUV obtained from the ( m β = err err err err and tot , α FUV relation in the log OLS 6.94 of the galaxies (Table MCMC — — — — 6.90 intercepts are highlighted in bold. Cols. (8) Pearson corre C (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) linmix linmix linmix are BCES 8.12 BCES 7.01 BCES 8.07 BCESNotes.— Correlation between SMBH mass ( 6.96 Regression method OLSOLS 8.10 OLS 6.97 8.06 MCMCMCMC — —MCMC — — — — — — 8.27 — — — 6.95 — 8.06 linmix Black hole mass color correlation 5

2.3. UV and 3.6 µm apparent asymptotic magnitudes and Table 1) to determine dust-corrected bulge and disk Bouquin et al. (2015, 2018) used the 3.6 µm sur- magnitudes. Since Driver et al. (2008) did not provide face brightness profiles from Mu˜noz-Mateos et al. (2015) 3.6 µm dust corrections, we rely on the prescription for to determine the 3.6 µm magnitudes for their galax- their reddest bandpass (i.e., K) to correct the 3.6 µm ies. They extracted the UV surface brightness pro- magnitudes. These corrections are given by: files of the galaxies following the prescription of Mu˜noz-Mateos et al. (2015). Briefly, the sky levels in corr obs 2.18 m , = m , − 1.10 − 0.95[1 − cos(i)] , (1) galaxy images were first determined before the images bulge UV bulge UV were masked to avoid bright foreground and background corr obs 3.42 objects (Bouquin et al. 2018, their section 3.1). The mdisk,UV = mdisk,UV − 0.45 − 2.31[1 − cos(i)] , (2) FUV, NUV and 3.6 µm radial surface brightness profiles were then extracted using a series of elliptical annuli with corr obs 2.77 fixed ellipticity and position angle, after excluding the mbulge,3.6 = mbulge,3.6 − 0.11 − 0.79[1 − cos(i)] , (3) innermost regions, R < 3′′, (Mu˜noz-Mateos et al. 2015; Bouquin et al. 2015, 2018). Each annulus has a width of ′′ corr obs 4.23 6 and measurements were taken up to 3 × the major mdisk,3.6 = mdisk,3.6 − 0.04 − 0.46[1 − cos(i)] , (4) axis of the galaxy D25 elliptical isophote. To derive the FUV, NUV and 3.6 µm asymptotic magnitudes from the where cos(i) = b/a, i.e., the minor-to-major axis ratios, corresponding surface brightness profiles, Bouquin et al. which were computed for our galaxies from the minor (2018) extrapolated the growth curves. The UV, and 3.6 and major galaxy diameters given in NED. − For each sample galaxy, we derived the dust-corrected µm data reach depths of ∼27 mag arcsec 2 and ∼26.5 mag arcsec−2, respectively, allowing the growth curves to total galaxy magnitude as flatten out for most galaxies. The method yielded robust corr corr corr −0.4mdisk −0.4mbulge asymptotic magnitudes with errors that are within the mtotal = −2.5log(10 + 10 ) (5) FUV and NUV zero-point uncertainties of 0.05 and 0.03 AB mag (Morrissey et al. 2007). 3.2. Uncertainties on magnitudes 3. RESULTS Analyses of the (black hole)-(color) relations can be 3.1. Calculating dust-corrected total magnitudes affected by uncertainties on the bulge, disk and total The FUV, NUV and 3.6 µm (total) asymptotic mag- magnitudes (Section 3.1 and Appendix C) that are dom- nitudes of our sample were corrected for Galactic extinc- inated by systematic errors. We account for four poten- tion by Bouquin et al. (2015, 2018) using the E(B − V ) tial sources of systematic uncertainty. There are uncer- reddening values taken from Schlegel et al. (1998). For tainties on the UV and 3.6 µm asymptotic magnitudes the analyses in the paper, we define the total galaxy introduced by dust contamination, imperfect sky back- luminosity as the sum of the luminosities of the bulge ground determination and poor masking of bright sources and disk, excluding additional galaxy structural compo- (Bouquin et al. 2018). For the disk galaxies, there are nents such as bars and rings. The bulk of the galax- uncertainties due to our dust correction. There is also a ies in our sample are multi-component systems. Frac- need to account for uncertainties on the 3.6 µm B/T and tional luminosities of the individual structural compo- D/T ratios (Salo et al. 2015) used to covert the asymp- nents are needed to obtain accurate bulge and disk mag- totic magnitudes into disk, bulge and total magnitudes. nitudes from the total asymptotic magnitudes. We note For the UV magnitudes, an additional source of system- that, from here on, the term ‘bulge’ is used when re- atic uncertainty is the derivation of the B/T and D/T ferring to both the spheroids of elliptical galaxies and ratios (Section 3.1). The total uncertainties associated the bulges of disk galaxies. Fortunately, Salo et al. with the UV and 3.6 µm magnitudes were calculated by (2015) performed detailed 2D multi-component decom- adding the individual contributions in the error budget positions of 3.6 µm images of all our galaxies into nu- in quadrature. Appendix C lists total magnitudes and clear sources, bulges, disks and bars, and they presented associated errors for our sample galaxies. The quoted fractional bulge and disk luminosities which we use to magnitudes are in the AB system, unless noted other- calculate the 3.6 µm bulge and disk magnitudes. For wise. two galaxies (NGC 3368 and NGC 4258) with poor fits 3.3. in Salo et al. (2015), the 3.6 µm fractional luminosi- Regression Analysis ties were taken from Savorgnan & Graham (2016). The Inherent differences in the employed statistical meth- bulge-to-disk flux ratio (B/D) of a galaxy depends on ods may systematically affect the derived BH scal- both the observed wavelength and galaxy morphologi- ing relations and it is therefore vital to explore cal type (e.g., M¨ollenhoff 2004; M¨ollenhoff et al. 2006; this issue. We performed linear regression fits to corr corr Graham & Worley 2008; Kennedy et al. 2016). The UV MBH −C(= mUV − m3.6 ), MBH − L3.6 and MBH − σ B/T and D/T ratios tabulated in Appendix C were de- data using three traditional regression techniques: the rived using the 3.6 µm B/D ration together with the (ex- Bivariate Correlated Errors and intrinsic Scatter (bces) trapolation of the) B/D-passband-morphological type code (Akritas & Bershady 1996), the Bayesian linear re- diagram from M¨ollenhoff (2004, his Fig. 5). gression routine (linmix err, Kelly 2007) and Ordi- For the disk galaxies, we additionally applied the incli- nary Least-Squares (ols) code (Feigelson & Babu 1992), nation (i) dependent, internal dust attenuation correc- Figs. 2 and 3. The bces routine (Akritas & Bershady tions from Driver et al. (2008, their equations 1 and 2 1996) was implemented in our work using the python 6 Dullo et al.

Fig. 2.— Correlations of directly measured SMBH masses (MBH) with the total (i.e., bulge+disk) UV − 3.6 µm colors (CUV,tot) of their host galaxies. MBH − CFUV,tot relations (left) and MBH − CNUV,tot relations (right) for early- and late-type galaxies. Our early-type morphological bin comprises E, E-S0, S0, and S0-a. Late-type galaxies (i.e., Sa, Sb, Sc, Sd, Sm and Irr) are plotted in blue. Early- and late-type galaxies, which are fit separately, define two distinct red and blue sequences with significantly different slopes (see Table 1). The solid red and solid blue lines are the symmetric bces bisector fits to our early- and late-type data, respectively, the shaded regions cover the associated 1σ uncertainties on these fits (Table 1). The dashed and dash-dotted lines delineate the one and three times the intrinsic scatter, respectively. Errors on MBH and CUV,tot are shown, and for galaxies with black hole upper limits we only show the lower uncertainty on MBH (see the text for further detail). module by Nemmen et al. (2012). While both the bces 3.4. The MBH − CUV,tot relations and linmix err methods take into account the intrin- In this section, we investigate the correlations be- sic scatter and uncertainties in both MBH and the host tween MBH and total (i.e., bulge+disk) colors CFUV,tot galaxy properties, only the latter can deal with ‘censored’ corr corr corr (=mFUV,total − m3.6,total) and CNUV,tot (=mNUV,total − data, e.g., black hole mass upper limits. The ols rou- corr tine does not account for errors, we use this method to m3.6,total) for our sample of 67 galaxies comprised of provide MBH −C relations independent of measurement 20 early-type galaxies and 47 late-type galaxies (Ap- errors. pendix C). In Fig. 2, we plot these correlations (Table 5), In an effort to assess the robustness of the above lin- with data points color-coded based on morphological ear regression fits, we have additionally performed sym- type. The regression analyses reveal that early- and late- metric, MCMC Bayesian linear regression fits for our type galaxies define two distinct red and blue sequences (MBH, C) data, which account for black hole mass up- with markedly different slopes in the MBH − CUV,tot per limits (see Appendix A). diagrams, regardless of the applied regression methods Fitting the Y = βX + α line with the bces, lin- (Table 1). We find that the slopes for early- and late- mix err and ols codes, we present the results from the type galaxies are different at ∼ 2σ level (Appendix A) (Y |X), (X|Y ) and bisector regression analyses (Tables 1, and the significance levels for rejecting the null hypoth- 2 and 3). We also present the results from our symmet- esis of these two morphological types having the same ric, MCMC Bayesian regressions (Table 1). The (Y |X), slope are 1.7%−6.7%. We note in passing that this (X|Y ) regressions minimize the residuals around the fit- trend of different slopes for early- and late-type galaxies ted regression lines in the Y and X directions, respec- holds for the correlations between MBH and the bulge tively. The symmetrical bisector line bisects the (Y |X) colors of the two Hubble types (CUV,bulge, Dullo et al. and (X|Y ) lines. The linmix err code does not return in prep). For both early- and late-type galaxies, the bisector regressions, thus we computed the the slope of CFUV,tot and MBH data correlate with a Pearson corre- line that bisects the (Y |X) and (X|Y ) lines. Throughout lation coefficient r ∼ 0.60 (Table 1). The CNUV,tot, MBH this work, we focus on the relations from the symmetrical data have Pearson correlation coefficients r ∼ 0.70 and bces bisector regressions (Figs. 2 and 3). 0.65 for early- and late-type galaxies, respectively. In the MBH − C regression analyses, we have excluded 1 early-type galaxy (NGC 2685) and 2 late-type galaxies (NGC 3310 and NGC 4826) which offset from the re- lations by more than three times the intrinsic scatter Black hole mass color correlation 7

TABLE 2 MBH − σ relation

Y =βX+α, X=log σ−2.2, Y =log MBH (early-type, Fig. 3, left) Regression method Y |X X|Y Bisector r ∆ [dex] ǫ [dex] N αβ αβ αβ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) bces 7.84 ± 0.14 4.33 ± 0.80 7.81 ± 0.23 7.10± 1.58 7.84 ± 0.16 5.42 ± 0.90 0.72 0.67 0.70 ± 0.16 20 Y =βX+α, X=log σ−2.0, Y =log MBH (late-type, Fig. 3, left) Y |X X|Y Bisector r ∆ [dex] ǫ [dex] N αβ αβ αβ bces 6.98 ± 0.10 4.00 ± 0.53 7.00 ± 0.11 5.00 ± 0.99 6.98 ± 0.10 4.49 ± 0.48 0.75 0.70 0.63 ± 0.10 45 Y =βX+α, X=log σ−2.0, Y =log MBH (all galaxies, Fig. 3, left) Y |X X|Y Bisector r ∆ [dex] ǫ [dex] N αβ αβ αβ bces 6.99 ± 0.09 4.23 ± 0.40 6.92 ± 0.10 5.39 ± 0.72 6.96 ± 0.09 4.65 ± 0.35 0.78 0.68 0.62 ± 0.07 65 Notes.— Similar to Table 1, but here showing linear regression analyses of the correlation between SMBH mass (MBH) and velocity dispersion (σ).

TABLE 3 MBH − L3.6,tot relation

Y =βX+α, X=M3.6,tot+18.5, Y =log MBH (all galaxies, Fig. 3, right) Regression method Y |X X|Y Bisector r ∆ [dex] ǫ [dex] N αβ αβ αβ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) bces 6.96 ± 0.11 -0.37 ± 0.06 6.80 ±0.17 -0.65 ± 0.12 6.88 ± 0.12 -0.49 ± 0.06 -0.66 0.84 0.69 ± 0.09 67 Notes.— Similar to Table 1, but here showing linear regression analyses of the correlation between the SMBH masses (MBH) and 3.6 µm total of the galaxies (M3.6,tot), see the text for details. (Fig. 2). The early-type galaxy NGC 5018 was also ex- FUV-band to the galaxy star formation rate (SFR) than cluded from the MBH −CFUV relations, resulting in 18 the NUV-band, the MBH −CFUV,tot relations are system- early-type galaxies. Interestingly, all these four outliers atically shallower than the corresponding MBH−CNUV,tot are have peculiar characteristics that are discussed in Ap- relations, although they are consistent with overlapping pendix B.1. 1σ uncertainties (Table 1). Symmetrical bces bisector fits to the (MBH, CFUV,tot) The root-mean-square (rms) scatter (∆) around the and (MBH, CNUV,tot) data yield relations for early- fitted bces bisector relations in the log MBH direc- type galaxies with slopes of 1.75 ± 0.41 and tion are ∆FUV,early ∼ 0.86 dex, ∆FUV,late ∼ 0.87 dex, 1.95 ± 0.28, respectively (Table 1), such that ∆NUV,early ∼ 0.72 dex and ∆NUV,late ∼ 0.86 dex. We re- −4.38±1.03 MBH ∝ (LFUV,tot/L3.6,tot) and MBH ∝ port intrinsic scatters (ǫ) for our MBH −CUV,tot relations −4.88±0.70 (LNUV,tot/L3.6,tot) . This is to be compared as derived by linmix err to be ǫFUV,early ∼ 0.69 ± 0.20, with the derived bces bisector MBH − CFUV,tot and ǫFUV,late ∼ 0.69 ± 0.22, ǫNUV,early ∼ 0.66 ± 018 and MBH −CNUV,tot relations for the late-type galaxies hav- ǫNUV,late ∼ 0.66 ± 0.18. ing shallower slopes of 1.03 ± 0.13 and 1.38 ± 0.23, such As noted previously, the linmix err code and MCMC −2.58±0.33 that MBH ∝ (LFUV,tot/L3.6,tot) and MBH ∝ Bayesian analysis—which do account for the 24 galax- −3.45±0.58 ies (22 late-type galaxies and 2 early-type galaxies) with (LNUV,tot/L3.6,tot) . With the assumption that the UV-to-3.6 µm luminos- MBH upper limits—yield MBH −CUV,tot relations con- sistent with the bces regression analyses (Table 1). ity ratio (LUV/L3.6) is a proxy for specific star forma- tion rate, sSFR, (e.g., Bouquin et al. 2018), it implies Nonetheless, we checked for a potential bias for the late- that the growth of black holes in late-type galaxies have type galaxies due to the inclusion of MBH upper limits − . by rerunning the bces bisector regression analysis on the a steeper dependence on sSFR (i.e., M ∝ sSFR 2 58) BH FUV 23 (=45-22) late-type galaxies with more securely mea- than early-type galaxies (M ∝ sSFR−4.38). That is, BH FUV sured MBH. We find that the slopes, intercepts and ∆ of at a given value of sSFR, late-type galaxies tend to have the MBH −CUV,tot relations are only weakly influenced more massive BHs than early-type galaxies. The caveat 3 by the exclusion of MBH upper limits . Including the of using FUV magnitudes as a proxy for the current upper limits in the black hole scaling relations is useful star formation rate is that a significant fraction of the (G¨ultekin et al. 2009), given they also follow the M − σ FUV light in ∼ 5% of massive early-type galaxies may relation traced by galaxies with more securely measured come from extreme horizontal branch stars instead of MBH (Fig. 3). young upper main sequence stars, a phenomenon dubbed We can compare our work to that of Terrazas et al. ‘UV upturn’ (e.g., Code & Welch 1979; O’Connell 1999; 3 Yi et al. 2011). This is likely due to the rarity of very The strength of the MBH −CUV,tot correlations decreases when massive early-type galaxies in our sample. Nonetheless, the SMBH upper limits are excluded. The Pearson correlation we found that none of our early-type galaxies are UV up- coefficient for the (CFUV,tot, MBH) blue sequence has reduced from turns, when using the criteria given by Yi et al. (2011, r ∼ 0.60 to 0.34 due to the exclusion of MBH upper limits, and for the (CNUV,tot, MBH) blue sequence there is a decrease in r from their Table 1). Owing to a stronger sensitivity of the ∼ 0.65 to 0.36. 8 Dullo et al.

Fig. 3.— Similar to Fig. 2, but shown here are correlations between MBH and (left panel) velocity dispersion (σ, van den Bosch 2016, his Table 2) and (right panel) total 3.6 µm absolute magnitude of our sample galaxies (M3.6 µm). M3.6 µm are computed using the total 3.6 µm apparent magnitudes (m3.6 µm, Table 5) and distances for the galaxies from van den Bosch (2016, his Table 2). We did not fit separate linear regressions to our early- and late-type (MBH, M3.6 µm) data or to the core-S´ersic and S´ersic (MBH, M3.6 µm) data, see the text for more details. (2017, their Figs. 1 and 2) who used star formation rates (SFRs) determined based on IRAS far-infrared imaging and reported an inverse correlation between specific star formation rate (sSFR) and SMBH mass for 91 galaxies with measured black hole masses. Although they did not separate the galaxies into late- and early-types, their full sample seems to follow a single MBH − sSFR rela- tion with no break, contrary to our results. To explain this discrepancy, we split the galaxies in Terrazas et al. (2017) by morphology and find that their late-type galax- ies (which constitute a third of the full sample) re- side at the low mass end of their MBH − sSFR rela- tion and they span very small ranges in SMBH mass 6 8 −11 (4 × 10 . MBH/M⊙ . 10 ) and in sSFR (10 . sSFR/yr−1 . 8 × 10−9), inadequate to establish the blue MBH −CUV,tot sequence (Fig. 2). Furthermore, we note that the FIR flux may underestimate the actual SFR for low-mass late-type galaxies as most of these galaxies’ UV photons are unobscured by dust and thus not re- processed to FIR wavelengths (Catal´an-Torrecilla et al. 2015). We also find that the Terrazas et al. (2017) early- type MBH − sSFR relation has more scatter than that of ours. We suspect this may be due to a variable contami- Fig. 4.— Similar to Fig. 2(a), but here we also show host galaxy nation of the IRAS FIR emissions in massive galaxies by properties. Barred galaxies are enclosed in boxes. Seven core-S´ersic 4 galaxies (6 Es + 1 S) with partially depleted cores published in the the AGN which heats the surrounding dust. While the literature are enclosed in crosses (see Section 4.2). dusty AGN in some massive galaxies might led to an in- crease in the SFR values based on FIR luminosities (e.g., bulge+disk) colors for early- and late-type galaxies. For Catal´an-Torrecilla et al. 2015; Toba et al. 2017), star for- such a correlation to be evident, it is important that mation activities are likely the dominant contributor to the color is determined using a wide wavelength base- the SFR values reported by Terrazas et al. (2017), AGN line. In this section, we present correlations between contamination being mainly responsible for the larger MBH and velocity dispersion (σ) and 3.6 µm total lu- scatter observed their MBH − sSFR relation. minosity (L3.6,tot) for the same galaxy sample to allow a direct statistical comparison with the MBH −C rela- 3.5. MBH − σ and MBH − L relations tions (Fig. 3 and Table 2). Assuming a 10% uncertainty5 In Fig. 2 we have shown, for the first time to our knowl- on σ, the bces bisector regression yields MBH − σ rela- edge, a correlation between SMBH mass and total (i.e., tions with slopes 5.42 ± 0.90, 4.49 ± 0.48 and 4.65 ± 0.35 for the early-type galaxies, late-type galaxies and 4 While the IR emissions in massive galaxies have contributions from the dusty AGN, the NUV emissions arise from main-sequence 5 After comparing the HyperLeda individual velocity dispersion turn-off stars and are less prone to contamination from the AGN measurements and mean homogenized values for 100 sample galax- (Boselli et al. 2005). ies, we adopt a conservative upper limit uncertainty of 10% on σ. Black hole mass color correlation 9

ble 2) are consistent with those from G¨ultekin et al. (2009), Beifiori et al. (2012); McConnell & Ma (2013); Kormendy & Ho (2013); Graham & Scott (2013)6. To determine the MBH − L3.6,tot relation, we converted the inclination and dust corrected 3.6 µm total appar- ent magnitudes into absolute magnitudes (M3.6,tot, Ap- pendix C) using distances given in van den Bosch (2016). The bces bisector MBH − L3.6,tot relation for the full sample of 67 galaxies was performed without account- 1.23±0.15 ing for the error on M3.6,tot, yielding MBH ∝ L3.6,tot (Fig. 3 and Table 3). Graham & Scott (2013) reported two distinct MBH − L relations for the bulges of S´ersic 2.73 galaxies (MBH ∝ LKs,bulge) and core-S´ersic galaxies 1.10 (MBH ∝ LKs,bulge). Since there are only 7 galaxies we were able to identify as core-S´ersic galaxies (see Fig. 4), we refrain from separating the galaxies into S´ersic and core-S´ersic galaxies in the MBH − L3.6,tot diagram.

