0.01 0.1 Counts S Kev 1 0.5 2 5 −2 0 2 Σ Energy (Kev) ESO 137− G 6

Total Page:16

File Type:pdf, Size:1020Kb

0.01 0.1 Counts S Kev 1 0.5 2 5 −2 0 2 Σ Energy (Kev) ESO 137− G 6 0.1 ESO 137− G 6 ESO 428− G 14 ESO 495− G 21 −1 −1 −1 0.02 keV 0.01 keV keV 0.01 −1 −1 0.01 −1 5×10−3 10−3 2×10−3 −3 −3 Counts s Counts s 10 Counts s 10 10−4 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 0.51 2 5 1 2 5 Energy (keV) Energy (keV) Energy (keV) 0.1 IC 342 −3 IC 750 IC 1459 −1 −1 2×10 −1 0.01 keV keV −3 keV 0.01 −1 10−3 −1 10 −1 −4 5×10−4 10 10−3 Counts s Counts s Counts s 10−5 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 1 2 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) 5×10−3 IC 2560 IC 5267 MCG −03−34−064 −1 −1 −1 0.1 −3 0.01 2×10 0.05 keV keV −3 keV −1 −1 10 −1 0.02 −4 5×10 0.01 10−3 2×10−4 5×10−3 Counts s Counts s Counts s 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 0.51 2 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) −3 M 31 5×10 M 32 M 49 −1 −1 −1 2×10−3 0.01 keV 0.01 keV 10−3 keV −1 −1 −1 5×10−4 10−3 10−3 2×10−4 Counts s Counts s 10−4 Counts s 10−4 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 0.51 2 0.51 2 Energy (keV) Energy (keV) Energy (keV) M 51a M 51b 1 M 58 −1 0.01 −1 −1 10−3 keV keV keV −1 −1 −1 10−3 0.1 10−4 Counts s 10−4 Counts s Counts s 0.01 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 0.51 2 5 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) 0.01 M 59 M 60 M 61 −1 −1 0.01 −1 5×10−3 2×10−3 keV keV keV −1 −1 −3 −1 10 −3 10−3 2×10 −3 5×10−4 10−4 10 Counts s Counts s Counts s 5×10−4 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 0.51 2 5 0.51 2 Energy (keV) Energy (keV) Energy (keV) 5×10−3 0.02 −3 M 63 M 64 5×10 M 66 −1 −1 −1 −3 2×10 0.01 −3 keV keV keV 2×10 −1 −1 −3 −1 10−3 5×10 10−3 5×10−4 5×10−4 2×10−3 Counts s Counts s Counts s 2×10−4 2 2 2 σ σ 0 0 σ 0 −2 −2 −2 1 2 5 1 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) 0.01 M 83 M 84 M 87 −1 −1 −1 0.01 0.1 keV keV keV −1 −1 −1 −3 10 0.01 10−3 Counts s Counts s Counts s 10−3 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 0.51 2 5 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) M 88 M 89 M 90 −1 −1 −1 5×10−3 0.01 0.01 keV keV keV −3 −1 −1 −1 2×10 10−3 10−3 10−3 −4 Counts s Counts s Counts s 5×10 2 2 2 σ σ σ 0 0 0 −2 −2 −2 1 2 5 0.51 2 5 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) M 94 −3 M 101 −1 M 100 −1 −1 2×10−3 2×10 keV −3 keV −3 0.01 keV 10 10 −1 −1 −1 5×10−4 5×10−4 10−3 −4 Counts s Counts s −4 Counts s 2×10 2×10 2 2 2 σ σ 0 σ 0 0 −2 −2 −2 0.51 2 5 1 2 0.51 2 Energy (keV) Energy (keV) Energy (keV) 0.1 M 104 2×10−3 M 105 M 106 −1 −1 −1 10−3 0.05 keV 0.01 keV 5×10−4 keV −1 −1 −1 0.02 2×10−4 −4 10−3 10 0.01 Counts s Counts s 5×10−5 Counts s 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 0.51 2 5 1 2 5 Energy (keV) Energy (keV) Energy (keV) Maffei 1 NGC 253 0.02 NGC 613 −1 10−3 −1 −1 0.01 keV keV keV −4 0.01 −3 −1 5×10 −1 −1 5×10 −3 −4 2×10 2×10 10−3 Counts s Counts s Counts s 10−3 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 2 5 1 2 5 1 2 5 Energy (keV) Energy (keV) Energy (keV) 0.01 0.01 NGC 720 NGC 835 −3 NGC 1023 −1 −1 −1 5×10 5×10−3 −3 keV keV 2×10−3 keV 2×10 −1 −1 −1 −3 10−3 10−3 10 −4 5×10−4 5×10 −4 Counts s Counts s 2×10−4 Counts s 2×10 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 1 2 5 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) NGC 1097 NGC 1291 2×10−3 NGC 1300 −1 