4. DISCUSSION Fig. 5.— Similar to Fig. 2, but here comparing the MBH − C 4.1. Comparison between the M −C, M − σ and red and blue sequences and the color-color red/intermediate and BH BH blue sequences. The color-color relation red and intermediate se- MBH − L relations quence galaxies (Bouquin et al. 2018, their section 4.4) are marked Due to the different number of galaxies used to de- by rightward- and leftward-pointing arrows, respectively, blue se- quence galaxies are enclosed in circles. fine the MBH −C, MBH − σ and MBH − L relations, a direct comparison of the strength and scatter of the re- lations is difficult. Nonetheless, the correlation between the color CUV,tot and BH mass MBH (r ∼ 0.60 − 0.70, see Table 1) is slightly weaker than that between the stellar velocity dispersion σ and MBH (r ∼ 0.72 − 0.78, Table 2). These two relations have comparable intrin- sic scatter (See Tables 1 and 2). In terms of scatter in the log MBH direction, the MBH −CUV,tot relations have typically 5% − 27% more scatter (i.e., ∆ ∼ 0.72 − 0.87 dex) than the MBH − σ relations (∆ ∼ 0.68 − 0.70 dex). The MBH − σ relation appears to be the most funda- mental SMBH scaling relation. However, the MBH − σ relations for late- and early-type galaxies are not notably offset from each other. This contrasts with the formation models of galaxies which predict the SMBH growth in the two Hubble types to be completely different (see Sec- tion 4.5). Furthermore, in Dullo et al. (2020, submitted) we showed that the MBH − σ relation tends to underpre- dict the actual BH masses for the most massive galaxies 12 with M∗ & 10 M⊙. In contrast, the MBH −CUV,tot rela- tions are in accordance with models of galaxy formation (Section 4.5). As for the comparison between the MBH −C and MBH − L relations, these two relations display simi- lar level of strength and vertical scatter (Table 3, r ∼ Fig. 6.— Comparison between SMBH masses predicted using our 0.60 − 0.70 and ∆ ∼ 0.72 − 0.87 dex for MBH −CUV,tot MBH − CFUV,tot and MBH − CNUV,tot relations (Table 1) and and r ∼−0.66, and ∆ ∼ 0.84 dex for MBH − L3.6,tot). In those determined dynamically (van den Bosch 2016; Nguyen et al. passing, we note that the existence of the MBH − L rela- 2019) for a selected sample of 11 galaxies that are not in our tion coupled with the red sequence and blue cloud traced sample (see Table 5). SMBH masses predicted based on the by early-and late-type galaxies in the color-magnitude MBH − CNUV tot relations are enclosed in boxes. , diagram does not necessitate a correlation between the for the full ensemble. These relations are in good agree- black hole mass and galaxy color. ment with each other within their 1σ uncertainties. The For comparison, our MBH − CUV,tot relation for the late-type galaxies NGC 5055 and NGC 5457, being the 47 late-type galaxies is stronger (r ∼ 0.60 − 0.65, and most deviant outliers in the MBH − σ diagram, were ex- 6 Our slopes for the full sample of 66 galaxies are slightly (i.e., cluded. The unification of early- and late-type galaxies in ∼ 1.4σ ≈ 15%) shallower than that of van den Bosch (2016, slope ∼ the MBH − σ diagram is nothing new (e.g., Beifiori et al. 5.35 ± 0.23). This is because the van den Bosch (2016, his Fig. 1) 2012; Graham & Scott 2013; van den Bosch 2016; Dullo sample contains extremely bright galaxies with σ & 270 which tend to steepen the M − σ relation (see Fig. 1). et al. 2020, submitted). The MBH − σ relations (Ta- BH 10 Dullo et al.

∆ ∼ 0.87 dex) than the MBH − M∗,tot relation based on endeavor to establish the MBH −CUV,tot relations using 3.6 µm data by Davis et al. (2018) for their sample of 40 homogeneously determined UV and 3.6 µm magnitudes. late-type galaxies (r ∼ 0.47 and ∆ ∼ 0.79 dex). Doing this, the observed trends in the MBH −CUV,tot diagrams (Fig. 2) cannot be attributed to differences 4.2. Core-S´ersic versus S´ersic in methodologies and/or data sources. We use the As noted in the Introduction, SMBH scaling rela- BH mass measurement of NGC 205 by Nguyen et al. tions may differ depending on the galaxy core struc- (2019) and for the remaining 10 galaxies the SMBH ture (i.e., Core-S´ersic versus S´ersic type). We identify masses are from van den Bosch (2016). Off the 11 seven core-S´ersic galaxies (6 Es + 1 S) in our sample galaxies, 9 are in common between Jeong et al. (2009) with partially depleted cores published in the literature: and Savorgnan & Graham (2016). Jeong et al. (2009, NGC 1052 (Lauer et al. 2007), NGC 3608, NGC 4278 their table 1) published total apparent FUV and NUV and NGC 4472 (Dullo & Graham 2012, 2014), and magnitudes derived from growth curves for the galax- NGC 4374, NGC 4594 and NGC 5846 (Graham & Scott ies, while Savorgnan & Graham (2016, their table 2) 7 2013). They are among the reddest (CFUV,tot & 6) galax- presented their 3.6 µm galaxy apparent magnitudes 8 which were computed using their best-fitting structural ies in our sample with massive SMBHs (MBH & 10 M⊙), Fig. 4. While structural analysis of high-resolution HST parameters. We also included the low-mass elliptical images are needed to identify a partially depleted core galaxy NGC 205 and the Seyfert SAm bulge-less galaxy (or lack thereof) in the remaining sample galaxies (e.g., NGC 4395 (Filippenko & Ho 2003; Peterson et al. 2005). Dullo & Graham 2013, 2014; Dullo et al. 2016, 2017, NGC 205 potentially harbors the lowest central BH 2018, the majority (∼ 80%) of our spiral galaxies have mass measured for any galaxy to date (Nguyen et al. σ . 140 km s−1 and they are likely S´ersic galaxies with 2019) and NGC 4395 is known for being an outlier from no partially depleted cores (e.g., Dullo & Graham 2012, the MBH − σ diagrams (e.g., Davis et al. 2017). For 2013, 2014; Dullo et al. 2017). For early-type galaxies, NGC 205, we use the UV and 3.6 µm magnitudes from Gil de Paz et al. (2007) and Marleau et al. (2006), re- we did not find bends or offsets from the MBH −CUV,tot relations because of core-S´ersic or S´ersic galaxies (Fig. 4). spectively. For NGC 4395, the total UV and 3.6 µm mag- nitudes are from Dale et al. (2009) and Lee et al. (2011); 4.3. Red, intermediate and blue sequences a caveat here is that these magnitudes are not corrected for internal dust attenuation. To locate our galaxies in color-color diagrams, we Before applying our M −C relations to estimate used the classification by Bouquin et al. (2018, their sec- BH UV,tot MBH, we homogenize the FUV, NUV and 3.6 µm data tion 4.4) who compared the (FUV −NUV) and (NUV from the literature by comparing our magnitudes with [3.6]) colors to separate their galaxies into red, interme- those from Jeong et al. (2009) and Savorgnan & Graham diate and blue sequences. Fig. 5 shows excellent co- (2016) for galaxies in common with them. We find incidence between the red and blue MBH −C (early- that, compared to our magnitudes, the Jeong et al. and late-type) morphological sequences (Sections 3.4) (2009) total FUV and NUV magnitudes are fainter typ- and the canonical color-color relation (red/intermediate) ically by 0.52 mag, while the galaxy magnitudes from and blue sequences, respectively, only with three ex- Savorgnan & Graham (2016) are brighter typically by ceptions (NGC 2685, NGC 4245 and NGC 4594). The 0.18 mag. Having applied these corrections (i.e., mUV = case of NGC 2685 was discussed in Section B.1.4. m −0.52 and m = m +0.18) for the 9 early- NGC 4245 is a barred S0-Sa galaxy with a prominent ring UV,Jeo 3.6 3.6,Sav type galaxies, we computed the CFUV,tot and CFUV,tot (Treuthardt et al. 2007). The spiral Sa NGC 4594 (also colors listed in Table 4. referred to as the ) exhibits proper- Fig. 6 reveals good agreement between the di- ties similar to massive early-type galaxies. Spitler et al. rectly measured M and predicted M deter- (2008) found that the number of blue in BH BH mined using MBH −CFUV,tot and MBH −CNUV,tot re- NGC 4594 is comparable to massive early-type galaxies. lations for the 10 galaxies in Table 4. On aver- Also, Jardel et al. (2011) noted that the galaxy’s dark age, |log(MBH,predicted/MBH,measured)| ∼ 0.67 dex ± matter density and core radius resemble those expected 0.29 dex (FUV) and ∼ 0.32 dex ± 0.29 dex (NUV). In for early-type galaxies with massive bulges. It is the Fig. 6, the direct BH mass appear to correlate better with only red-sequence spiral in our sample (Bouquin et al. that predicted using the NUV color than using the FUV 2018), which is also unique in being the only core- color, and for the massive early-type galaxies, this may S´ersic late-type galaxy in the sample. Interestingly, be due to contributions to the FUV flux from the extreme Fig. 5 reveals that all the intermediate sequence galax- horizontal branch stars (see Section 3.4). The approach ies (Bouquin et al. 2018) reside toward the left of the of using homogenized galaxy colors obtained through dif- MBH −CUV,tot relation defined by early-type galaxies. ferent methods may introduce some systematic errors in the determination M . We caution that when using the 4.4. Predicting SMBH masses using M −C BH BH UV M −C relations to predict BH masses, one should use relations BH FUV, NUV and 3.6 µm magnitudes obtained in a homo- It is of interest to assess the robustness of geneous way. Furthermore, the MBH −C relations should BH masses estimated using the MBH −CFUV,tot and not be used to predict BH masses in galaxies that are MBH −CNUV,tot relations found in this work. We do highly inclined (e.g., edge-on) and obscured with dust. so using literature FUV, NUV and 3.6 µm magnitudes As noted in the introduction, a clear benefit of the for a selected sample of 11 galaxies with direct SMBH masses that are not in our sample (see Table 4). These 7 We have converted the 3.6 µm VEGA magnitudes from 11 galaxies were not included in the main sample as we Savorgnan & Graham (2016) into AB magnitudes. Black hole mass color correlation 11

4.5. TABLE 4 The MBH −CUV correlation as evidence for the Supermassive black hole masses co-evolution of SMBHs and galaxies Morphologically splitting the sample galaxies, Galaxy Type CUV,tot log(MBH/M⊙) log(MBH/M⊙) [AB mag] (directly measured) (predicted) we have demonstrated that late-type hosts do not (FUV/NUV) (FUV/NUV) correlate with SMBHs in the same manner as (1) (2) (3) (4) (5) early-type hosts (Table 1). This reconciles very well with the prediction that early- and late-type +1.18 NGC 0205 E5 pec 4.61/2.67 3.83−1.83 4.85/3.58 galaxies have fundamentally different formation his- +0.05 NGC 0524 SA0 7.30/5.48 8.94−0.05 9.68/9.02 tories (e.g., White & Rees 1978; Khochfar & Burkert +0.21 NGC 0821 E6 7.02/4.69 8.22−0.21 9.13/7.64 2001; Steinmetz & Navarro 2002; Kauffmann et al. +0.05 NGC 1023 SB0 6.64/5.01 7.62−0.05 8.39/8.20 2003a; Kormendy & Kennicutt 2004; Schawinski et al. +0.54 NGC 4395 SAm 1.49/1.37 5.54−0.54 5.17/5.29 2010; Dullo & Graham 2014; Schawinski et al. 2014; +0.09 NGC 4459 SA0 6.56/5.03 7.84−0.09 8.24/8.23 Tonini et al. 2016; Davis et al. 2018; Dullo et al. 2019). +0.24 NGC 4473 E5 6.80/4.93 7.95−0.24 8.71/8.06 For example, the red and blue MBH −CFUV,tot relations +0.05 −4.38 NGC 4552 E 6.24/5.33 8.70−0.05 7.61/8.76 are such that MBH,early−type ∝ (LFUV,tot/L3.6,tot) +0.12 − NGC 4564 E6 6.34/4.77 7.95−0.12 7.91/7.78 2.58 +0.09 and MBH,late−type ∝ (LFUV,tot/L3.6,tot) . Given that NGC 4621 E5 7.18/5.78 8.60−0.09 9.41/9.55 L /L is a good proxy for the sSFR, (Bouquin et al. +0.16 UV 3.6 NGC 5845 E 6.38/5.30 8.69−0.16 7.89/8.71 2018, their Appendix B), it therefore implies that both Notes.— Col. (1) galaxy name. Col. (2) morphological type from early- and late-type galaxies exhibit log-linear inverse NED. Col. (3) total FUV- [3.6] and NUV- [3.6] colors (CFUV,tot correlations between M and sSFR, the latter having and C ). Cols. (4) directly measured SMBH masses. BH NUV,tot a steeper dependence on sSFR than the former (see Cols. (5) BH masses predicted using the MBH − CFUV,tot and MBH − CNUV,tot relations (Table 1) and the appropriate colors Table 1 and Fig. 2). given in Col. (3). We assign a typical uncertainty of 0.85 dex on A correlation between MBH and sSFR is not unex- log(MBH) for these predicted BH masses. pected. Observations have shown that bright and local Seyferts tend to reside in strong star- burst galaxies or in galaxies with an ongoing star formation (e.g., Sanders et al. 1988; Kauffmann et al. 2003b; Alexander et al. 2005; Lutz et al. 2008; Netzer MBH −CUV,tot relation is its applicability to early- and 2009; Wild et al. 2010; Rosario et al. 2012; Yang et al. late-type galaxies including those with low central ve- −1 2017; Barrows et al. 2017). Other findings lend- locity dispersions (σ . 100 km s ) and with small or ing further support to the link between star forma- no bulges. Moreover, photometry has the advantage of tion and SMBH growth are the correlation between being cheaper than spectroscopy. Using our relations black hole accretion rate and host galaxy star for- (Table 1) together with galaxy colors derived from the mation rate (e.g., Merloni et al. 2004; Heckman et al. Bouquin et al. (2018, their Table 1) asymptotic FUV, 2004; Hopkins & Quataert 2010; Chen et al. 2013; NUV and 3.6 µm magnitudes, we tentatively predict BH 4 Madau & Dickinson 2014; Sijacki et al. 2015; Yang et al. masses in a sample of 1382 GALEX /S G galaxies (Ta- 2017), the inverse correlation between sSFR and spe- ble 6) with no measured BH masses, see Appendix D. cific supermassive black hole mass (Terrazas et al. We show that late-type galaxies with CFUV,tot . 1.33 2017) and the trend between SMBH mass and host AB mag or CNUV,tot . 1.28 AB mag may harbor galaxy star formation histories over cosmic time (e.g., 5 intermediate-mass black holes (MBH ∼ 100 − 10 M⊙). Mart´ın-Navarro et al. 2018; van Son et al. 2019). Similarly, early-type galaxies with CFUV,tot . 4.68 AB Within the self-regulated SMBH growth model, the mag or CNUV,tot . 3.4 AB mag are potential IMBH hosts. correlation between SMBH masses and the host galaxy While (SDSS) velocity disper- properties (e.g., stellar luminosity, McLure & Dunlop sion measurements are available for hundreds of thou- 2002; Marconi & Hunt 2003) is interpreted as reflecting sands of galaxies and one can use them together with the a link between the growth of SMBHs and star forma- MBH − σ relation to estimate BH masses, as cautioned tion events in the host (Silk & Rees 1998; Fabian 1999; by SDSS Data Release8 12 (Alam et al. 2015), velocity King 2003; Springel et al. 2005; Di Matteo et al. 2005; dispersion values less than 100 km s−1 reported by SDSS Murray et al. 2005; Croton et al. 2006; Hopkins et al. are below the resolution limit of the SDSS spectrograph 2006; Schawinski et al. 2006; Cattaneo et al. 2009; and are regarded as unreliable. Note that galaxies with Weinberger et al. 2017). In this scenario, the same cold σ . 100 km s−1 are expected to have low stellar masses gas reservoir that fuels the AGN/, feeds star- 10 (M∗ . 2 × 10 M⊙), and such galaxies make up a signif- burst events. The energy or momentum released by the icant fraction of the SDSS galaxy sample (Chang et al. AGN/quasar can heat the and cause 2015, see their Fig. 9). In addition, the SDSS spectra the expulsion of gas from the host galaxy, shutting off measure the light within a fixed aperture of radius 1′′. 5, star formation and halting accretion onto the SMBH. thus the SDSS velocity dispersion values of more distant However, whether AGN accretion and star formation are galaxies can be systematically lower than those of simi- precisely coincidental is unclear (e.g., Ho 2005). lar, nearby galaxies. We (see also Dullo et al. 2020, submitted) argue that the significantly different MBH −CFUV relations for early- and late-type galaxies (i.e., the MBH −CFUV red and blue sequences) suggest that the two Hubble types 8 https://www.sdss.org/dr12/algorithms/redshifts/ follow two distinct channels of SMBH growth, the former 12 Dullo et al. is major merger driven while the latter involves (major S´ersic early-type galaxies define a red sequence in the merger)-free processes (see Hopkins & Hernquist 2009), MBH −CFUV diagram. Lacking the most luminous and 12 in broad accordance with Schawinski et al. (2010, 2014). massive BCGs with M∗,k & 10 M⊙ in our sample, we The standard cosmological formation paradigm is that note that our MBH −CUV relation is not constrained at SMBHs in early-type galaxies are built up during the the highest-mass end. Since such galaxies are generally period of rapid galaxy growth at high redshift (z ∼ expected to have negligible star formation (Dullo 2019), 2−5) when the major, gas-rich mergers of disk galax- the MBH −CUV relations, the MBH −CFUV in particu- ies (e.g., Toomre & Toomre 1972; White & Rees 1978) lar, may not apply to them. Our interpretation of the drives gas infall into the nuclear regions of the newly assembly of the red sequence for early-type galaxies is in formed merger remnant, leading to starburst events accordance with the ‘downsizing’ scenario, where more and AGN accretion processes (e.g., Barnes & Hernquist massive galaxies form stars earlier and over a shorter 1991, 1996; Naab et al. 2006a; Hopkins & Quataert time scale than less massive galaxies (e.g., Cowie et al. 2010; Knapen et al. 2015). Accretion onto more mas- 1996; Brinchmann & Ellis 2000; Cattaneo et al. 2008; sive SMBHs trigger stronger AGN feedback, efficient at P´erez-Gonz´alez et al. 2008; Pannella et al. 2009) quenching of star formation rapidly. As such, the posi- The (major merger)-free scenario—secular processes tion of an early-type galaxy on the MBH −CUV red se- and minor mergers—may be naturally consistent with quence is dictated by the complex interplay between the the observed late-type MBH −CFUV blue sequence details of its SMBH growth, efficiency of AGN feedback, (Fig. 2, Section 4.3) and dynamically cold stellar disks regulated star formation histories and major merger his- of late-type galaxies. Recently, Martin et al. (2018a) re- tories, rather than this being set by simple hierarchical ported that massive SMBHs in disk galaxies can grow merging (Peng 2007; Jahnke & Macci`o2011). primarily via secular processes with small contributions Massive early-type galaxies (i.e., total stellar mass (i.e., only 35 % of the SMBH mass) from mergers. We 10 12 8 M∗,k ∼ 8 × 10 M⊙ − 10 M⊙) with MBH & 10 M⊙ tentatively hypothesize secular-driven processes involv- and CFUV & 6.3 mag, at the high-mass end of ing non-axisymmetric stellar structures, such as bars and the MBH − CUV red sequence (Fig. 2, Section 4.3), spiral arms can trigger a large inflow of gas from the are consistent with the scenario where (gas-rich) ma- large scale disk into nuclear regions of late-type galax- jor merger at high redshift drives intense bursts of ies, slowly feeding SMBHs and fueling star formation star formation, efficient SMBH growth and ensuing (e.g., Kormendy 1993; Kormendy & Kennicutt 2004; quenching of star formation by strong AGN feed- Fisher & Drory 2008; Leitner 2012; Kormendy 2013; back in short timescales (e.g., Thomas et al. 2005, Cisternas et al. 2013; Tonini et al. 2016; Dullo et al. 2010; de La Rosa et al. 2011; McDermid et al. 2015; 2019). Barred galaxies make up the bulk (∼62%) of the Segers et al. 2016). This is accompanied by a few late-type galaxies in our sample (Fig. 4). In addition, (0.5−2) successive gas-poor (dry) major mergers since gas-rich minor mergers have been suggested in the lit- z ∼ 1.5 − 2 (e.g., Bell et al. 2004, 2006; Khochfar & Silk erature to trigger enhanced star formation and SMBH 2009; Man et al. 2012; Dullo & Graham 2012, 2013, growth in late-type galaxies without destroying the disks 2014; Rodriguez-Gomez et al. 2015), involving low level (Simmons et al. 2013; Kaviraj 2014b,a; Simmons et al. star formation9 (i.e., ‘red but not strictly dead’, see 2017; Martin et al. 2018b,a). A question remains how- de La Rosa et al.2011; Habouzit et al. 2019; Davis et al. ever whether pure (major merger)-free processes could 2019) detected by the GALEX FUV and NUV detec- be the main mechanism for the formation of late-type tors (e.g., Gil de Paz et al. 2007; Bouquin et al. 2018). galaxies with massive bulges and high-velocity disper- The bulk of these objects are core-S´ersic elliptical galax- sion, as in the case of NGC 4594. 10 ies a fraction of which may gradually grow stellar disk As noted above, we find that core-S´ersic and S´ersic structures and transform into massive lenticular galax- galaxies collectively define a single early- or late-type ies (Graham 2013; Dullo & Graham 2013; Dullo 2014; morphology sequence, in agreement with the conclusions Graham et al. 2015; de la Rosa et al. 2016). by Sahu et al. (2019); Dullo (2019); Dullo et al. (2020, As for the less massive (S´ersic) early-type galaxies submitted). Moreover, although Savorgnan et al. (2016) 10 11 reported a blue, M − M∗ sequence, (M∗,k ∼ 10 M⊙ − 2 × 10 M⊙) with smaller SMBH BH ,bulge 6 8 their sample of 17 spiral galaxies trace the red end of the masses (10 M⊙ . MBH . 10 M⊙) and CFUV . 6.3 mag (Fig. 2, Section 4.3) likely grow primarily via gas-rich blue MBH − M∗,bulge sequence (Davis et al. 2018, their (wet) major mergers and form their stellar populations Section 2.2). over an extended period of time (Thomas et al. 2005, We remark that bulgeless spirals and spiral galax- 2010; de La Rosa et al. 2011; McDermid et al. 2015). ies with classical bulges or pseudo-bulges all follow the Our findings disfavor a scenario where S´ersic early-type blue, late-type MBH −CUV relations (Fig. 2). Pseudo- galaxies with intermediate colors are late-type galaxies bulges are hosted typically by late-type galaxies and a quenching star formation and moving away from the few early-type galaxies, while classical bulges are gen- M −C blue sequence. Collectively, core-S´ersic and erally associated with early-type galaxies and massive BH FUV late-type galaxies. A key point to note here is that the relatively high sSFR for pseudo-bulges coupled with the 9 Massive early-type galaxies and some BCGs can acquire cold steeper dependence of SMBH masses on sSFRs for late- gas through the cooling of hot gas and/or via cannibalism of a type galaxies likely explain why pseudo-bulges seem to gas-rich satellite and they may undergo episodes of low level star formation at low redshift (Salom´e& Combes 2003; O’Dea et al. obey a different MBH − σ relation than classical bulges 2008; Hopkins & Hernquist 2009; Struve et al. 2010; Young et al. 2011; Zubovas & King 2012; Russell et al. 2014; Smith & Edge 10 All the seven core-S´ersic galaxies in this paper are “normal- 2017; Russell et al. 2019; Krajnovi´cet al. 2020). core” galaxies (Dullo 2019). Black hole mass color correlation 13