0.1 −1 0.01 −1 keV keV keV 10−3 −1 −1 −1 0.01 10−3 5×10−4 Counts s Counts s Counts s 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 0.51 2 5 2 Energy (keV) Energy (keV) Energy (keV) 0.1 NGC 1316 NGC 1317 −1 −1 NGC 1332 0.01 −1 keV keV 0.01 keV 0.01 −1 −1 −1 10−3 10−3 10−3 Counts s Counts s Counts s 2 2 2 σ σ 0 0 σ 0 −2 −2 −2 0.51 2 5 0.51 2 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) NGC 1365 NGC 1371 NGC 1380 −1 0.05 −1 0.01 −1 5×10−3 keV keV −3 keV −1 0.02 −1 5×10 −1 2×10−3 0.01 2×10−3 10−3 −3 Counts s 5×10 Counts s Counts s 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 2 5 0.51 2 Energy (keV) Energy (keV) Energy (keV) 0.1 NGC 1386 NGC 1387 NGC 1399 −1 −1 −1 keV keV −3 keV 0.01 −1 0.01 −1 10 −1 10−3 −3 Counts s 10 Counts s 10−4 Counts s 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 1 2 5 0.51 2 Energy (keV) Energy (keV) Energy (keV) −3 NGC 1400 0.1 NGC 1404 NGC 1407 −1 −1 0.01 2×10 −1 −3 −3 5×10 keV keV 10 keV −1 −1 −1 0.01 −3 5×10−4 2×10 −3 10−3 10 Counts s Counts s 2×10−4 Counts s 5×10−4 2 2 2 σ σ 0 σ 0 0 −2 −2 −2 1 2 0.51 2 5 0.51 2 Energy (keV) Energy (keV) Energy (keV) 0.01 0.02 NGC 1553 NGC 1637 NGC 1700 −1 −1 5×10−3 −1 0.01 0.01 keV keV −3 keV −1 5×10−3 −1 2×10 −1 10−3 2×10−3 5×10−4 10−3 Counts s 10−3 Counts s Counts s 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 1 2 0.51 2 Energy (keV) Energy (keV) Energy (keV) NGC 1808 0.2 NGC 2110 NGC 2217 −1 −1 −1 0.01 0.1 keV keV keV 0.01 −1 −1 0.05 −1 0.02 −3 10 0.01 Counts s Counts s Counts s 10−3 5×10−3 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 5 0.51 2 5 1 2 5 Energy (keV) Energy (keV) Energy (keV) 0.05 NGC 2681 NGC 2683 NGC 2663 −1 −1 −1 0.01 0.02 2×10−3 keV keV keV 0.01 −1 −1 −1 5×10−3 10−3 10−3 2×10−3 Counts s Counts s −4 Counts s 5×10 10−3 2 2 2 σ σ σ 0 0 0 −2 −2 −2 1 2 5 0.51 2 5 2 5 Energy (keV) Energy (keV) Energy (keV) 5×10−3 NGC 2768 0.02 NGC 2782 NGC 2787 −1 −1 −1 0.01 2×10−3 0.01 5×10−3 keV keV −3 keV −1 −1 5×10 −1 10−3 2×10−3 −3 5×10−4 2×10 10−3 −3 −4 Counts s Counts s 10 Counts s 5×10 2×10−4 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 5 0.51 2 5 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) 5×10−3 NGC 2798 0.01 NGC 2841 NGC 2865 −1 0.01 −1 −1 −3 5×10 −3 keV keV keV 2×10 −1 −1 −1 −3 10−3 2×10 10−3 10−3 5×10−4 Counts s Counts s −4 Counts s 10−4 5×10 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 5 0.51 2 1 2 Energy (keV) Energy (keV) Energy (keV) 0.02 2×10−3 NGC 2985 NGC 2993 NGC 3077 −1 −1 −1 5×10−3 0.01 10−3 keV keV 5×10−3 keV −1 −1 −1 −3 2×10 −4 2×10−3 5×10 10−3 10−3 Counts s Counts s Counts s 5×10−4 2×10−4 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 0.51 2 2 5 Energy (keV) Energy (keV) Energy (keV) 0.05 NGC 3079 NGC 3115 NGC 3078 −1 −1 −3 −1 2×10−3 2×10 0.02 10−3 keV keV keV −1 −1 −1 0.01 10−3 5×10−4 5×10−3 2×10−4 −4 5×10 10−4 −3 Counts s Counts s Counts s 2×10 2 2 2 σ σ σ 0 0 0 −2 −2 −2 1 2 5 2 5 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) NGC 3169 NGC 3190 NGC 3226 −1 −1 0.01 −1 0.05 −3 keV 0.02 keV 5×10 keV −1 −1 −1 0.02 −3 0.01 2×10 10−3 0.01 Counts s −3 Counts s Counts s 5×10 5×10−4 5×10−3 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 5 1 2 5 1 2 5 Energy (keV) Energy (keV) Energy (keV) 2×10−3 0.02 NGC 3310 NGC 3367 NGC 3384 −1 −1 −1 0.01 0.01 10−3 keV 5×10−3 keV keV −1 −1 −1 −4 2×10−3 5×10 10−3 10−3 Counts s Counts s Counts s 5×10−4 2×10−4 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 