(e.g., Kormendy & Ho 2013). This also explains as to from the MBH −CUV,tot relations because of core-S´ersic why bulgeless spirals and low-mass spirals offset from the or S´ersic galaxies. However, we cannot firmly rule out MBH − LBulge, MBH − M∗,Bulge and MBH − σ relations the presence of such substructures, as our sample does defined by the massive early- and late-type galaxies as not consist of a large number of core-S´ersic galaxies. reported in the literature (e.g., Greene et al. 2008, 2010, (6) We argue that the different MBH −CUV relations 2016; Baldassare et al. 2017). for early- and late-type galaxies reflect that the two Hubble types have two distinct SMBH feeding mecha- 10 5. CONCLUSIONS nisms. Massive early-type galaxies (M∗,k ∼ 8×10 M⊙ − 12 Using a sample of 67 GALEX /S4G galaxies with di- 10 M⊙) at the high-mass end of the MBH −CUV red se- quence, are core-S´ersic galaxies. Their formation is con- rectly measured supermassive black hole masses (MBH), comprised of 20 early-type galaxies and 47 late-type sistent with the scenario in which gas-rich (wet) major galaxies, for the first time we establish a correlation be- merger at high redshift drives intense bursts of star for- tween (M ) and the host galaxy total (i.e., bulge+disk) mation, efficient SMBH growth and the ensuing rapid BH quenching of star formation by strong AGN feedback. UV− [3.6] color (CUV). More massive SMBHs are hosted by galaxies with redder colors. The GALEX FUV/NUV This is accompanied by gas-poor (dry) major mergers 4 since z ∼ 1.5 − 2, involving low level star formation. and S G Spitzer 3.6 µm asymptotic magnitudes of the In contrast, the less massive (S´ersic) early-type galaxies sample galaxies determined in a homogeneous manner 10 11 (Bouquin et al. 2018) along with their 3.6 µm multi- (M∗,k ∼ 10 M⊙ − 2 × 10 M⊙) at the low-mass part component decomposition by Salo et al. (2015) were used of the MBH −CUV red sequence are likely built-up pri- to derive dust-corrected total (bulge+disk) magnitudes marily via gas-rich major mergers and form their stel- in FUV, NUV and 3.6 µm bands. We provide these mag- lar populations over an extended period of time. We tentatively hypothesize that late-type galaxies (M∗,k ∼ nitudes in Table 5. 9 11 10 M⊙ − 2 × 10 M⊙) which define the M −C blue We fit our (MBH, CUV,tot) dataset using several BH UV statistical techniques, focusing on the symmetric BCES sequence form via secular-driven processes involving non- bisector regressions. Our key findings are as follows. axisymmetric stellar structures, such as bars and spiral arms. Gas-rich minor mergers could also account for the build-up of late-type galaxies. (1) Investigating the nature of the MBH −CUV,tot re- lations, our results show that early-type galaxies define (7) Having demonstrated the potential of our M −C relations to predict the SMBH masses in 10 a red-sequence in the MBH −CUV,tot diagrams different BH UV from the late-type blue-sequence. We found a strong ten- galaxies, we employ these new relations to estimate the central BH masses in 1382 GALEX /S4G galaxies with dency for the galaxies which lie on the red/blue MBH −C no measured BH masses, after excluding highly inclined morphological sequences to also be on the (red plus in- 4 termediate)/blue sequences in the canonical color-color and dust obscured GALEX /S G galaxies (Bouquin et al. relation (See Section 4.3 and Fig. 5). 2018). We suggest the MBH −CUV relations can be used to estimate BH masses, without the need for high- (2) The MBH −CFUV,tot and MBH −CNUV,tot relations for early-type galaxies have slopes of 1.75 ± 0.41 and resolution spectroscopy. However, we warn that to do so 1.95 ± 0.28, respectively, whereas for late-type galaxies one should use galaxy colors determined based on UV the slopes are substantially shallower, i.e., 1.03 ± 0.13 and 3.6 µm magnitudes obtained in a homogeneous way. Furthermore, the M −C relations can be used to and 1.38 ± 0.23. The early- and late-type MBH −CUV,tot BH UV relations have root-mean-square (rms) scatters (∆) in the identify low-mass and bulgeless galaxies that potentially harbor intermediate-mass black holes. log MBH direction of ∆UV,early ∼ 0.72 − 0.86 dex and ∆UV,late ∼ 0.86 dex and Pearson correlation coefficients 6. (r) of rearly ∼ 0.61 − 0.70 and rlate ∼ 0.60 − 0.65. ACKNOWLEDGMENTS (3) Given LUV,tot/L3.6,tot is a good proxy for spe- We thank the referee for their useful comments. B.T.D cific star formation rate (sSFR), it follows that both acknowledges support from a Spanish postdoctoral fel- early- and late-type galaxies exhibit log-linear inverse lowship ‘Ayudas 1265 para la atracci´on del talento correlations between MBH and sSFR, the latter having −2.58 investigador. Modalidad 2: j´ovenes investigadores.’ a steeper dependence on sSFR (i.e., MBH ∝ sSFRFUV ) funded by Comunidad de Madrid under grant num- −4.38 than the former (MBH ∝ sSFRFUV ). This suggests dif- ber 2016-T2/TIC-2039. B.T.D acknowledges support ferent channels for SMBH growth in early- and late-type from grant ‘Ayudas para la realizaci´on de proyectos galaxies. de I+D para jvenes doctores 2019.’ funded by Co- (4) We have compared the MBH −CUV,tot relations munidad de Madrid and Universidad Complutense de with the MBH − σ and MBH − L3.6,tot relations for our Madrid under grant number PR65/19-22417. We ac- sample galaxies. While the MBH −CUV relations are knowledge financial support from the Spanish Ministry of marginally weaker (r ∼ 0.60 − 0.70) and have typi- Economy and Competitiveness (MINECO) under grant cally 5% − 27% more scatter than the MBH − σ rela- numbers AYA2016-75808-R and RTI, which is partly tions (r ∼ 0.72 − 0.78), the former potentially constrains funded by the European Regional Development Fund, SMBH-galaxy co-evolution models that predict different and from the Excellence Network MaegNet (AYA2017- SMBH growth for different morphologies. In contrast, 90589-REDT). A.Y.K.B. acknowledges financial support the M − σ relations for late- and early-type galaxies are from the Spanish Ministry of Economy and Competi- similar. The MBH −CUV,tot and MBH − L3.6,tot relations tiveness (MINECO), project Estallidos AYA2016-79724- display similar level of strength and vertical scatter. C4-2-P. J.H.K. acknowledges financial support from the (5) We did not detect departures (bends or offsets) European Union’s Horizon 2020 research and innovation 14 Dullo et al. programme under Marie Sklodowska-Curie grant agree- by the Canary Islands Department of Economy, Knowl- ment No 721463 to the SUNDIAL ITN network, from the edge and Employment, through the Regional Budget of State Research Agency (AEI) of the Spanish Ministry of the Autonomous Community, and from the Fundaci´on Science, Innovation and Universities (MCIU) and the Eu- BBVA under its 2017 programme of assistance to sci- ropean Regional Development Fund (FEDER) under the entific research groups, for the project “Using machine- grant with reference AYA2016-76219-P, from IAC project learning techniques to drag galaxies from the noise in P/300724, financed by the Ministry of Science, Inno- deep imaging”. J.G. acknowledges financial support from vation and Universities, through the State Budget and the Spanish Ministry of Economy and Competitiveness under grant number AYA2016-77237-C3-2P.

REFERENCES Akritas, M. G., & Bershady, M. A. 1996, ApJ, 470, 706 Croton, D. J., Springel, V., White, S. D. M., et al. 2006, MNRAS, Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, ApJS, 365, 11 219, 12 Dale, D. A., Cohen, S. A., Johnson, L. C., et al. 2009, ApJ, 703, Alexander, D. M., Smail, I., Bauer, F. E., et al. 2005, Nature, 517 434, 738 Davis, B. L., Graham, A. W., & Cameron, E. 2018, ApJ, 869, 113 Andreon, S., & Weaver, B. 2015, Bayesian Methods for the Davis, B. L., Graham, A. W., & Seigar, M. S. 2017, MNRAS, Physical Sciences. Learning from Examples in Astronomy and 471, 2187 Physics., doi:10.1007/978-3-319-15287-5 Davis, T. A., Greene, J. E., Ma, C.-P., et al. 2019, arXiv e-prints, Athanassoula, E. 2005, MNRAS, 358, 1477 arXiv:1903.08884 Bahcall, J. N., Kozlovsky, B.-Z., & Salpeter, E. E. 1972, ApJ, de La Rosa, I. G., La Barbera, F., Ferreras, I., & de Carvalho, 171, 467 R. R. 2011, MNRAS, 418, L74 Baldassare, V. F., Reines, A. E., Gallo, E., & Greene, J. E. 2017, de la Rosa, I. G., La Barbera, F., Ferreras, I., et al. 2016, ApJ, 850, 196 MNRAS, 457, 1916 Baldry, I. K., Glazebrook, K., Brinkmann, J., et al. 2004, ApJ, Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 600, 681 604 Balick, B., & Heckman, T. 1981, A&A, 96, 271 Dressler, A. 1989, in IAU Symposium, Vol. 134, Active Galactic Barnes, J. E., & Hernquist, L. 1996, ApJ, 471, 115 Nuclei, ed. D. E. Osterbrock & J. S. Miller, 217 Barnes, J. E., & Hernquist, L. E. 1991, ApJ, 370, L65 Driver, S. P., Popescu, C. C., Tuffs, R. J., et al. 2008, ApJ, 678, Barrows, R. S., Comerford, J. M., Zakamska, N. L., & Cooper, L101 M. C. 2017, ApJ, 850, 27 Dullo, B. T. 2014, Astronomical Society of the Pacific Conference Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, Series, Vol. 480, Central Stellar Mass Deficits in the Bulges of 287, 307 Local Lenticular Galaxies, ed. M. S. Seigar & P. Treuthardt, 75 Beifiori, A., Courteau, S., Corsini, E. M., & Zhu, Y. 2012, —. 2019, ApJ, 886, 80 MNRAS, 419, 2497 Dullo, B. T., & Graham, A. W. 2012, ApJ, 755, 163 Bell, E. F., Wolf, C., Meisenheimer, K., et al. 2004, ApJ, 608, 752 —. 2013, ApJ, 768, 36 Bell, E. F., Naab, T., McIntosh, D. H., et al. 2006, ApJ, 640, 241 —. 2014, MNRAS, 444, 2700 Bertola, F., Burstein, D., & Buson, L. M. 1993, ApJ, 403, 573 —. 2015, ApJ, 798, 55 Boselli, A., Cortese, L., Deharveng, J. M., et al. 2005, ApJ, 629, Dullo, B. T., Graham, A. W., & Knapen, J. H. 2017, MNRAS, L29 471, 2321 Bouquin, A. Y. K., Gil de Paz, A., Boissier, S., et al. 2015, ApJ, Dullo, B. T., Mart´ınez-Lombilla, C., & Knapen, J. H. 2016, 800, L19 MNRAS, 462, 3800 Bouquin, A. Y. K., Gil de Paz, A., Mu˜noz-Mateos, J. C., et al. Dullo, B. T., Knapen, J. H., Williams, D. R. A., et al. 2018, 2018, ApJS, 234, 18 MNRAS, 475, 4670 Brammer, G. B., Whitaker, K. E., van Dokkum, P. G., et al. Dullo, B. T., Chamorro-Cazorla, M., Gil de Paz, A., et al. 2019, 2009, ApJ, 706, L173 ApJ, 871, 9 Braun, R., Walterbos, R. A. M., Kennicutt, Jr., R. C., & Tacconi, Ebisuzaki, T., Makino, J., & Okumura, S. K. 1991, Nature, 354, L. J. 1994, ApJ, 420, 558 212 Brinchmann, J., & Ellis, R. S. 2000, ApJ, 536, L77 Elmegreen, D. M., Chromey, F. R., McGrath, E. J., & Ostenson, Buson, L. M., Bertola, F., Bressan, A., Burstein, D., & J. M. 2002, AJ, 123, 1381 Cappellari, M. 2004, A&A, 423, 965 Erwin, P., Saglia, R. P., Fabricius, M., et al. 2015, MNRAS, 446, Carollo, C. M., & Danziger, I. J. 1994, MNRAS, 270, 743 4039 Carollo, C. M., Stiavelli, M., de Zeeuw, P. T., & Mack, J. 1997, Eskridge, P. B., & Pogge, R. W. 1997, ApJ, 486, 259 AJ, 114, 2366 Faber, S. M., Tremaine, S., Ajhar, E. A., et al. 1997, AJ, 114, Carpenter, B., Gelman, A., Hoffman, M. D., et al. 2017, Journal 1771 of Statistical Software, Vol. 76, Issue 1, 2017, 76 Fabian, A. C. 1999, MNRAS, 308, L39 Catal´an-Torrecilla, C., Gil de Paz, A., Castillo-Morales, A., et al. Feigelson, E. D., & Babu, G. J. 1992, ApJ, 397, 55 2015, A&A, 584, A87 Ferrarese, L., & Ford, H. 2005, Space Sci. Rev., 116, 523 Cattaneo, A., Dekel, A., Faber, S. M., & Guiderdoni, B. 2008, Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9 MNRAS, 389, 567 Filippenko, A. V., & Ho, L. C. 2003, ApJ, 588, L13 Cattaneo, A., Faber, S. M., Binney, J., et al. 2009, Nature, 460, Fisher, D. B., & Drory, N. 2008, AJ, 136, 773 213 Gadotti, D. A. 2009, MNRAS, 393, 1531 Chang, Y.-Y., van der Wel, A., da Cunha, E., & Rix, H.-W. 2015, Garc´ıa-Burillo, S., Combes, F., Hunt, L. K., et al. 2003, A&A, ApJS, 219, 8 407, 485 Chen, C.-T. J., Hickox, R. C., Alberts, S., et al. 2013, ApJ, 773, 3 Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJ, 539, L13 Chester, C., & Roberts, M. S. 1964, AJ, 69, 635 Gelman, A., Carlin, J. B., Stern, H. S., et al. 2013, Bayesian Data Cisternas, M., Gadotti, D. A., Knapen, J. H., et al. 2013, ApJ, Analysis 776, 50 Ghosh, K. K., Swartz, D. A., Tennant, A. F., Wu, K., & Saripalli, Code, A. D., & Welch, G. A. 1979, ApJ, 228, 95 L. 2005, ApJ, 623, 815 Conselice, C. J., Gallagher, J. S., Calzetti, D., Homeier, N., & Gil de Paz, A., Boissier, S., Madore, B. F., et al. 2007, ApJS, 173, Kinney, A. 2000, AJ, 119, 79 185 Courteau, S., de Jong, R. S., & Broeils, A. H. 1996, ApJ, 457, L73 Gourgoulhon, E., Chamaraux, P., & Fouque, P. 1992, A&A, 255, Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 69 112, 839 Graham, A. W. 2012, ApJ, 746, 113 Black hole mass color correlation 15

—. 2013, Elliptical and Disk Galaxy Structure and Modern Laurikainen, E., Salo, H., Buta, R., & Knapen, J. H. 2007, Scaling Laws, ed. T. D. Oswalt & W. C. Keel, 91 MNRAS, 381, 401 Graham, A. W. 2016, in Astrophysics and Space Science Library, Lee, J. C., Gil de Paz, A., Kennicutt, Jr., R. C., et al. 2011, Vol. 418, Galactic Bulges, ed. E. Laurikainen, R. Peletier, & ApJS, 192, 6 D. Gadotti, 263 Leitner, S. N. 2012, ApJ, 745, 149 Graham, A. W., Dullo, B. T., & Savorgnan, G. A. D. 2015, ApJ, Leonardi, A. J., & Worthey, G. 2000, ApJ, 534, 650 804, 32 Lutz, D., Sturm, E., Tacconi, L. J., et al. 2008, ApJ, 684, 853 Graham, A. W., Erwin, P., Caon, N., & Trujillo, I. 2001, ApJ, Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415 563, L11 Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, Graham, A. W., Erwin, P., Trujillo, I., & Asensio Ramos, A. 2285 2003, AJ, 125, 2951 Makarov, D., Prugniel, P., Terekhova, N., Courtois, H., & Graham, A. W., & Scott, N. 2013, ApJ, 764, 151 Vauglin, I. 2014, A&A, 570, A13 Graham, A. W., & Worley, C. C. 2008, MNRAS, 388, 1708 Malin, D., & Hadley, B. 1997, PASA, 14, 52 Greene, J. E., Ho, L. C., & Barth, A. J. 2008, ApJ, 688, 159 Man, A. W. S., Toft, S., Zirm, A. W., Wuyts, S., & van der Wel, Greene, J. E., Peng, C. Y., Kim, M., et al. 2010, ApJ, 721, 26 A. 2012, ApJ, 744, 85 Greene, J. E., Seth, A., Kim, M., et al. 2016, ApJ, 826, L32 Marconi, A., & Hunt, L. K. 2003, ApJ, 589, L21 G¨ultekin, K., Richstone, D. O., Gebhardt, K., et al. 2009, ApJ, Marleau, F. R., Noriega-Crespo, A., Misselt, K. A., et al. 2006, 698, 198 ApJ, 646, 929 Habouzit, M., Genel, S., Somerville, R. S., et al. 2019, MNRAS, Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005, ApJ, 484, 4413 619, L1 H¨agele, G. F., D´ıaz, A.´ I., Cardaci, M. V., Terlevich, E., & Martin, G., Kaviraj, S., Volonteri, M., et al. 2018a, MNRAS, Terlevich, R. 2010, MNRAS, 402, 1005 arXiv:1801.09699 Heckman, T. M., Kauffmann, G., Brinchmann, J., et al. 2004, —. 2018b, MNRAS, 476, 2801 ApJ, 613, 109 Mart´ın-Navarro, I., Brodie, J. P., Romanowsky, A. J., Ruiz-Lara, Hilbe, J. M., de Souza, R. S., & Ishida, E. E. O. 2017, Bayesian T., & van de Ven, G. 2018, Nature, 553, 307 Models for Astrophysical Data Using R, JAGS, Python, and McConnell, N. J., & Ma, C.-P. 2013, ApJ, 764, 184 Stan, doi:10.1017/CBO9781316459515 McDermid, R. M., Alatalo, K., Blitz, L., et al. 2015, MNRAS, Hilker, M., & Kissler-Patig, M. 1996, A&A, 314, 357 448, 3484 Ho, L. C. 2005, ApJ, 629, 680 McLure, R. J., & Dunlop, J. S. 2002, MNRAS, 331, 795 Hopkins, P. F., Cox, T. J., Dutta, S. N., et al. 2009a, ApJS, 181, Meidt, S. E., Schinnerer, E., Knapen, J. H., et al. 2012, ApJ, 744, 135 17 Hopkins, P. F., & Hernquist, L. 2009, ApJ, 694, 599 Merloni, A., Rudnick, G., & Di Matteo, T. 2004, MNRAS, 354, Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2006, ApJS, 163, 1 L37 Hopkins, P. F., Lauer, T. R., Cox, T. J., Hernquist, L., & Merritt, D. 2006, ApJ, 648, 976 Kormendy, J. 2009b, ApJS, 181, 486 M¨ollenhoff, C. 2004, A&A, 415, 63 Hopkins, P. F., & Quataert, E. 2010, MNRAS, 407, 1529 M¨ollenhoff, C., Popescu, C. C., & Tuffs, R. J. 2006, A&A, 456, Jahnke, K., & Macci`o, A. V. 2011, ApJ, 734, 92 941 Jardel, J. R., Gebhardt, K., Shen, J., et al. 2011, ApJ, 739, 21 Morrissey, P., Conrow, T., Barlow, T. A., et al. 2007, ApJS, 173, Jeong, H., Yi, S. K., Bureau, M., et al. 2009, MNRAS, 398, 2028 682 J´ozsa, G. I. G., Oosterloo, T. A., Morganti, R., Klein, U., & Mu˜noz-Mateos, J. C., Sheth, K., Regan, M., et al. 2015, ApJS, Erben, T. 2009, A&A, 494, 489 219, 3 Karataeva, G. M., Drozdovsky, I. O., Hagen-Thorn, V. A., et al. Mulder, P. S., van Driel, W., & Braine, J. 1995, A&A, 300, 687 2004, AJ, 127, 789 Mundy, C. J., Conselice, C. J., Duncan, K. J., et al. 2017, Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003a, MNRAS, 470, 3507 MNRAS, 341, 54 Murray, N., Quataert, E., & Thompson, T. A. 2005, ApJ, 618, Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003b, 569 MNRAS, 346, 1055 Naab, T., Jesseit, R., & Burkert, A. 2006a, MNRAS, 372, 839 Kaviraj, S. 2014a, MNRAS, 440, 2944 Naab, T., Khochfar, S., & Burkert, A. 2006b, ApJ, 636, L81 —. 2014b, MNRAS, 437, L41 Nemmen, R. S., Georganopoulos, M., Guiriec, S., et al. 2012, Kelly, B. C. 2007, ApJ, 665, 1489 Science, 338, 1445 Kennedy, R., Bamford, S. P., H¨außler, B., et al. 2016, MNRAS, Netzer, H. 2009, MNRAS, 399, 1907 460, 3458 Nguyen, D. D., Seth, A. C., Neumayer, N., et al. 2019, ApJ, 872, Khochfar, S., & Burkert, A. 2001, ApJ, 561, 517 104 Khochfar, S., & Silk, J. 2009, MNRAS, 397, 506 Nolan, L. A., Raychaudhury, S., & Kab´an, A. 2007, MNRAS, Kim, D.-W., Guhathakurta, P., van Gorkom, J. H., Jura, M., & 375, 381 Knapp, G. R. 1988, ApJ, 330, 684 Nowak, N., Thomas, J., Erwin, P., et al. 2010, MNRAS, 403, 646 King, A. 2003, ApJ, 596, L27 O’Connell, R. W. 1999, ARA&A, 37, 603 Knapen, J. H., Cisternas, M., & Querejeta, M. 2015, MNRAS, O’Dea, C. P., Baum, S. A., Privon, G., et al. 2008, ApJ, 681, 1035 454, 1742 Pannella, M., Carilli, C. L., Daddi, E., et al. 2009, ApJ, 698, L116 Knapen, J. H., Erroz-Ferrer, S., Roa, J., et al. 2014, A&A, 569, Paturel, G., Petit, C., Prugniel, P., et al. 2003, A&A, 412, 45 A91 Peng, C. Y. 2007, ApJ, 671, 1098 Kormendy, J. 1982, ApJ, 257, 75 P´erez-Gonz´alez, P. G., Rieke, G. H., Villar, V., et al. 2008, ApJ, Kormendy, J. 1993, in IAU Symposium, Vol. 153, Galactic 675, 234 Bulges, ed. H. Dejonghe & H. J. Habing, 209 Peterson, B. M. 1993, PASP, 105, 247 —. 2013, Secular Evolution in Disk Galaxies, ed. Peterson, B. M., Bentz, M. C., Desroches, L.-B., et al. 2005, ApJ, J. Falc´on-Barroso & J. H. Knapen, 1 632, 799 Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511 Rampazzo, R., Marino, A., Tantalo, R., et al. 2007, MNRAS, 381, Kormendy, J., & Kennicutt, Jr., R. C. 2004, ARA&A, 42, 603 245 Kormendy, J., & Richstone, D. 1995, ARA&A, 33, 581 Richstone, D., Ajhar, E. A., Bender, R., et al. 1998, Nature, 395, Krajnovi´c, D., Cappellari, M., & McDermid, R. M. 2018, A14 MNRAS, 473, 5237 Rodriguez-Gomez, V., Genel, S., Vogelsberger, M., et al. 2015, Krajnovi´c, D., Ural, U., Kuntschner, H., et al. 2020, A&A, 635, MNRAS, 449, 49 A129 Rodriguez-Gomez, V., Pillepich, A., Sales, L. V., et al. 2016, Lauer, T. R., Faber, S. M., Richstone, D., et al. 2007, ApJ, 662, MNRAS, 458, 2371 808 Rosario, D. J., Santini, P., Lutz, D., et al. 2012, A&A, 545, A45 Russell, H. R., McNamara, B. R., Edge, A. C., et al. 2014, ApJ, 784, 78 16 Dullo et al.

Russell, H. R., McNamara, B. R., Fabian, A. C., et al. 2019, Spitler, L. R., Forbes, D. A., & Beasley, M. A. 2008, MNRAS, arXiv e-prints, arXiv:1902.09227 389, 1150 Saglia, R. P., Opitsch, M., Erwin, P., et al. 2016, ApJ, 818, 47 Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, Sahu, N., Graham, A. W., & Davis, B. L. 2019, arXiv e-prints, 435, 629 arXiv:1903.04738 Steinmetz, M., & Navarro, J. F. 2002, NewA, 7, 155 Salo, H., Laurikainen, E., Laine, J., et al. 2015, ApJS, 219, 4 Struve, C., Oosterloo, T., Sancisi, R., Morganti, R., & Emonts, Salom´e, P., & Combes, F. 2003, A&A, 412, 657 B. H. C. 2010, A&A, 523, A75 Sandage, A. 1961, The Hubble Atlas of Galaxies Terrazas, B. A., Bell, E. F., Woo, J., & Henriques, B. M. B. 2017, Sanders, D. B., Soifer, B. T., Elias, J. H., et al. 1988, ApJ, 325, 74 ApJ, 844, 170 Savorgnan, G. A. D., & Graham, A. W. 2016, ApJS, 222, 10 Thomas, D., Maraston, C., Bender, R., & Mendes de Oliveira, C. Savorgnan, G. A. D., Graham, A. W., Marconi, A., & Sani, E. 2005, ApJ, 621, 673 2016, ApJ, 817, 21 Thomas, D., Maraston, C., Schawinski, K., Sarzi, M., & Silk, J. Schawinski, K., Khochfar, S., Kaviraj, S., et al. 2006, Nature, 2010, MNRAS, 404, 1775 442, 888 Toba, Y., Nagao, T., Wang, W.-H., et al. 2017, ApJ, 840, 21 Schawinski, K., Urry, C. M., Virani, S., et al. 2010, ApJ, 711, 284 Tonini, C., Mutch, S. J., Croton, D. J., & Wyithe, J. S. B. 2016, Schawinski, K., Urry, C. M., Simmons, B. D., et al. 2014, MNRAS, 459, 4109 MNRAS, 440, 889 Toomre, A., & Toomre, J. 1972, ApJ, 178, 623 Schechter, P. L., & Gunn, J. E. 1978, AJ, 83, 1360 Treuthardt, P., Buta, R., Salo, H., & Laurikainen, E. 2007, AJ, Schinnerer, E., & Scoville, N. 2002, ApJ, 577, L103 134, 1195 Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, van den Bosch, R. C. E. 2016, ApJ, 831, 134 525 van Driel, W., & Buta, R. 1993, PASJ, 45, L47 Schweizer, F. 1987, in IAU Symposium, Vol. 127, Structure and van Son, L. A. C., Barber, C., Bah´e, Y. M., et al. 2019, MNRAS, Dynamics of Elliptical Galaxies, ed. P. T. de Zeeuw, 109–122 arXiv:1901.03156 Segers, M. C., Schaye, J., Bower, R. G., et al. 2016, MNRAS, 461, Visvanathan, N., & Griersmith, D. 1977, A&A, 59, 317 L102 Watkins, A. E., Mihos, J. C., Harding, P., & Feldmeier, J. J. S´ersic, J. L. 1968, Atlas de Galaxias Australes 2014, ApJ, 791, 38 Shane, W. W. 1980, A&A, 82, 314 Watson, D. M., Guptill, M. T., & Buchholz, L. M. 1994, ApJ, Shankar, F., Weinberg, D. H., & Miralda-Escud´e, J. 2009, ApJ, 420, L21 690, 20 Wehner, E. H., Gallagher, J. S., Papaderos, P., Fritze-von Sheth, K., Regan, M., Hinz, J. L., et al. 2010, PASP, 122, 1397 Alvensleben, U., & Westfall, K. B. 2006, MNRAS, 371, 1047 Sijacki, D., Vogelsberger, M., Genel, S., et al. 2015, MNRAS, 452, Wehner, E. H., & Gallagher, III, J. S. 2005, ApJ, 618, L21 575 Weinberger, R., Springel, V., Hernquist, L., et al. 2017, MNRAS, Sil’chenko, O. K., Moiseev, A. V., Afanasiev, V. L., Chavushyan, 465, 3291 V. H., & Valdes, J. R. 2003, ApJ, 591, 185 White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341 Silk, J., & Rees, M. J. 1998, A&A, 331, L1 Wild, V., Heckman, T., & Charlot, S. 2010, MNRAS, 405, 933 Simmons, B. D., Smethurst, R. J., & Lintott, C. 2017, MNRAS, Yang, G., Chen, C.-T. J., Vito, F., et al. 2017, ApJ, 842, 72 470, 1559 Yi, S. K., Lee, J., Sheen, Y.-K., et al. 2011, ApJS, 195, 22 Simmons, B. D., Lintott, C., Schawinski, K., et al. 2013, MNRAS, Young, L. M., Bureau, M., Davis, T. A., et al. 2011, MNRAS, 429, 2199 414, 940 Smith, D. A., Neff, S. G., Bothun, G. D., et al. 1996, ApJ, 473, Zubovas, K., & King, A. R. 2012, MNRAS, 426, 2751 L21 Smith, R. J., & Edge, A. C. 2017, MNRAS, 471, L66

7. APPENDIX A. APPENDIX A A.1. Bayesian approach

We have performed linear regression fits to the (MBH, CUV,tot) dataset applying a Bayesian statistical inference with 11 Markov Chain Monte Carlo (MCMC) technique . The regression fits take into account errors in MBH and CUV,tot and an additional spread not explained by the error bars. The MCMC runs were implemented in our work through the Stan programming language12 (e.g., Carpenter et al. 2017). In addition to the slope, intercept, and dispersion, the model parameters include ‘true’ color and SMBH mass values. In our implementation, the observed SMBH mass upper limits were modeled by drawing samples from an asymmetric normal distribution centered around the true values with standard deviation having an upper wing which equals to the error bar of the measurements and a lower wing with a much larger size. As such, the regression fits probe a large range in SMBH masses for galaxies with SMBH upper limits. For the Bayesian analysis, we used non-informative prior distributions (e.g., Gelman et al. 2013) and checked that the results did not depend on the choice of the prior details. Fig. 7 shows the results of the Bayesian linear regressions. The shaded regions indicate the 95% Highest Density Interval (HDI) for the derived fits. Note that the HDIs are not symmetric, since the derived parameters exhibit skewed posterior distributions. The dotted lines mark the 1σ and 3σ intervals for the additional real dispersion that is not explained by the error bars (Fig. 7). The probability distribution functions for these additional dispersions are not symmetrical, and the derived values exhibit 95% HDIs of (0.00, 0.74) and (0.14, 0.68) for the early- and late-type galaxies. For the former, the additional dispersion is not significantly different from zero, therefore, the observed dispersion could be fully explained by the error bars. In contrast, an additional real dispersion is needed for the latter to explain the residuals from the fitted relation. In Fig. 8, we show the probability distribution functions (PDF) for the disparity in slope between early- and late-type MBH −CUV,tot relations obtained by applying the linear Bayesian regression fits. The PDFs are determined using all the individual steps of the computed chains, thus avoiding any assumption about the probability distribution of the

11 Interested readers are referred to Andreon & Weaver (2015, 12 https://mc-stan.org page 134) and Hilbe et al. (2017, page 278) for a description of the MCMC method. Black hole mass color correlation 17

Fig. 7.— Similar to Fig. 2, but here plotting the results of our symmetric linear Bayesian regression analysis. Early-type and late-type galaxies are shown in red and blue, respectively. The shaded regions indicate the 95% Highest Density Interval for the derived fits. The dotted lines mark the 1σ and 3σ intervals for the additional real dispersion not explained by the error bars, see the text for further detail. derived parameters. We find that the significance levels for rejecting the null hypothesis of both morphological types having the same slope are 1.7% and 6.7% for the FUV and NUV relations, respectively.

B. APPENDIX B

B.1. Outliers in the MBH −CUV,tot diagrams

Five galaxies in our sample, which offset notably from the MBH −C relations (Fig. 2).

B.1.1. NGC 2685 The Helix Galaxy NGC 2685 is a well-studied polar ring (Schechter & Gunn 1978, Shane 1980; Watson et al. 1994; Eskridge & Pogge 1997, Karataeva et al. 2004; Schinnerer & Scoville 2002; Rampazzo et al. 2007; J´ozsa et al. 2009). Sandage (1961) referred to it as to the most unusual of all the galaxies in his atlas, and subsequent studies confirmed its rare nature (e.g., Eskridge & Pogge 1997; Schinnerer & Scoville 2002; J´ozsa et al. 2009). The galaxy contains a large concentration of molecular, neutral and atomic gas in its polar ring. Fig. 2 shows it resides in the MBH −C blue sequence defined by late-type galaxies and its CUV,tot color is abnormally (∼1.90/1.00 FUV/NUV mag) bluer than that predicted for early-type galaxies given the galaxy’s SMBH mass. This result agrees with the two formation scenarios considered in the literature for NGC 2685: formation via accretion of a small gas-rich companion (e.g., Shane 1980; Watson et al. 1994; Schinnerer & Scoville 2002) and a merger of two disk galaxies (e.g., J´ozsa et al. 2009).

B.1.2. NGC 3310 The NGC 3310 is a well-studied peculiar spiral galaxy (SAB) known for its very blue color, circumnuclear ring of star formation, tidal features and very bright infrared luminosity (e.g., Balick & Heckman 1981; Mulder et al. 1995; Smith et al. 1996; Conselice et al. 2000; Elmegreen et al. 2002; Wehner & Gallagher 2005; Wehner et al. 2006; H¨agele et al. 2010). The favored scenario for the formation of the galaxy is through accretion of a small gas-rich ∼10 Myr ago (Balick & Heckman 1981; Mulder et al. 1995; Smith et al. 1996; Conselice et al. 2000; Wehner & Gallagher 2005; Wehner et al. 2006). Consistent with this picture, Fig. 2 shows that the galaxy’s CUV,tot color is (∼ 1.99/1.79 FUV/NUV mag) bluer than expected for late-type galaxies.

B.1.3. NGC 3368 18 Dullo et al.

FUV mean = 1.19 mean = 0.97 NUV PDF

95% HDI 95% HDI 0.04 2.53 −0.44 2.57 −1 0 1 2 3 4 −1 0 1 2 3 4 5 βearly−type − βlate−type βearly−type − βlate−type Fig. 8.— probability distribution function (PDF) for the difference in slopes (β) between the linear Bayesian regression fits to the early- and late-type (MBH, CUV,tot) data (see Fig. 7). The case of the double-barred spiral (SAB) galaxy NGC 3368 is less clear. It is the brightest galaxy in the nearby NGC 3368 group (Sil’chenko et al. 2003; Watkins et al. 2014), containing a dominant pseudo-bulge, a small classical bulge and box/peanut component (Nowak et al. 2010; Erwin et al. 2015). Not only its CUV,tot color is (∼1.81/1.61 FUV/NUV mag) redder than that expected for late-type galaxies given its MBH, the galaxy also falls on the MBH −CNUV,tot red sequence defined by early-type galaxies (Fig. 2). Fig. 2 shows that NGC 3368 lies 0.45 dex below the best-fitting MBH − σ line in the log MBH direction, this might suggest that the galaxy has abnormally low SMBH mass, rather than a discrepant redder color. We cannot rule out the possibility where both the black hole mass and color conspire, causing the offset in the MBH −C diagrams (Fig. 2).

B.1.4. NGC 4826 The SABa galaxy NGC 4826 is also referred to as the Evil- or Black-Eye Galaxy, attributed to its dusty disk with a radius R ∼ 50′′. It has a large-scale counter-rotating gas disk (van Driel & Buta 1993; Braun et al. 1994; Garc´ıa-Burillo et al. 2003). The galaxy is the most significant outlier in the MBH −CUV,tot diagrams, having CUV,tot color (∼ 2.68/2.04 FUV/NUV mag) redder than what is expected for late-type galaxies (Fig. 2). The dust disk likely explains the deviant (redder) UV−[3.6] color for the galaxy. Fig. 2 shows that the galaxy falls on the red, early-type sequence, despite being a late-type galaxy.

B.1.5. NGC 5018 The giant elliptical (E3) NGC 5018 is the most intriguing case. It is the brightest member of the poor NGC 5018 group containing 5 galaxies (Gourgoulhon et al. 1992) known for its morphological peculiarity including shells, ripples and dust lane (Schweizer 1987; Kim et al. 1988; Malin & Hadley 1997; Leonardi & Worthey 2000; Knapen et al. 2014). There is a tidal bridge between NGC 5018 and a gas-rich spiral companion NGC 5022, detected in optical (Schweizer 1987; Malin & Hadley 1997) and Hi observations (Kim et al. 1988; Ghosh et al. 2005), which was built up via accretion of gaseous material from NGC 5022 onto NGC 5018. NGC 5018 is currently forming stars (Ghosh et al. 2005) and about 12 % (by mass) of the stars in the galaxy are younger than 3.4 Gyr (Nolan et al. 2007, see also Leonardi & Worthey 2000). The galaxy has low and far- and mid-UV flux deficits unusual for its luminosity and velocity dispersion (Bertola et al. 1993; Buson et al. 2004). While Carollo & Danziger (1994) attributed the observed unusual metallicity and UV fluxes to nuclear dust extinction, the galaxy is an outlier from the CFUV,tot − MBH diagram but not CNUV,tot − MBH diagram (Fig. 2), revealing that the offset nature of the galaxy is not because of dust extinction but rather owing to the mixing of young and old populations of stars at the galaxy center washing out pre-existing metallicity (Bertola et al. 1993; Hilker & Kissler-Patig 1996; Kim et al. 1988; Buson et al. 2004). We also note that the galaxy offsets slightly from the MBH − L3.6,tot relation towards a brighter magnitude, this may partly explain the deviant red color of the galaxy.

C. APPENDIX C Table 5 presents total magnitudes, bulge-to-total (B/T ) and disk-to-total (D/T ) ratios, dust corrections and SMBH masses for our sample galaxies. Black hole mass color correlation 19

D. APPENDIX D

We use our MBH −CFUV,tot and MBH −CNUV,tot relations (Table 1) together with the appropriate asymptotic galaxy colors derived based on the asymptotic FUV, NUV and 3.6 µm magnitudes from Bouquin et al. (2018, their Table 1) to predict tentative BH masses in a sample of 1382 GALEX /S4G galaxies with no measured BH masses (Table 6). From the Bouquin et al. (2018) sample, we excluded galaxies that are: highly inclined, dust obscured and with prominent large-scale bars and rings. In contrast to the total (B+D) magnitudes in this paper (Table 5), the Bouquin et al. (2018) asymptotic magnitudes, which were not corrected for internal dust attenuation, contain additional fluxes from bars, rings and nuclear components as such we caution about overinterpreting these predicted BH masses. Furthermore, Chandra X-ray data or/and high-resolution radio data are important to confirm the presence of a central black hole 10 4 in the low-mass (M∗ . 10 M⊙) GALEX /S G galaxies. 20 Dullo et al. 19 99 26 08 79 25 00 42 05 10 05 18 07 08 70 09 05 13 26 09 73 06 09 24 59 40 29 34 09 29 40 35 48 37 38 48 42 26 08 29 25 20 04 05 10 05 67 07 08 92 09 05 13 30 09 61 28 09 24 41 51 29 34 09 29 08 35 30 ...... ] ...... BH 7 5 0 0 6 0 6 7 0 0 0 5 0 0 6 0 0 0 7 0 6 7 0 0 6 5 0 0 0 0 4 0 4 0 7 ⊙ − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +2 − +0 − − − +0 M M [ log NUV ) ratios. Cols. (10)-(12) corr D/T Dust ). asses (B and D) 2016 ( FUV corr ) and disk-to-total ( (B and D) Dust van den Bosch D. Cols. (3)-(5) dust-corrected, FUV, NUV and 3.6 B/T 6 . 3 corr Dust m bulge-to-total ( µ 6 (B and D) . TABLE 5 6 FUV/NUV 3 . . Col. (13) supermassive black hole mass from 3.1 G galaxies with directly measured supermassive black hole m 4 /S — 0.04 0.96 0.96 0.18/0.06 —/0.82 —/0.82 5.99 — 0.02 0.98 0.98 0.32/0.11 —/1.08 —/1.08 6.79 — 0.06 0.95 0.95 0.12/0.05 —/0.71 —/0.71 5.18 — 0.07 0.92 0.92 0.15/0.05 —/0.71 —/0.71 6.88 — 0.01 0.98 0.98 0.19/0.06 —/0.71 —/0.71 7.26 — 0.10 0.90 090 0.20/0.06 —/0.75 —/0.75 6.73 — 0.07 0.90 0.90 0.25/0.08 —/0.96 —/0.96 7.06 — 0.03 0.97 0.97 0.34/0.11 —/1.16 —/1.17 7.65 — 0.00 0.97 0.97 0.11/0.04 —/0.53 —/0.53 5.40 — 0.07 0.87 0.87 0.16/0.05 —/0.76 —/0.76 7.88 — 0.02 0.97 0.97 0.13/0.05 —/0.70 —/0.70 4.40 — 0.00 0.93 0.93 0.13/0.05 —/0.70 —/0.70 4.48 — 0.02 0.92 0.92 0.14/0.05 —/0.66 —/0.66 7.38 1.0 1.0 — — 0.11/0.04 1.20/— 1.20/— 7.82 0.11 0.18 0.82 0.70 0.13/0.05 1.32/0.64 1.32/0.64 7.19 0.22 0.44 0.78 0.56 0.14/0.05 1.39/0.71 1.39/0.71 7.81 0.03 0.15 0.96 0.80 0.13/0.04 1.26/0.59 1.27/0.59 6.10 0.03 0.14 0.95 0.80 0.12/0.04 1.28/0.61 1.28/0.61 6.00 0.03 0.14 0.95 0.80 0.12/0.042 1.21/0.55 1.21/0.55 7.42 0.03 0.12 0.93 0.78 0.26/0.08 1.62/1.00 1.62/1.00 6.93 1.00 1.00 — — 0.01/— 0.17/— 0.18/— 8.67 0.23 0.32 0.71 0.58 0.19/0.06 1.38/0.71 1.39/0.71 6.78 0.57 0.69 0.41 0.29 0.13/0.05 1.36/0.69 1.37/0.69 8.40 0.16 0.33 0.83 0.63 0.13/0.05 1.33/0.65 1.33/0.66 6.70 0.63 0.74 0.37 0.26 0.36/0.13 1.86/1.37 1.87/1.38 8.95 0.07 0.24 0.93 0.77 0.57/0.24 1.81/1.73 1.82/1.73 6.40 0.14 0.46 0.86 0.54 0.23/0.08 1.96/1.30 1.97/1.31 7.81 0.49 0.54 — — 0.01/— 0.44/— 0.45/0.45 8.23 0.39 0.51 0.59 0.45 0.19/0.07 2.32/1.65 2.34/1.66 7.61 0.36 0.46 0.54 0.41 0.23/0.08 1.82/1.17 1.83/1.18 6.59 0.26 0.36 0.70 0.58 0.32/0.10 1.54/1.00 1.54/1.00 6.07 0.11 0.22 0.79 0.56 0.15/0.05 1.41/0.73 1.41/0.73 8.14 0.67 0.72 — — 0.01/— 0.23/— 0.23/— 8.24 0.04 0.13 0.92 0.75 0.13/0.05 1.29/0.62 1.29/0.62 7.60 B/T B/T D/T D/T ). Cols. (6)-(9) FUV, NUV and 3.6 6 . GALEX 3 om HyperLeda, in good agreement with the classification in NE m 34 34 35 35 42 27 33 35 34 34 34 22 34 34 36 36 32 38 23 37 35 38 34 34 35 35 42 27 33 35 34 34 34 22 34 34 36 36 32 38 23 37 35 38 ...... 33 35 34 34 36 33 34 39 34 35 35 34 33 35 34 34 36 33 34 39 34 35 35 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...... and 0 0 0 0 0 0 0 0 0 0 0 0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 6 . 3 NUV 10.99 10.71 9.96 10.03 9.72 9.97 10.73 11.51 8.36 10.56 10.05 11.17 10.49 8.79 10.69 8.18 9.26 6.22 11.62 10.52 10.72 8.35 9.85 11.05 10.97 11.45 10.51 10.23 8.89 10.05 11.10 9.61 11.85 10.55 m m , 37 36 36 36 37 36 36 39 35 29 36 37 36 38 36 35 36 35 24 35 36 36 36 39 38 36 40 37 24 39 36 37 40 37 36 36 36 37 36 36 39 35 29 36 37 36 38 36 35 36 35 24 35 36 36 36 39 38 36 40 37 24 39 36 37 40 45 ...... 45 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FUV 0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 m NUV m , FUV- and NUV-bands, see Section 6 9.29 . 15.14 13.42 14.44 13.02 12.31 12.40 12.96 13.12 11.35 15.51 14.14 12.52 15.13 13.04 11.41 12.71 11.69 14.07 15.59 13.47 11.17 14.85 13.52 14.15 12.76 14.64 12.78 11.66 15.28 12.80 12.46 12.65 12.67 3 m 36 36 37 36 37 36 36 44 35 29 36 37 39 38 36 36 36 36 35 23 35 33 54 36 39 40 35 40 37 24 39 36 37 39 36 36 37 36 37 36 36 44 35 29 36 37 39 38 36 36 36 36 35 23 35 33 54 36 39 40 35 40 37 24 39 36 37 39 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 Basic data for our sample of 67 FUV m B+D B+D B+D FUV/NUV 3 ) apparent magnitudes ( D + B m total ( NGC 4245 SB0-a 16.20 NGC 4212 Sc 14.08 NGC 4203 E-S0 15.55 NGC 4151 SBab 13.16 NGC 4088 SABc 12.92 NGC 4051 SABb 12.89 NGC 4041 Sbc 13.45 NGC 3642 Sbc 13.25 NGC 3627 SBb 12.07 NGC 3608 E2 17.58 NGC 3489 SB0-a 16.01 NGC 3423 Sc 12.92 NGC 3414 SB0 16.39 NGC 3368 SBab 13.76 NGC 3310 SBbc 11.68 NGC 3115 E-S0 14.45 NGC 3079 SBc 12.10 NGC 3031 Sab 10.07 NGC 3021 Sbc 14.60 NGC 2974 E4 16.98 NGC 2964 SBbc 14.13 NGC 2903 SBbc 11.66 NGC 2787 SB0-a 16.66 NGC 2748 Sbc 13.98 NGC 2685 SB0-a 14.66 NGC 1493 SBc 12.99 NGC 1386 SB0-a 15.79 NGC 1300 SBc 13.21 NGC 1097 SBb 12.10 NGC 1052 E4 16.81 NGC 1042 SABc 13.08 NGC 0613 SBbc 12.99 bulge and disk dust corrections in NGC 0428 SABm 12.91 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) Galaxy Type NGC 0289 SBbc 12.84 Notes.—Col. (1) galaxyµ name. Col. (2) morphological type fr Black hole mass color correlation 21 20 18 07 62 06 29 13 41 58 21 27 38 96 10 08 23 13 02 12 16 26 05 21 29 08 04 04 05 07 67 91 27 03 20 78 42 28 06 29 13 08 30 42 27 38 36 10 08 23 13 53 12 16 26 05 21 29 08 04 04 05 07 17 30 27 03 ] ...... BH 0 5 7 6 0 0 0 6 7 7 0 0 5 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 6 6 0 0 ⊙ − +0 − +1 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 M M [ log NUV corr Dust (B and D) FUV corr (B and D) Dust 6 . 3 corr Dust 6 (B and D) . ) TABLE 5 Continued ( 6 FUV/NUV 3 . — 0.02 0.97 0.97 0.13/0.04 —/0.61 —/0.61 5.18 — 0.05 0.95 0.95 0.11/0.04 —/0.53 —/0.53 6.41 — 0.10 0.90 0.90 0.12/0.05 —/0.68 —/0.69 7.58 — 0.09 0.99 0.91 0.11/0.04 —/0.53 —/0.53 6.61 — 0.10 0.87 0.88 0.17/0.06 —/0.83 —/0.83 5.96 — 0.06 0.94 0.94 0.21/0.07 —/0.92 —/0.93 7.30 — 0.10 0.90 0.90 0.12/0.05 —/0.67 —/0.67 6.67 — 0.07 0.96 0.96 0.32/0.10 —/1.02 —/1.02 7.58 0.10 0.25 0.78 0.45 0.29/0.09 1.51/0.93 1.51/0.93 7.74 0.01 0.11 0.99 0.83 0.13/0.05 1.45/0.78 1.45/0.79 7.07 0.16 0.46 0.83 0.51 0.44/0.16 1.67/1.33 1.67/1.33 6.62 0.60 0.65 — — 0.01/— 0.46/— 0.46/— 9.04 0.12 0.26 0.72 0.39 0.20/0.07 2.09/1.41 2.10/1.42 8.05 0.69 0.74 — — 0.01/— 0.25/— 0.26/— 8.44 0.17 0.33 0.80 0.59 0.13/0.05 1.31/0.64 1.32/0.64 7.21 0.05 0.20 0.95 0.80 0.14/0.05 1.37/0.69 1.37/0.69 6.30 0.03 0.17 0.97 0.81 0.19/0.06 1.40/0.73 1.40/0.73 8.92 0.83 0.88 — — 0.02/— 0.79/— 0.80/— 8.02 0.06 0.15 0.88 0.69 0.24/0.07 1.44/0.81 1.45/0.81 8.27 0.12 0.28 0.87 0.68 0.21/0.07 1.62/0.96 1.63/0.96 6.05 0.04 0.17 0.95 0.80 0.13/0.05 1.28/0.60 1.28/0.61 7.02 0.24 0.42 0.54 0.21 0.12/0.04 1.27/0.61 1.28/0.61 6.78 0.22 0.44 0.78 0.56 0.17/0.05 1.43/0.74 1.43/0.75 7.76 0.13 0.19 0.77 0.65 0.13/0.05 1.32/0.64 1.32/0.65 7.89 0.49 0.83 0.51 0.17 0.31/0.10 1.84/1.27 1.84/1.28 8.82 0.10 0.16 0.81 0.61 0.13/0.05 1.36/0.69 1.37/0.69 6.86 0.03 0.12 0.93 0.78 0.13/0.05 1.45/0.78 1.46/0.79 7.25 0.58 0.63 — — 0.01/— 0.19/— 0.19/— 9.40 0.06 0.16 0.94 0.84 0.56/0.24 1.97/1.84 1.97/1.85 6.86 0.60 0.65 — — 0.01/— 0.35/— 0.35/— 8.97 0.16 0.23 0.74 0.62 0.12/0.05 1.41/0.76 1.41/0.76 6.84 0.08 0.17 0.79 0.57 0.12/0.05 1.32/0.67 1.33/0.67 6.91 0.65 0.71 — — 0.01/— 0.25/— 0.26/— 7.96 B/T B/T D/T D/T 33 35 34 38 23 35 34 34 27 34 35 32 36 34 32 34 33 35 34 38 23 35 34 34 27 34 35 32 36 34 32 34 ...... 34 21 61 33 32 34 33 34 34 35 35 39 20 22 34 22 35 34 21 61 33 32 34 33 34 34 35 35 39 20 22 34 22 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 6 . 3 9.97 10.82 10.80 10.93 9.46 10.99 10.42 7.76 10.99 11.99 11.24 9.65 7.49 7.97 10.28 9.17 7.91 10.94 8.01 10.08 10.06 7.20 10.74 9.82 8.76 7.91 10.11 8.74 10.44 8.99 10.34 9.79 m 7.89 36 35 37 35 25 38 24 37 38 36 36 34 36 25 35 36 35 36 36 35 37 38 36 35 22 36 23 36 36 35 24 36 36 35 37 35 25 38 24 37 38 36 36 34 36 25 35 36 35 36 36 35 37 38 36 35 22 36 23 36 36 35 24 36 63 63 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 NUV m 9.43 13.57 12.94 12.76 12.79 15.18 14.20 15.43 13.04 14.89 15.77 12.43 10.04 11.23 15.32 13.12 11.90 13.96 11.07 13.84 15.29 11.86 13.66 13.48 12.27 13.60 12.60 14.31 15.54 11.56 14.27 14.99 10.69 36 36 37 35 26 40 26 37 37 36 36 35 36 63 35 36 34 36 38 36 36 37 37 35 21 35 24 54 36 35 24 36 36 36 37 35 26 40 26 37 37 36 36 35 36 63 35 36 34 36 38 36 36 37 37 35 21 35 24 54 36 35 24 36 ...... 64 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . 0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 − +0 FUV B+D B+D B+D FUV/NUV 3 m continued. 5 NGC 7582 SBab 14.48 NGC 7418 SBc 13.35 NGC 5921 SBbc 13.23 NGC 5879 SBbc 13.14 NGC 5846 E0-1 16.24 NGC 5728 SBa 14.75 NGC 5576 E3 17.35 NGC 5457 SABc 9.65 NGC 5427 SABc 13.59 NGC 5347 SBab 15.27 NGC 5273 S0 17.46 NGC 5248 SBb 12.86 NGC 5194 SABb 10.60 NGC 5055 Sbc 11.89 NGC 5018 E3 18.07 NGC 5005 SABb 14.11 NGC 4826 SABa 12.94 NGC 4800 Sb 14.64 NGC 4736 Sab 11.51 NGC 4698 Sab 14.89 NGC 4596 SB0-a 16.72 NGC 4594 Sa 13.35 NGC 4593 SBb 14.26 NGC 4548 SBb 14.07 NGC 4501 Sb 13.04 NGC 4472 E2 14.78 NGC 4388 SBb 13.42 NGC 4374 E1 15.77 NGC 4371 SB0-a 16.90 NGC 4321 SABb 12.17 NGC 4314 SBa 15.16 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) NGC 4278 E1-2 16.00 Galaxy Type NGC 4258 SBbc 11.10 Table 22 Dullo et al. BH and M tot , BH FUV M − C BH (2) (3) (4) M Galaxy Type BH M BH ) estimated using our M ⊙ /M BH M , their Table 1). We adopt a typical uncertainty of 0.85 dex 2018 Galaxy Type ( BH M Bouquin et al. BH G galaxies with no measured BH masses M 4 /S 69 8.74 6.9 5.917 4.2 5.523 4.4 5.80 5.509 5.9 5.91 5.399 ESO548-032 6.0 4.50 5.485 ESO548-082 9.8 9.0 5.65 5.613 ESO549-002 8.0 4.2 4.84 3.917 4.31 ESO549-018 8.4 9.6 6.26 5.35 5.33 ESO549-035 7.5 4.8 5.65 4.24 3.940 5.28 ESO550-024 6.0 4.22 5.87 4.664 7.41 ESO551-016 8.8 IC1125 6.7 5.79 4.975 4.93 ESO551-031 8.5 IC1151 4.1 4.83 7.3 3.61 7.804 5.28 ESO553-017 8.8 IC1158 6.7 5.26 5.1 4.595 5.15 ESO572-012 8.9 5.46 IC1210 5.0 5.71 5.1 4.70 5.06 5.92 2.2 6.29 IC1251 4.8 4.42 2.1 5.04 4.721 4.77 5.50 ESO572-030 6.38 IC1265 6.81 6.0 5.03 5.553 5.39 6.13 ESO576-003 8.2 7.07 IC1438 9.1 2.0 3.97 4.501 6.34 ESO576-005 8.9 5.20 IC1447 6.7 4.27 1.2 6.81 5.260 5.24 7.17 ESO576-008 4.2 6.49 IC1532 8.0 4.81 3.23 5.41 4.81 -1.6 ESO576-017 4.9 7.56 IC1553 4.43 4.0 3.88 10.0 5.062 5.96 6.64 6.75 7.0 5.01 7.0 4.56 4.71 4.40 4.880 7.95 ESO576-059 9.8 5.85 IC1558 4.01 7.134 5.75 6.85 ESO580-022 8.7 6.93 IC1574 9.8 5.81 9.0 5.43 4.46 5.86 ESO580-030 9.0 IC1596 7.7 3.79 5.29 9.9 IC1727 5.572 5.28 7.24 ESO580-041 5.06 5.5 5.93 2.0 ESO581-025 5.858 5.73 8.9 9.7 5.51 IC1892 4.1 6.9 4.79 5.479 5.56 4.74 ESO582-004 4.0 6.04 5.08 7.7 5.76 4.91 5.613 5.94 5.08 ESO601-007 5.0 IC1933 5.0 5.57 7.34 5.50 5.91 ESO601-031 8.5 5.01 IC1952 8.2 5.19 6.2 4.56 4.67 5.805 5.82 IC1954 9.9 4.74 7.44 4.0 5.24 6.30 4.71 ESO602-015 8.6 5.00 IC1959 3.2 IC1986 4.52 5.251 4.41 ESO602-030 7.72 6.7 5.36 8.5 4.24 8.8 6.271 4.74 ESO603-031 6.6 6.58 IC1993 6.8 3.978 4.20 7.84 7.9 4.71 IC2007 1.0 5.90 3.0 4.65 5.679 5.30 6.62 5.9 IC2032 IC0167 4.94 3.7 3.684 5.82 4.38 5.9 7.91 6.68 9.9 4.37 5.51 5.312 5.9 6.54 IC2135 IC0600 4.74 5.0 4.72 5.758 8.13 5.5 4.36 IC2574 4.32 5.9 6.627 6.64 4.6 IC2604 IC0719 5.16 5.18 8.9 7.8 4.244 4.01 8.7 6.83 IC0749 6.06 9.1 3.925 4.2 4.92 4.90 IC0755 4.98 4.67 -2.0 4.990 6.93 8.0 4.73 IC0758 6.56 IC2627 5.9 5.992 4.84 4.74 7.9 4.63 IC0764 5.28 3.5 4.6 4.325 4.31 8.9 IC0769 6.38 6.00 IC2828 6.0 6.68 6.056 7.6 IC0776 5.27 5.10 6.42 5.0 3.6 5.404 9.0 6.39 IC2995 IC0796 5.75 6.83 4.0 5.805 8.8 4.78 IC0797 5.10 5.92 6.31 5.5 5.25 IC2996 7.9 5.18 10.00 5.57 IC0800 6.36 4.31 -0.2 IC3021 3.5 6.79 5.27 6.36 9.5 5.95 IC0851 4.84 4.75 IC3023 6.0 9.0 4.90 6.13 6.16 IC0863 4.91 7.03 IC3033 5.2 9.7 3.91 6.15 4.64 IC1014 5.14 6.37 6.49 IC3044 3.8 7.7 5.66 IC1024 6.56 6.78 4.65 IC3059 0.4 6.0 4.75 6.28 IC3102 IC1055 6.13 6.35 5.52 8.1 9.8 IC1066 6.55 -0.9 7.51 4.17 -2.0 5.67 IC3105 5.99 IC1067 5.80 5.14 6.07 IC3115 3.1 9.8 8.09 4.35 3.2 7.43 5.33 IC3258 5.5 5.55 8.03 5.84 4.00 IC3259 3.0 8.26 9.7 6.97 5.66 5.65 IC3267 7.9 IC3268 8.24 7.06 3.37 4.76 7.04 5.9 10.0 5.47 7.17 IC3322 IC3355 7.24 4.39 7.07 5.39 6.3 9.7 7.32 IC3356 7.10 7.82 5.11 9.7 4.32 7.97 4.52 3.88 4.14 TABLE 6 89 6.7 5.37 5.0608 ESO572-018 9.0 4.7 4.70 5.49 4.73 5.33 ESO576-032 IC1555 5.8 7.028 6.56 5.18 7.0 6.53 4.72 6.26 IC1914 6.9 6.1629 ESO602-003 6.0 5.1007 9.9 5.56 4.93 7.0 4.42 8.01 5.41 3.92 3.88 IC2056 IC0223 3.8 IC0718 10.0 6.48 4.17 9.8 6.37 3.66 6.01 IC2764 -0.1 5.81 IC2969 4.21 3.9 5.53 5.29 5.30 GALEX m magnitudes from µ Galaxy Type erLeda. Cols. (3 and 4) Tentative BH masses (log BH M BH M Predicted black hole masses for 1382 Galaxy Type ) and the asymptotic FUV, NUV and 3.6 1 BH M BH M (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) relations (Table tot , ) for these predicted BH masses. BH NUV M − C BH Galaxy Type ESO013-016ESO026-001 7.5ESO027-001 5.9 5.35ESO027-008 5.0 5.03ESO048-017 5.1 6.42 5.42ESO079-005 6.9 7.98 4.96ESO079-007 ESO347-008 7.0 5.10 6.45ESO085-014 ESO347-017 4.0 9.0 5.08 8.15ESO085-047 ESO347-029 9.0 9.0 5.32 4.50 4.86ESO119-016 ESO355-026 9.0 7.9 4.75 4.83 4.75ESO120-012 ESO356-018 9.7 4.2 3.81 5.02 5.12 4.16ESO145-025 ESO357-007 7.1 5.0 5.12 6.13 4.08 4.52ESO149-001 ESO357-012 9.0 ESO440-04 9.0 4.43 5.36 3.19 4.78ESO149-003 ESO358-005 8.0 ESO440-04 7.0 4.08 5.18 4.82 6.16ESO150-005 ESO358-015 9.7 ESO441-01 9.0 4.95 5.03 4.03 5.24ESO154-023 ESO358-020 7.8 ESO441-01 8.9 3.56 5.56 3.69 4.93ESO159-025 ESO358-025 8.9 ESO442-01 9.3 5.07 5.86 4.39 10.0 4.83ESO187-035 -2.6 ESO358-051 ESO443-06 4.65 6.69 3.07 4.84 5.40ESO187-051 ESO358-054 5.05 9.0 ESO443-07 0.0 4.86 5.70ESO202-041 ESO358-060 9.0 ESO443-08 8.0 4.78 6.33 4.75 6.60ESO234-043 ESO358-063 8.9 ESO444-03 9.9 4.37 4.79 5.02 5.35ESO234-049 ESO359-003 8.9 ESO444-03 7.7 3.86 3.74 ESO359-022 4.57 ESO445-0 6.23ESO237-052 4.1 1.4 5.19 8.37 8.6 4.52 4.79ESO238-018 ESO361-009 7.5 ESO476-01 5.28 6.28 3.34 3.30 4.14ESO245-005 ESO361-019 5.5 ESO479-00 9.9 5.27 4.75 8.55ESO245-007 ESO362-009 9.9 ESO480-02 1.1 4.62 4.23 5.00 5.88ESO248-002 ESO362-019 9.5 ESO481-01 9.1 3.64 3.70 5.10 5.06ESO249-008 ESO399-025 6.9 ESO482-03 8.9 6.22 4.57 ESO483-0 4.35 3.65ESO249-026 ESO400-025 1.3 0.4 6.34 4.17 3.04 4.77ESO249-035 ESO402-025 7.2 ESO485-02 7.8 5.37 7.73 5.17 4.16ESO249-036 ESO402-026 5.9 ESO486-00 4.8 4.07 5.64 6.26 10.0 3.66ESO285-048 ESO402-030 ESO486-02 1.9 4.28 5.67 5.24 4.66 7.75ESO286-044 -0.8 ESO403-024 5.9 ESO501-08 8.42 3.44 5.26ESO287-037 -0.8 2.77 ESO404-012 ESO502-02 6.0 5.73 3.68 5.51ESO288-013 6.33 ESO404-017 8.5 ESO503-02 5.1 4.31 6.28 8.89ESO289-026 ESO404-027 9.0 ESO504-01 7.6 5.61 6.39 3.69 ESO406-042 5.55ESO291-024 7.9 ESO504-02 5.0 5.46 5.00 6.25 8.8 ESO504-0 6.13ESO293-034 ESO407-009 5.0 4.98 6.55 ESO407-014 5.64 6.38 4.49ESO293-045 6.2 ESO505-00 6.7 5.57 5.26 4.90 5.1ESO298-015 ESO407-018 7.8 ESO505-00 6.89 6.31 4.72 6.62ESO298-023 ESO408-012 5.72 6.2 ESO505-00 9.8 4.14 4.13 5.40ESO300-014 ESO409-015 6.0 ESO505-01 6.8 5.50 4.54 ESO506-0 7.06 6.35ESO302-021 ESO410-012 8.9 5.4 4.68 5.20 5.62 3.69ESO305-009 ESO410-018 5.0 ESO507-06 4.6 5.68 3.70 5.33 ESO508-0 4.64ESO305-017 ESO411-013 8.0 8.9 4.43 4.35 4.35 4.93ESO340-017 ESO411-026 9.9 ESO508-01 9.0 4.27 4.51 5.50 3.22ESO340-042 ESO418-008 8.0 ESO508-05 9.0 4.73 5.52 4.08 3.84ESO341-032 ESO420-009 7.8 ESO510-05 7.7 5.50 5.32 3.74 4.16ESO342-050 ESO421-019 9.0 ESO510-05 5.0 5.31 5.13 4.31 5.06ESO345-046 ESO422-005 5.0 ESO532-01 9.0 5.18 5.96 5.72 5.57 ESO422-033 7.0 ESO532-02 9.5 6.80Notes.—Col. 4.98 5.41 4.88 ESO423-002 (1) ESO533-02 9.7 5.16 4.10 galaxy 4.92 6.02 ESO438-017 name. ESO539-00 6.5 4.66 6.99 4.77 Col. ESO440-004 ESO541-00 4.9 6.19 (2) 5.11 3.68 ESO440-011 ESO541-00 galaxy 7.9 5.75 T-type 4.42 ESO440-044 from ESO544-03 6.9 4.87 Hyp 6.09 ESO545-00 8.7 5.82 5.77 ESO545-00 5.19 4.20 ESO545-01 5.55 ESO546-03 4.67 ESO547-00 ESO547-02 on log( (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) M Black hole mass color correlation 23 BH M BH M (2) (3) (4) Galaxy Type BH M BH M Galaxy Type 0404 NGC2701 NGC2710 5.2 3.1 6.0860 6.4679 6.02 NGC273562 6.60 NGC2742 3.0 NGC316534 NGC2743 5.3 NGC316916 7.63 NGC2750 8.5 7.971 7.24 NGC2764 1.2 5.3 5.95 8.27 6.92 NGC2768 -1.8 8.47 7.37 6.46 -4.5 NGC3206 5.42 5.76 51 6.89 NGC3220 9.5625 8.85 6.45 NGC2782 6.0 6.42 NGC3225 NGC2793 3.0 1.1 8.22 NGC323956 5.09 5.8 NGC3246 8.7 5.35 7.26 NGC2805 9.8 NGC3252 4.75 57 7.9 5.80 5.41 6.9 5.18 7.4 4.32 7.39 NGC2841 5.84 5.75 44 5.15 5.20 3.0 7.05 NGC326459 3.80 NGC2854 5.50 NGC3274 5.07 8.77 NGC2859 7.9 3.1 7.51 83 -1.2 6.6 NGC3287 4.48 9.42 7.56 NGC2893 8.46 4.79 7.6 0.3 NGC3299 4.17 7.86 8.72 4.38 6.68 6.91 8.0 NGC3319 NGC332003 6.68 7.10 6.84 6.0 5.8 NGC2966 NGC3338 7.00 5.36 4.2 6.35 5.1 5.18 7.73 6.31 6.45 7.93 6.44 NGC3377A 8.9 6.00 5.86 BH .64 NGC2591 5.9 8.41.39.42 8.84 NGC2712.18 NGC2726 3.1 NGC3147 NGC2731 1.0 7.15 3.9 4.2 8.25 8.16 7.44 7.06 8.42 NGC3182 8.48 6.92 NGC3187.55 0.5 NGC3193.84 NGC2776 5.0 8.73 -4.8 NGC2780 5.2 5.66 3.0 9.14.41 9.03 6.26 5.58 7.55 NGC2799 8.47 .95 6.21 8.8 7.42 NGC2814 NGC3254.64 6.23 2.8 NGC3259 NGC2844 4.0 6.08 5.91 3.7 0.6.48 6.85 NGC3277 6.11 5.95 7.97 NGC2882.99 7.10 1.9 5.0 NGC3294.82 6.21 8.56 NGC2894.51 8.19 7.69 NGC2906 5.1 1.0 NGC3306.93 NGC2919 5.9.52 8.41 7.47 7.71 8.85 NGC2938 7.8 3.7 7.99 NGC2962 5.8 NGC3321.28 7.53 6.87 8.92 7.16 -1.1.78 8.24 5.19 NGC2967 5.1 NGC3346 7.13 7.03 7.28 NGC2976 5.2 NGC3353 6.02 4.92 5.9 5.2 8.47 NGC3361.47 6.74 3.4 NGC3364.01 5.79 6.58 6.92 NGC3020 5.0 NGC3370.02 5.51 6.44 NGC3023 5.0 5.9.90 6.60 5.1 6.59 7.10 NGC3024 5.5 NGC3380.97 5.39 6.68 4.60 NGC3026 5.0 6.37 NGC3381.03 6.64 5.07 NGC3032 1.0 9.7 6.84 4.23 5.50 NGC3049 -1.9 3.2 6.45 .33 7.50 4.77 6.12 2.5 NGC3396 3.75.94 6.02 5.69 NGC3057 NGC3403.71 7.69 5.99 6.47 NGC3061 9.4 7.9 4.41 NGC3437 5.87 NGC3073 4.0 5.3 NGC3440 5.55 6.33 5.07 -2.8 5.3 NGC3443 6.63 6.34 3.0 NGC3445 4.49 5.30 6.6 7.45 4.78 6.93 5.27 6.50 8.9 5.20 5.04 NGC3448 7.62 NGC3455 4.95 5.03 1.8 NGC3485 4.88 3.1 4.83 3.1 6.22 5.74 6.20 6.13 5.46 6.20 4.354.34 NGC2608 NGC2633 3.3 3.0 7.53 7.51 7.71 7.88 NGC3155 NGC3162 3.5 4.6 6.46 5.95 6.62 5.90 5.974.67 NGC3003 NGC3018 4.3 3.1 5.85 5.32 5.76 4.81 NGC33898.40 NGC3395 NGC3055 5.3 5.8 5.3 6.11 5.15 6.50 5.80 8.204.99 4.78 6.45 NGC3104 NGC3118 9.9 NGC3447 4.1 4.77 8.8 5.69 4.50 4.43 5.28 NGC3488 3.95 NGC3495 5.2 6.4 6.24 7.23 6.27 7.26 M 6 7.18 NGC3094 1.1 8.58 8.89 NGC3486 5.2 5.76 5.68 BH ) M TABLE 6 Continued ( Galaxy Type BH M BH M Galaxy Type BH M BH M (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) continued. 6 (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) IC3391IC3476IC3517IC3576 5.9IC3583 9.6 6.14IC3687 8.5 5.55IC3718 8.6 5.85 6.10IC3881 9.6 4.83 5.33IC4182 NGC0473 9.9 4.94 5.72 -5.0IC4213 NGC0474 4.01 4.50 -0.3 4.58IC4216 NGC0485 5.8 4.50 3.88 -2.0IC4221 NGC0493 8.8 5.27 3.51 8.64IC4231 6.0 NGC0578 5.8 5.04 4.18IC4237 5.9 NGC0584 5.8 6.95 5.92 4.96 NGC0600 5.11IC4247 5.0 4.7 6.11 5.90 7.36 NGC1326A 4.72 -4.7IC4263 NGC0672 4.1 6.02 6.43 NGC1326B 6.82 7.0 5.75 8.9 9.77IC4316 NGC0691 3.5 7.50 5.98 5.98 5.75 8.9 NGC1337 4.60 IC4407 6.0 NGC0723 6.9 7.19 5.97 6.26 NGC1338 4.70 IC4468 4.0 NGC0755 6.6 5.90 5.10 9.41 7.73 6.0 NGC1339IC4951 3.8 NGC0772 9.9 7.76 5.97 5.62 NGC1341 7.21 3.1IC4986 3.4 6.09 NGC0784 8.8 5.98 5.86 NGC1345 5.69 -4.3 4.48IC5007 3.1 7.05 NGC0803 4.7 5.86 5.46 1.3 7.97 8.46 5.80 NGC1357 7.9IC5039 NGC0855 7.7 7.97 7.07 6. 5.2 5.98 6.56 5.80 NGC1359IC5069 5.3 NGC0895 7.6 5.30 4.58 7. 5.77 5.34 5.36 -4.8 1.9 NGC1365IC5078 NGC0899 6.7 6.49 8 5.55 8.17 7.36 3.07 8.5 NGC1367IC5152 6.0 8.15 NGC0907 4.0 6 5.66 4.83 4.14 3.2 NGC1385IC5269A 9.9 4.17 NGC0908 3.4 6.16 5 6.35 6.63 5.12 1.1 NGC1390 7.6IC5269C 7.28 NGC0918 5.0 5.01 5.97 3.69 8. 5.50 5.9 NGC1411IC5273 5.1 7.79 NGC0941 9.7 6.80 6.83 8.9 3. NGC1421 6.13 6.33 0.4IC5321 5.2 6.29 NGC0986A 7.41 5.60 7.0 7. 5.10 4.82 -3.0 5.91 NGC1422IC5325 5.3 6.79 NGC0991 6.11 9.9 8. 4.1 5.75 6.86 9.16 6.92 NGC1425IC5334 NGC1035 5.7 5.66 5.22 6. 7.57 6.83 5.43 2.3 NGC1427ANGC0007 4.85 5.0 NGC1047 1.8 6.10 6. 5.83 3.2 NGC1436NGC0024 5.2 5.57 8.46 NGC1051 9.9 4.2 5.66 8 5.10 NGC1073 5.51 -0.5 4.95 4.8 NGC1461NGC0059 6.93 3.7 8.00 6 5.35 6.81 NGC1079 6.13 7.46 2.0 5.1 NGC1473NGC0063 8.8 5.13 NGC1476 5.3 7.98 8. 5.64 -2.0 -2.9 4.82NGC0115 8.34 NGC1084 6.33 5.68 0.6 5.52 7. 8.30 9.93 5 2.67 -3.4 6.77 9.7 NGC1483NGC0131 NGC1087 1.4 6.40 8.24 4.83 8.37 5.50 3.9 NGC1494NGC0150 4.9 4.90 NGC1090 5.00 8. 6.41 NGC1511 5.60 NGC1140 5.63 4.0 3.0NGC0157 5.2 NGC1110 5.08 7.05 9 3.44 NGC1179 7.0 8.83 3.4 NGC1512NGC0178 3.8 5.54 6.76 6.40 NGC1518 5.72 4. NGC1187 1.8 4 9.2 4.0NGC0210 8.9 5.50 7.00 7.08 NGC1519 NGC1232 4.83 7.08 7.50 5.9 1.1 8.7 4.82NGC0254 7.26 8.2 5.01 5.0 5. 6.84 6.27 NGC1249 3.1 NGC1533 5.95NGC0255 7.13 4.63 3.0 5.29 5.0 5. 7.29 6.50 7.26 -1.2 NGC1253 NGC1546NGC0275 6.93 7 6.76 4.60 7.22 6.25 4.66 -2.5 7.87 6.0 NGC1255 4.1 NGC1553NGC0298 5.94 7. 4.34 -0.4 7.48 4 NGC1640 5.9 NGC1258 6.0 NGC1556 5.42NGC0337 5.41 6.63 7.33 8.32 -2.3 NGC1679 6 4.0 NGC1292 5.9 5.45NGC0337A 5.92 6.39 8.12 NGC1703 3.0 9.90 5.7 NGC1299 2.6 6.7 6.16NGC0450 5.56 8.0 8 NGC1744 5.17 NGC1309 5.30 9.4 5.0 6.92 6.13 5.29 6.07 7 4.87 3.2 5.32 5.81 NGC1800 3.0 5.10 NGC1310 5.8 6.20 9 6.7 6.21 3.9 6.22 5.15 NGC1824 NGC1311 6.58 5.22 7 6.46 5. 5.00 5.52 5.87 8.0 NGC1827 5.0 4.34 NGC1313 4 6.21 8.9 NGC1879 8.8 5.60 NGC1316C 6.44 NGC1325 6.57 4.86 5.9 NGC2101 7.0 5.44 -1.9 5.47 5.70 8.6 NGC2104 6.23 NGC1325A 5.40 4.93 4.0 5 NGC2460 6.50 9.9 5.05 6.9 7.22 5 5.21 8.7 NGC2500 4.51 6.58 6 1.9 5.99 4.70 NGC2537 5.39 4 7.80 NGC2543 7.0 7.53 NGC2541 3 8.7 6.70 5.43 NGC2551 5 3.0 6.0 5.95 NGC2552 6.9 4.88 0.5 5 9.0 7.69 5 5.12 4 Galaxy Type IC3371 6.0 4.92 4.46 NGC0470 3.1 7.22 7.44 NGC1326 -0.8 4.94 6 Table 24 Dullo et al. BH M BH M (2) (3) (4) Galaxy Type BH M BH M Galaxy Type BH .14 NGC4434.94.61 -4.8 NGC4451 9.00 NGC4455 2.4 7.0 8.74 7.59.46 5.03.76 NGC4658 NGC4485 7.53.73 NGC4487 4.0 4.63 9.7 NGC4496A NGC4680.89 6.0 7.6 6.59 NGC4682 4.97 0.0 NGC4502 6.02 5.8 5.53 6.34 7.09 4.61.89 5.8 7.08 5.94.49 5.37 NGC4694 NGC4519 7.08 5.74.76 NGC4700 NGC4522 7.25 NGC4707 -2.0.96 6.9 NGC4523 5.55.33 4.9 6.0 8.8 5.35 NGC4525 5.57.98 9.1 NGC4722 NGC4528 5.34 6.90.60 4.10 5.9 4.92 NGC4531 5.44 4.50 -2.0 0.0 NGC4532 4.92 6.99 6.67 3.63 -0.5 NGC4731 8.72 8.30 4.02 9.7 NGC4746 6.13 6.60 5.9 8.82 NGC4747 8.60 5.45 3.1 6.68 NGC4750 5.34 7.1 NGC4758 7.67 5.10 2.4 NGC4765 5.11 9.1 7.16.37 NGC4775 7.97 0.0 8.04.32 7.86 NGC4562 7.32 .50 6.9 5.29 NGC4567 8.30 7.1 8.05 NGC4571 5.24.11 4.0 4.92 6.68 6.5 NGC4591 5.03 7.48.26 6.62 7.56.18 3.3 NGC4595 7.26.86 NGC4809 NGC4597 7.65 7.24 3.8 NGC4814 NGC4604 9.9 8.7 NGC4866 7.47 6.23 10.0.26 3.1 4.15 -0.1 5.22 6.11 NGC4899 NGC4625 7.01 6.10 8.02 3.66 4.92.86 5.0 8.8 5.90 NGC4902 7.17 8.61 NGC4904 NGC4633 6.40 5.92.69 NGC4920 3.0.55 5.8 7.9 10.0 NGC4635 6.33 7.02 5.86.80 NGC4639 4.35 6.74 6.10.22 6.6 NGC4948 NGC4641 7.22 .73 3.5 NGC4642 3.95 6.67 5.99 6.09.93 -2.0 7.3 NGC4651 6.89 3.9 NGC4961 4.12 NGC4653 7.40 6.01 5.2 7.13 6.65 5.6 6.0 4.26 NGC4980 7.25 7.12 NGC4981 5.79 6.62 5.91 1.1 NGC4984 7.28 4.0 NGC4995 -0.8 5.66 5.33 5.81 NGC5002 7.03 3.1 7.03 NGC5012 4.89 9.0 7.00 7.67 7.61 5.1 5.16 7.72 7.17 4.86 7.42 4.56 NGC44425.00 -1.98.41 9.46 NGC44606.24 NGC4461 -0.9 9.72 NGC4480 -0.8 3.63 NGC4668 5.1 9.565.51 4.53 7.4 6.69 9.17 NGC44987.89 NGC4684 5.52 6.78 NGC4688 6.4 -1.1 NGC4504 5.19 NGC4691 6.0 6.28 5.57 6.0 0.3 5.03 6.16 5.92 6.48 6.59 4.75 NGC4713 5.75 6.52 6.8 NGC47234.27 5.388.08 8.8 NGC45346.99 NGC4535 5.18 4.60 7.8 NGC45405.39 5.0 4.08 4.625.96 6.2 NGC4546 6.924.06 NGC4550 4.31 7.58 -2.7 NGC4561 7.11 -2.1 NGC4779 9.62 7.46 7.2 NGC4781 7.955.39 4.6 8.78 NGC4790 4.91 7.0 7.77 NGC4572 6.556.31 4.8 NGC4793 6.20 4.60 NGC4806 5.0 NGC4592 6.59 5.1 5.85 NGC4808 6.02 4.9 7.92 8.0 7.42 5.91 6.16 5.9 5.64 8.13 5.315.66 7.46 NGC4605 6.65 5.32 NGC4897 NGC4618 5.045.47 5.1 6.60 5.29 4.0 8.7 NGC4900 NGC4630 6.61 NGC4632 6.05 5.647.36 5.2 9.8 6.55 5.1 NGC4634 5.98 5.99 5.48 6.75 NGC4928 6.53 5.9 NGC4942 5.87 6.77 4.0 6.44 8.37 6.9 NGC4948A 5.36 7.7 NGC4951 5.78 8.57 5.41 5.41 6.0 NGC4965 5.55 7.08 5.21 6.7 7.11 5.63 5.28 M 7 9.04 NGC4517A 7.8 5.20 4.90 NGC47259 2.2 7.38 7.97 NGC4545 8.66 5.6 6.26 6.24 NGC4791 1.0 7.62 8.04 ) BH M TABLE 6 Continued ( Galaxy Type BH M BH M Galaxy Type BH M BH M (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) continued. 6 NGC3510NGC3512 8.6NGC3513 5.1NGC3522 5.05 5.1NGC3547 6.45 -4.9NGC3549 5.70 4.63 8.67 3.1NGC3583 6.57 NGC3900 5.1NGC3589 6.07 5.44 NGC3901 3.1NGC3592 7.53 6.50 -0.2 NGC3906 7.0NGC3599 7.82 NGC3912 5.87 4.47 6.0 5.3NGC3611 5.01 7.82 6.7 -2.0 NGC3917 5.55NGC3614 8.17 3.1 7.99 7.83 NGC3922 6.02 1.0NGC3619 5.84 4.81 7.34 5.9 NGC3930 5.2NGC3622 7.83 NGC4190 5.36 8.41 -0.1 -0.9 NGC3949 7.55NGC3625 6.14 7.69 5.93 7.36 NGC4193 6.45 5.2 NGC3952 6.0NGC3629 7.36 9.9 NGC3955 7.75 NGC4194 4.0 3.1 5.60NGC3631 5.86 NGC4204 7.83 5.03 6.17 4.1 9.3 NGC3956 6.28 5.9NGC3654 7.26 6.48 7.20 0.3 9.5 NGC4220 7.80 NGC3976 5.2 5.11NGC3655 5.17 8.0 NGC4234 5.39 NGC3985 5.72 8.22 5.1 7.71 4.0NGC3664 6.37 6.19 -0.3 5.30 6.49 NGC4238 3.2 NGC4010 5.0 6.01NGC3669 6.52 7 8.8 4.66 8.8 7.87 4.82 NGC4242 NGC4020 9.0 7.46NGC3672 8.23 7.79 7 6.22 6.44 6.33 6.5 NGC4248 6.8 NGC4030 6.8NGC3681 4.61 NGC4252 5.83 6.52 7.9 6.9 5.78 NGC4032 5.0 7.84NGC3682 5.92 7.84 7.84 8.0 NGC4254 4.0 6.03 NGC4034 6.24 4.0NGC3683A 6.21 7.36 3.1 4.20 NGC4262 9.8 -0.1 7.87 NGC4037 7.61NGC3687 6.98 5.1 5 NGC4267 8.23 5.67 5.70 5.2 6.0 4.70 NGC4038 5.60NGC3689 5 6.74 6.08 -2.7 7.46 NGC4273 2.9 6.99 NGC4039 6.36 3.8NGC3691 -2.7 7 7.58 7.15 7.29 NGC4276 8.9 NGC4049 5.3 6.88NGC3701 6.67 7.8 5.70 5.29 5.2 NGC4286 8.9 6.88 NGC4050 6.83 3.0NGC3712 7.90 6 6.53 NGC4062 7.6 NGC4288 7.5 6.90 4.0 6.71NGC3715 5.99 NGC4067 6.92 6.79 1.0 NGC4294 2.2 6.56 6.0 5.62NGC3733 5.87 6.90 5.3 7.98 7.0 NGC4298 7.69 NGC4068 3.8 7.80 3.1NGC3738 5.30 6 6.63 5.83 7.82 5.8 NGC4299 5.20 NGC4080 5.6NGC3755 7.57 7.13 6 5.44 5.86 5.2 NGC4303A 9.9 5.62 NGC4094 9.8NGC3769 5.57 7 8.22 4.93 8.5 NGC4309 9.5 7.97 NGC4100 6.4 5.2 4.37NGC3779 8.04 5.38 4 7.57 7.35 NGC4310 5.4 4.89 NGC4108 3.4 6.57NGC3780 4.61 5.21 5 NGC4324 -0.9 5.48 4.1 NGC4108B 6.7 6.56 NGC4331NGC3782 6.83 7 3.98 8.13 -0.9 5.47 5.2 NGC4116 5.2 7.88NGC3788 7.0 4.72 -0.9 4 6.49 6.33 4.93 NGC4336 9.9 NGC4117 6.30 6.5NGC3794 6.83 5.8 4.81 6.63 6.92 NGC4344 7.4 NGC4123 2.3NGC3810 5.46 5.01 8.15 -0.1 4.37 -2.1 NGC4351 NGC4129 6.3 5.56NGC3813 7.88 6.30 -2.1 6.82 7.06 5.66 4.50 NGC4353 5.0 NGC4136 5.2NGC3846A 5.16 3.44 4.68 2.5 NGC4359 2.3 NGC4138 3.3 6.34NGC3850 NGC4376 6.91 9.7 5.36 7.98 9.9 5.2 6.64 NGC4141 7.05NGC3879 7.20 7.13 5.57 4.93 -0.8 5.0 NGC4378 7.23 NGC4142 9.9 5.3 5.64NGC3887 NGC4383 6.45 6.82 4.94 6.0 6.67 NGC4144 8.0NGC3888 5.54 5.81 6 6.99 7.18 1.0 NGC4384 6.5 5.37 NGC4145 3.9 4.64NGC3893 5.16 7 1.0 5.51 NGC4389 5.9 8.53 NGC4152 5.3 5.43NGC3896 6.56 6.81 NGC4158 6 6.20 5.72 1.0 NGC4390 6.9 5.88 5.2 6.96 NGC4396 4.74 4.74 4.1 5.0 6.38 NGC4159 0.2 6.32 3.1 6.74 9 5.15 6.88 5.0 NGC4405 7.21 NGC4162 6.05 5.79 6.80 6.9 5.61 7.06 NGC4409 6.5 5.96 NGC4163 6 6.31 6.15 -0.1 6.71 NGC4411A 4.0 NGC4165 6.59 7 5.99 5.17 5.48 4.7 6.88 NGC4411B 9.9 5.4 NGC4173 6.87 5 NGC4412 1.9 6.31 NGC4183 6.3 5.60 NGC4413 5.69 6.64 7.2 7.46 5.47 6.93 3.1 NGC4414 5.8 2.0 5.12 6 5.26 NGC4416 6.78 6.37 7.29 7.55 5.2 NGC4423 4.64 5.9 NGC4424 8.41 6 6.20 7.8 NGC4428 6.58 1.0 NGC4430 5.98 8 5.0 8.45 6 3.4 7.56 5 6.81 8 7 6 Galaxy Type NGC3504 2.1 7.46 7.53 NGC3898 1.7 8.40 9.09 NGC4189 6.0 7.16 7 Table (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) Black hole mass color correlation 25 BH M BH M (2) (3) (4) Galaxy Type BH M BH M Galaxy Type BH .92.01 NGC7059.49 NGC7064.13 5.6 NGC7070 5.1 NGC7079 6.25.86 6.0 4.66.31 -1.8 NGC7107 6.04 6.12 8.55 NGC7151 4.26.06 8.6 NGC7750 6.10 5.9 8.30 NGC7755 NGC7162 5.60 5.5 NGC7757 6.16.46 4.8 5.0 NGC7764 5.46.14 6.61 5.3 NGC7184 6.13 9.4 6.43 6.77 NGC7798 NGC7188 6.74 .39 5.52 PGC002492 4.5 5.20 6.60 6.90 3.5 5.1 2.0 NGC7205 5.39 8.02.55 PGC003062 4.96 6.89.67 6.88 5.27 4.0 6.8 NGC7219 8.45 NGC7241 7.02 6.95 7.09.85 5.40 5.43 PGC004143 0.6.08 PGC005329 4.0 9.8 NGC7254 7.22 5.03 7.25.61 8.0 NGC7290 7.16.93 5.13 PGC006190 2.9 NGC7314 7.50.84 5.38 4.0 6.8 NGC7361 7.58 5.99.94 4.85 PGC006244 4.0 NGC7371 5.89 4.99 5.53 10.0 PGC006626 4.6 NGC7378 5.83 6.98 0.0 9.9 4.79 5.84 5.75.55 5.69 PGC006706 2.2 7.21 7.15.73 4.92 PGC006864 9.0 4.46 NGC7421 5.70 7.63.68 PGC007109 6.9 NGC7456 7.33 4.67 5.91 PGC007654 3.7 9.0 NGC7462 7.86 5.26 PGC007682 6.0 9.9 6.97.90 5.84 6.54 PGC007900 3.6 1.0 4.82 5.90.77 4.97 9.0 NGC7590 7.19 5.77.44 7.06 5.94 NGC7599 5.86.85 4.79 4.42 PGC009272 4.4 NGC7661 5.54 5.72 PGC009354 5.2 8.0 NGC7667 7.01 4.01 PGC009559 5.9 5.1 7.01.17 5.10 8.6 7.8 7.19 5.44.77 4.50 NGC7694 7.17 3.97.16 4.89 5.10 PGC011677 NGC7714 5.29 10.0 4.14 PGC011744 9.1 NGC7715 3.50.97 4.67 PGC012068 3.1 1.0 6.29 5.47 10.0 PGC012439 9.6 NGC7721 5.85.91 4.34 6.2 6.09 4.53 5.12.09 5.29 4.9 PGC012981 NGC7724 5.84.46 4.05 8.22 4.20 NGC7731 8.7 4.38 6.95 PGC013716 3.1 NGC7732 8.22 .44 PGC013821 1.0 4.0 4.87 7.15 7.50.77 6.7 8.9 NGC7742 6.78 7.22 PGC016090 4.86 NGC7743 7.66 5.92 7.68 2.8 9.0 7.29 7.35 -0.9 PGC027747 5.86 7.59 7.15 4.79 PGC027825 6.1 8.81 PGC027833 7.0 7.43 4.24 5.51 7.4 7.89 5.24 PGC029653 PGC031979 5.10 5.53 9.9 4.82 6.7 5.35 4.25 4.40 3.90 3.97 7.25 NGC7091 7.9 4.817.76 4.53 NGC7167 NGC7793 5.1 7.4 5.897.24 5.67 NGC7218 5.81 5.64 PGC003855 5.6 8.8 6.13 7.90 5.98 5.33 PGC006228 8.76.70 5.60 NGC7412 5.44 3.2 6.576.135.22 NGC7479 6.67 NGC7531 PGC007998 4.3 4.0 9.0 7.33 6.744.49 3.92 7.375.76 NGC7689 7.02 3.48 PGC010813 NGC7690 PGC011367 5.9 5.0 2.9 6.9 5.725.69 4.07 6.79 6.19 NGC7716 5.72 3.55 7.02 6.02 PGC012633 3.0 PGC012664 2.3 6.98 6.7 6.47 7.29 5.12 6.63 PGC014487 4.97 7.9 4.92 4.78 8.02 NGC71545.69 9.5 NGC7162A 8.9 5.636.05 5.20 5.40 NGC7191 5.07 PGC002689 5.1 8.8 PGC003853 7.0 7.86 4.33 6.67 7.98 3.95 PGC006048 6.16 3.9 5.36 4.96 6.97 NGC7723 3.14.78 7.37 NGC7741 7.48 5.9 PGC024469 5.72 4.2 5.50 6.50 PGC029300 6.28 -1.9 7.71 7.28 M ) 1 6.88 NGC7247 3.1 7.40 7.50 PGC006703 3.1 5.87 5.69 2 6.36 NGC7418A 6.5 4.05 3.66 PGC008295 5.0 5.00 4.68 BH M TABLE 6 Continued ( Galaxy Type BH M BH M Galaxy Type BH M BH M (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) continued. 6 NGC5016NGC5033 4.4NGC5042 5.1 6.52NGC5054 5.0 7.52NGC5085 4.2 5.91 6.60NGC5101 5.0 7.88 8.02NGC5105 NGC5464 0.2 7.29 5.46NGC5107 NGC5468 5.0 9.5 8.41 8.06NGC5109 NGC5472 6.6 6.0 5.72 4.92 7.48NGC5116 NGC5473 5.3 2.1 5.23 5.52 8.30NGC5117 NGC5474 -2.7 4.9 5.58 8.45 5.57 4.30NGC5134 NGC5476 9.74 5.7 6.1 7.60 4.93 5.32NGC5147 NGC5477 2.9 NGC5798 7.8 5.76 5.17 5.40 8.60NGC5169 NGC5486 7.9 NGC5806 8.8 7.85 6.35 9.31 7.88NGC5173 NGC5496 9.7 4.0 NGC5809 8.7 5.57 4.24 5.73 NGC5821 5.34 -4.9NGC5204 NGC5507 3.2 6.5 5.24 5.64 5.02 8.13 6.30NGC5205 4.61 -2.3 NGC5520 0.2 8.9 NGC5832 8.25 5.36 5.43 5.0 3.95NGC5216 NGC5523 8.41 3.5 NGC5850 3.1 7.14 4.63 5.47 5 4.67 -4.9NGC5236 6.96 NGC5534 3.3 NGC5854 5.8 6.68 6.99 5.72 8 4.90NGC5238 7.08 NGC5569 3.1 5.0 NGC5861 2.1 5.99 6.30 9.19 NGC5577 7 4.30 -1.1NGC5240 8.0 NGC5866B 5.8 7.84 6.91 5.98 6.81 NGC5878 6.97 3.8NGC5247 8.93 NGC5584 5.0 5.8 5.04 7.9 5.71 7.55 5 6.28NGC5253 NGC5585 7.09 4.1 NGC5892 6.0 6.95 6.96 5.86 NGC5587 6.46 8 3.2 5.97NGC5254 8.9 NGC5915 6.9 6.59 5.77 -0.1 4.83 5.58NGC5264 7.76 NGC5595 7.0 5.0 NGC5916A 5.67 5.01 7.24 4.42 7 7.10NGC5289 NGC5597 2.7 9.7 NGC5937 4.9 5.69 7.26 5.0 6.46 NGC5949 5.61NGC5297 NGC5600 2.0 6.0 5.60 6.30 6.33 6.04 5.28 4.77NGC5300 NGC5604 3.2 4.9 NGC5951 5.80 4.8 7.96 6.44 7.64 5 4.0NGC5301 NGC5608 5.2 NGC5954 1.3 7.27 6.89 6.61 NGC5956 6.06 5 6.19NGC5304 7.15 NGC5630 5.2 4.7 9.8 6.37 6.92 8.53 6.34 -3.2NGC5311 NGC5631 6.0 NGC5957 7.9 6.61 7.79 5.15 5.9 7.10 7 6.44NGC5313 7.10 -0.1 -1.9 NGC5636 NGC5962 6.96 5.56 6.6 6.55 7.26NGC5320 7.43 NGC5645 9.35 -0.4 3.0 3.1 NGC5963 7.93 6 5.01NGC5334 NGC5660 4.80 5.1 5.2 NGC5964 6.6 6.63 8.04 7.55 6 5.25NGC5336 NGC5661 4.1 5.2 NGC5984 5.2 7.01 6.46 5.95 8.00 9.00 NGC5665NGC5337 6.9 5.9 NGC5985 3.2 5.72 6.13 5.96 5.18 NGC5667 8.37 6 NGC6012 5.0NGC5338 6.4 2.0 6.08 5.44 5.63 7 6.59 NGC6014 5.72 6.0 -2.0NGC5339 NGC5668 7.08 3.0 6.94 8.10 6.09 5 1.7 5.81NGC5346 4.89 NGC5669 5.47 1.1 NGC6015 6.9 7.63 -1.8 5.43 5 5.50NGC5350 6.90 NGC5691 5.8 NGC6063 6.0 7.03 5.26 7.04 5.4 8.44 6 NGC5353 NGC5693 5.9 3.6 NGC6070 1.2 6.55 5.44 4.96 5.29 7 NGC6106NGC5360 -2.0 NGC5701 5.9 6.9 6.41 7.16 6.37 NGC5708 7.17 NGC6140 5.01NGC5362 9.81 -0.4 6.0 0.1 6.68 6.03 6.56 5.3 5.24 7.8NGC5371 NGC5713 4.42 3.4 NGC6155 6.78 7.71 7.24 6 5.6 6.26NGC5375 6.30 NGC5714 6.41 4.0 NGC6168 4.0 7.06 7.65 6 5.90NGC5383 5.40 NGC5729 5.2 2.4 NGC6181 5.8 7.43 7.72 6.03 NGC5730 7.57 6 NGC5425 8.0 3.1 NGC6236 3.2 6.94 7.16 7.71 6.42 7.15 NGC6237 9.5NGC5426 NGC5731 5.2 6.5 7.16 7.64 6.74 7.62 NGC6239 7.62NGC5430 NGC5744 6.61 5.9 5.0 3.6 7.32 6.24 7.53 6 6.4 8.15 NGC5757 3.1 NGC6255 0.5 5.27 6.65 5.75 7.77 7 3.3 6.95 4.94 NGC5762 NGC6267 3.1 7.39 5.91 6.81 6.19 7 5.87 NGC5768 5.9 NGC6339 2.0 7.13 4 6.64 NGC6395 5.47 NGC5774 4.8 5.3 4.54 5.80 7.66 5.39 NGC5781 6.3 NGC6412 6.9 6.82 5.99 5.8 7.04 NGC5783 NGC6861E 2.8 6.53 5.38 4 5.79 5.94 5.2 NGC6887 5.2 7.37 2.0 6 5.91 NGC6889 6.07 6.03 7.00 6 5.11 3.7 NGC6902 7.47 3.7 NGC6902B 7.67 5 5.98 2.3 NGC6925 6.24 5.5 NGC7051 6.52 5.16 7 4.0 6 0.9 7.28 6 7.17 7 7 Galaxy Type NGC5014 1.4 7.66 7.76 NGC5448 1.4 7.66 8.02 NGC5789 7.8 4.35 3 Table (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) 26 Dullo et al. BH M BH M (2) (3) (4) Galaxy Type BH M BH M Galaxy Type BH M BH .06.30 5.69.27 6.28 UGC05829.51 UGC05832 9.8.31 4.92 4.2.72 5.40 3.88 UGC05844.76 6.08 5.36 UGC05846 6.6.16 4.38 3.34 UGC05897 9.9.56 4.28 4.99 6.10 UGC05918 UGC06849 5.2.05 4.96 4.42 UGC05921 UGC06862 9.8.90 8.8 7.66 6.02 6.60 UGC05922 8.1 6.7 7.11 4.03 4.39 UGC05934 5.39 UGC06900 6.8.99 5.81 6.62 5.82 UGC05947 6.24 UGC06903 8.0.09 9.7 3.87 5.81 10.0 5.18 UGC05979 UGC06917.69 5.9 5.93 5.41 4.91 5.84 6.72 UGC06922 9.9.89 8.8 4.62 4.79 5.68 UGC05990 5.94 UGC06931.00 3.8 4.28 4.53 4.85 6.41 UGC06014 5.67 UGC06955 2.0.63 9.0 4.26 6.31 6.02 UGC06023 5.70 UGC06956 8.0.19 9.8 UGC07009 6.70 4.27 7.06 5.46 UGC06083 4.91 6.6.17 8.8 5.79 9.9 5.35 5.52 UGC06104 5.27 UGC07019 4.1.40 4.78 7.36 6.16 4.53 UGC06112 5.50 4.0.45 9.9 4.91 4.89 4.97 6.27 5.00 UGC06145 UGC07053 7.4.08 3.95 6.08 5.44 5.28 UGC06151 5.41 UGC07089 9.9.33 9.9 4.49 5.25 6.30 5.17 UGC06157 UGC07094 8.8.65 7.9 4.77 5.06 5.33 5.06 UGC06162 4.73 UGC07129 7.8.30 8.0 3.83 4.89 4.87 UGC06169 6.10 UGC07133 6.4.49 2.0 4.84 4.93 4.91 4.31 UGC06171 7.22 UGC07143 3.0.89 6.6 4.86 4.50 5.20 5.91 UGC06181 8.24 UGC07153 9.9.96 4.9 5.18 4.60 6.97 6.79 UGC06194 5.82 UGC07175 9.7.25 5.9 4.46 4.97 4.88 8.28 UGC06249 5.44 UGC07184 4.9.68 7.8 4.67 7.06 4.68 5.61 UGC06271 6.33 UGC07218 5.9.18 6.4 6.10 4.61 5.45 5.22 UGC06309 4.67 UGC07239 1.0.23 9.9 4.13 4.23 5.12 6.19 UGC06320 5.66 UGC07249 4.5 9.8 4.90 5.10 7.81 3.92 UGC06335 5.09 UGC07257 8.0 9.5 5.03 4.93 7.11 5.44 UGC06345 6.04 UGC07267 6.0 8.1 8.15 5.64 4.81 UGC06378 4.97 UGC07271 9.9 7.8 7.19 5.33 5.97 4.49 UGC07300 6.5 6.9 5.30 4.47 4.57 5.32 UGC07332 9.8 5.37 5.44 4.56 5.60 UGC07396 9.9 3.77 4.88 4.65 UGC07408 7.6 5.03 5.30 4.29 UGC07557 9.8 4.34 5.71 UGC07559 8.8 3.79 5.67 9.9 5.32 4.30 5.14 4.34 4.40 3.94 ) M 5.38 5.28 UGC05833 -2.0 2.83 4.01 UGC068796.69 7.1 6.60 6.70 UGC05989 6.66 9.9 4.99 4.61 UGC07035 1.0 5.94 5.69 3.855.565.01 3.394.53 5.47 UGC055225.28 4.53 UGC05540 6.44.23 4.14 UGC05571 5.96.43 5.08 4.47 UGC05612 8.87.68 3.77 5.40 UGC05642 8.05.96 6.96 4.01 4.21 UGC05646 4.15.49 7.55 4.90 5.87 UGC05676 UGC06399 4.0 5.73 3.58 6.75 UGC05677 UGC06433 8.04.75 8.8 5.17 5.79 5.94 UGC05688 UGC06446 8.06.80 9.2 6.67 5.81 UGC05707 5.77 UGC06512 8.83.90 6.6 4.31 5.81 5.01 4.83 UGC06517 5.95.77 5.3 6.85 5.73 5.24 5.73 UGC05739 4.18 UGC06526 3.8 3.28 4.43 4.97 4.45 UGC05740 4.63 UGC06534 9.7 7.0 5.51 4.99 3.83 UGC05764 6.09 UGC06570 8.8 6.4 4.78 7.93 4.30 UGC05791 6.68 UGC06575 -0.2 9.9 4.83 6.02 5.53 UGC06603 3.0 5.8 5.10 8.05 3.69 6.57 5.9 4.55 4.79 5.24 5.36 UGC06713 5.47 3.18 5.41 UGC06782 8.6 4.34 5.40 UGC06791 9.8 5.14 5.16 UGC06816 6.5 5.38 9.9 4.86 7.18 5.03 4.60 7.29 4.23 0 5.82 5.65 UGC05720 9.9 5.68 5.50 UGC06628 8.8 4.97 4.67 9 5.28 4.96 UGC05798 6.4 4.96 4.50 UGC06840 8.8 5.34 5.48 TABLE 6 Continued ( Galaxy Type BH M BH M Galaxy Type BH M BH M (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) (FUV)(NUV) continued. 6 Galaxy Type PGC032091 7.0 5.74 5.82 PGC066559 8.0 4.77 4.17 UGC04305 9.9 Table PGC035271PGC035705 7.0PGC036274 7.9 4.47PGC036551 9.0 4.89PGC036643 7.6 5.72 3.83PGC037238 6.3 5.44 4.48PGC037373 PGC067871 8.0 5.16 5.41PGC039799 PGC068061 5.8 4.31 7.0 5.14PGC040408 PGC068771 9.1 5.00 0.1 4.89 4.74PGC040447 PGC069114 8.9 4.50 6.6 3.87 10.0 6.02PGC040552 PGC069224 5.60 6.9 4.74 5.07 5.42PGC041743 PGC069293 5.4 4.32 9.8 3.95 4.93PGC041965 PGC069339 9.0 7.85 5.86 UGC04390 8.9 5.40 4.43PGC042068 PGC069404 8.0 4.57 6.30 5.24 UGC04426 9.9 6.6 5.65PGC042160 PGC069448 3.1 5.56 4.50 PGC072006 UGC04499 8.0 7.95 9.8 4.30PGC042868 9.5 6.96 4.23 UGC04514 4.0 6.17 8.0 7.10PGC043236 PGC072252 8.0 9.0 4.83 5.57 UGC04543 5.48 5.9 6.34PGC043341 PGC091215 7.6 5.51 4.52 4.90 UGC04549 5.0 6.77 7.9 10.0PGC043345 PGC091228 5.89 7.42 UGC04550 7.9 4.55 4.84 8.1 4.60PGC043458 PGC091413 9.0 6.33 UGC04628 7.9 5.77 3.4 4.57 5.54PGC043679 PGC1059326 9.0 5.06 UGC04659 7.9 5.65 5.8 5.13PGC043851 UGC00017 6.5 UGC04701 3.6 4.46 5.34 4.27 8.0 5.43PGC044157 UGC00132 9.8 6.93 7. 5.40 4.32 UGC00156 UGC04704 4.72PGC044278 9.0 9.1 4.24 4.49 UGC04714 5.07 7.9 PGC044735 UGC00313 7.9 7.9 5.70 5.67 4.79 9.8 UGC04722 6.81 3.1 3.95PGC044906 UGC00634 9.7 4.59 6.34 UGC04777 3.68 6.12 7.9 PGC044952 UGC00711 8.0 4.3 UGC04787 4.98 5.61 5.59 9.2 PGC044954 UGC00866 5.0 8.8 4.69 6.52 7. 4.20 6.15PGC044982 UGC00882 3.0 UGC04797 6.5 6.32 5.37 4.86 4.94PGC045195 UGC00891 9.7 UGC04800 7.8 5.44 8.8 5.64 UGC04834 4.12 6.49PGC045257 UGC00941 7.7 9.8 5.24 5.9 5.52 6 6.02 8.0 4.53PGC045359 UGC00964 9.0 UGC04837 9.0 4.46 5.54 6 5.11 5.32PGC045652 UGC01014 9.9 UGC04841 9.9 4.95 8.7 5.05 4.42 5.30PGC045824 UGC01020 6.7 UGC04845 3.0 4.20 6.9 4.75 5 3.99 5.33PGC045877 UGC01104 6.7 UGC04867 9.3 6.67 6.9 6.41 5 4.59 4.81PGC046382 UGC01110 4.9 UGC04871 2.1 4.55 7.0 5.19 6 3.45 4.42PGC047721 UGC01112 9.9 UGC04953 9.5 8.04 8.8 8.13 4 6.50 6.23PGC047846 UGC01176 4.0 UGC04970 5.9 5.49 7.0 5.00 4 4.82 4.81PGC048087 UGC01195 8.9 UGC04982 5.8 8.31 5.7 6.38 5 8.19 7.75PGC050229 UGC01197 8.0 UGC04988 9.9 6.26 7.9 6.20 7 5.11 4.74PGC051291 UGC01200 1.1 UGC05004 9.8 6.09 9.0 4.75 7 8.62 6.55PGC051523 10.0 UGC01240 2.0 UGC05015 9.8 5.52 5.12 5 6.39 6.06PGC052940 UGC01547 9.0 UGC05107 9.9 4.91 7.9 5.46 5.28 4.26PGC053134 UGC01551 9.9 UGC05114 7.9 4.54 6.4 5.36 5 5.33 4.72PGC053568 UGC01670 8.0 UGC05179 9.9 4.16 9.9 4.78 5 4.52 5.15PGC053764 UGC01862 8.0 UGC05228 6.1 4.70 3.7 4.23 4 4.17 5.15PGC054944 UGC01981 5.5 UGC05238 8.8 4.95 4.9 5.52 6 3.44 4.34PGC065367 UGC02275 1.8 UGC05249 6.4 6.54 7.0 4.86 7 4.30 3.90PGC066242 UGC02345 9.9 UGC05349 9.7 6.28 6.7 6.50 6 4.56 5.47 UGC02429 4.1 UGC05354 8.8 5.02 7.8 6.52 5 6.38 4.57 UGC04024 UGC05358 8.8 5.56 4.3 3.92 5 6.09 6.52 UGC04121 UGC05373 9.0 3.1 4.70 4 3.95 6.37 UGC04148 UGC05391 5.8 9.9 5.47 5 5.29 3.29 UGC04151 UGC05393 8.8 8.9 6.18 5 4.26 UGC04169 UGC05401 7.2 8.0 5.26 4 5.36 UGC05423 7.9 9.7 4.37 4 6.05 UGC05427 5.8 9.9 6.01 5 5.04 UGC05446 7.7 5.30 5 3.95 UGC05451 5.9 4 5.91 UGC05456 9.9 4 5.06 UGC05464 9.0 6 UGC05478 8.7 4 9.9 5 5 (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) Black hole mass color correlation 27

TABLE 6 (Continued)

Galaxy Type MBH MBH Galaxy Type MBH MBH Galaxy Type MBH MBH (FUV) (NUV) (FUV) (NUV) (FUV) (NUV) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) UGC07577 9.8 5.51 5.15 UGC08614 9.9 6.28 6.08 UGC09837 5.3 5.33 5.24 UGC07590 4.1 4.86 4.50 UGC08629 9.8 6.18 6.28 UGC09858 4.0 6.61 6.59 UGC07596 9.8 7.14 6.66 UGC08630 5.7 5.85 5.69 UGC09875 8.9 5.58 5.46 UGC07599 8.7 4.29 3.86 UGC08639 9.7 5.47 5.19 UGC09936 8.8 4.88 4.67 UGC07605 9.9 4.33 3.88 UGC08642 6.8 4.89 4.59 UGC09951 6.6 4.99 4.56 UGC07612 8.8 4.84 4.53 UGC08651 9.9 4.14 3.59 UGC09977 5.3 6.89 7.39 UGC07639 9.9 5.79 5.32 UGC08658 5.0 5.94 5.93 UGC09979 9.9 4.86 4.68 UGC07673 9.9 4.93 4.68 UGC08684 5.9 8.22 8.37 UGC09992 9.9 4.85 4.30 UGC07690 9.9 4.88 4.31 UGC08688 7.8 4.69 4.38 UGC10020 6.6 5.46 5.35 UGC07698 9.9 4.97 4.67 UGC08693 4.2 6.95 7.18 UGC10054 8.0 5.28 5.00 UGC07699 6.1 5.23 4.86 UGC08733 5.9 5.15 4.92 UGC10061 9.9 4.76 4.14 UGC07700 7.9 4.91 4.56 UGC08760 9.8 4.65 4.14 UGC10290 8.8 4.67 4.30 UGC07719 8.0 4.76 4.31 UGC08795 6.0 6.15 6.05 UGC10413 5.7 6.05 6.15 UGC07730 8.8 5.59 5.24 UGC08839 9.9 4.86 4.28 UGC10445 6.0 5.01 4.63 UGC07739 9.8 6.11 5.83 UGC08851 7.9 4.84 4.43 UGC10608 8.0 3.58 3.15 UGC07774 6.3 5.82 5.41 UGC08877 8.0 5.44 5.51 UGC10721 5.8 6.82 6.68 UGC07795 9.8 3.92 3.52 UGC08892 9.9 4.89 4.59 UGC10736 8.0 4.85 4.23 UGC07802 6.1 6.58 6.45 UGC08909 6.9 5.73 5.83 UGC10791 8.8 6.44 6.39 UGC07824 9.0 6.13 6.05 UGC08995 7.4 5.63 5.40 UGC10806 8.0 4.37 4.43 UGC07844 6.1 7.12 7.14 UGC09057 7.0 4.53 4.24 UGC10854 6.0 5.11 5.20 UGC07906 9.9 4.62 4.26 UGC09071 5.9 6.10 5.97 UGC11782 8.8 4.98 4.61 UGC07911 8.8 5.32 5.21 UGC09126 9.8 4.96 4.66 UGC12151 9.7 5.24 5.08 UGC07941 7.0 4.90 4.56 UGC09128 9.9 4.71 4.14 UGC12178 8.0 5.27 4.72 UGC08041 6.9 5.74 5.61 UGC09206 3.8 5.93 5.59 UGC12613 9.8 6.06 5.19 UGC08048 9.5 5.09 4.64 UGC09215 6.3 5.21 4.90 UGC12681 4.2 4.35 3.91 UGC08052 4.7 6.79 6.82 UGC09240 9.9 4.87 4.41 UGC12682 9.8 4.62 4.09 UGC08053 8.0 4.49 4.02 UGC09242 6.6 5.32 4.93 UGC12709 8.7 5.36 5.25 UGC08056 6.4 4.74 4.42 UGC09274 4.2 5.98 5.93 UGC12732 8.7 4.42 4.02 UGC08084 8.0 5.49 5.08 UGC09299 6.4 4.50 4.06 UGC12791 9.9 5.15 4.79 UGC08127 9.8 4.98 4.63 UGC09310 8.0 5.87 5.55 UGC12843 8.2 4.94 4.56 UGC08146 6.4 5.05 4.64 UGC09356 4.6 5.70 5.51 UGC12846 8.7 4.92 4.59 UGC08153 6.6 4.89 4.59 UGC09364 7.8 5.42 5.21 UGC12856 9.6 4.48 4.59 UGC08155 2.2 6.58 6.75 UGC09380 9.9 4.46 4.16 UGC08181 8.0 5.32 5.19 UGC09389 3.2 5.47 5.12 UGC08201 9.9 4.25 3.79 UGC09392 10.0 5.29 4.95 UGC08246 5.9 4.61 4.28 UGC09394 5.9 4.85 4.53 UGC08282 5.9 5.37 4.71 UGC09448 3.3 8.17 8.34 UGC08303 9.9 4.51 4.17 UGC09469 9.7 5.43 5.18 UGC08313 5.0 5.67 5.39 UGC09470 7.9 4.91 4.55 UGC08320 9.9 4.49 3.98 UGC09482 6.6 5.60 5.07 UGC08331 9.9 4.72 4.26 UGC09569 6.6 4.64 4.19 UGC08365 6.4 5.26 5.01 UGC09601 5.9 5.41 5.24 UGC08385 9.0 4.95 4.61 UGC09661 8.0 6.05 5.97 UGC08441 9.9 4.92 4.74 UGC09663 9.8 4.92 4.63 UGC08449 7.9 4.88 4.70 UGC09682 8.6 5.30 4.79 UGC08489 8.0 4.31 3.92 UGC09730 6.6 5.07 4.68 UGC08507 9.8 5.33 5.18 UGC09746 4.0 7.09 7.07 UGC08516 5.9 5.78 5.62 UGC09760 6.6 4.82 4.23 UGC08588 8.8 5.23 5.08 UGC09815 7.9 5.34 5.29 UGC08597 6.6 4.96 4.89 UGC09816 9.8 5.65 5.50 Table 6 continued.