5 0.51 2 5 1 2 Energy (keV) Energy (keV) Energy (keV) NGC 3414 0.01 NGC 3507 −1 −1 NGC 3521 0.02 −1 −3 −3 10 keV 0.01 keV 5×10 keV −1 −1 −3 −1 5×10 5×10−4 2×10−3 2×10−3 −3 −4 Counts s 10 Counts s Counts s 2×10 2 2 2 σ σ 0 0 σ 0 −2 −2 −2 1 2 5 0.5 1 1 2 5 Energy (keV) Energy (keV) Energy (keV) −3 0.01 5×10 NGC 3585 NGC 3599 NGC 3607 −1 −1 5×10−3 −1 2×10−3 2×10−3 keV keV −3 keV −1 10−3 −1 2×10 −1 −3 −3 5×10−4 10 10 5×10−4 −4 −4 Counts s 2×10 Counts s Counts s 5×10 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 0.51 2 1 2 Energy (keV) Energy (keV) Energy (keV) 2×10−3 NGC 3683 NGC 3718 NGC 3894 −1 −1 0.1 −1 2×10−3 −3 0.05 keV 10 keV keV −3 −1 −1 0.02 −1 10 −4 5×10 0.01 5×10−4 5×10−3 Counts s Counts s Counts s 2×10−4 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 5 1 2 5 1 2 5 Energy (keV) Energy (keV) Energy (keV) NGC 3898 NGC 3923 NGC 3945 −1 −1 0.01 −1 10−3 keV keV keV 0.01 −1 −1 −1 10−3 10−4 10−3 Counts s Counts s Counts s 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 0.51 2 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) 0.01 0.1 5×10−3 NGC 4036 NGC 4039 NGC 4102 −1 −1 5×10−3 −1 0.05 keV keV −3 keV −1 −1 2×10 −1 2×10−3 0.02 −3 10 0.01 −3 −4 10 5×10 5×10−3 Counts s Counts s Counts s 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 5 1 2 1 2 5 Energy (keV) Energy (keV) Energy (keV) NGC 4125 NGC 4138 NGC 4143 −1 0.01 −1 0.05 −1 0.05 keV keV keV −1 −1 0.02 −1 0.02 10−3 0.01 0.01 Counts s Counts s Counts s 5×10−3 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 2 5 0.51 2 Energy (keV) Energy (keV) Energy (keV) 0.01 NGC 4194 NGC 4233 NGC 4261 −1 −1 −1 0.1 0.01 5×10−3 keV keV keV −1 −1 −1 0.01 10−3 2×10−3 −3 −3 10 Counts s Counts s 10 Counts s 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 5 2 5 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) NGC 4278 −3 −3 NGC 4342 −1 10 NGC 4283 −1 −1 5×10 0.01 −4 keV keV keV 5×10 2×10−3 −1 −1 −1 −3 −3 10 10 2×10−4 5×10−4 Counts s Counts s Counts s −4 10−4 10 2 2 2 σ σ 0 σ 0 0 −2 −2 −2 0.51 2 5 0.51 2 5 0.51 2 Energy (keV) Energy (keV) Energy (keV) 0.05 0.05 0.1 NGC 4388 NGC 4395 NGC 4438 −1 −1 −1 0.02 0.02 keV keV keV −1 −1 −1 0.01 0.01 0.01 5×10−3 5×10−3 −3 Counts s 2×10−3 Counts s Counts s 10 2×10−3 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 5 0.51 2 5 0.51 2 Energy (keV) Energy (keV) Energy (keV) 0.1 NGC 4450 NGC 4457 NGC 4477 −1 −1 −1 2×10−3 0.05 0.01 keV keV keV 10−3 −1 −1 −1 0.02 5×10−4 0.01 10−3 Counts s 5×10−3 Counts s Counts s 2×10−4 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 0.51 2 1 2 Energy (keV) Energy (keV) Energy (keV) 10−3 NGC 4486B NGC 4490 0.02 NGC 4494 −1 −1 −1 5×10−4 0.01 0.01 keV keV keV −3 −1 −1 −1 5×10 2×10−4 2×10−3 10−4 10−3 −3 Counts s Counts s Counts s 10 5×10−5 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 1 2 5 0.51 2 Energy (keV) Energy (keV) Energy (keV) NGC 4526 NGC 4561 NGC 4565 −1 2×10−3 −1 −1 0.01 0.01 keV 10−3 keV keV −1 −1 −1 5×10−4 5×10−3 10−3 2×10−4 Counts s Counts s 2×10−3 Counts s 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 5 1 2 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) 0.2 NGC 4636 NGC 4639 NGC 4696 −1 2×10−3 −1 0.1 −1 0.01 keV keV 0.05 keV −3 −1 10 −1 −1 10−3 0.02 5×10−4 0.01 10−4 Counts s Counts s 5×10−3 Counts s 2×10−4 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 1 2 0.51 2 5 0.51 2 5 Energy (keV) Energy (keV) Energy (keV) 5×10−3 0.02 5×10−3 NGC 4698 NGC 4725 NGC 4742 −1 −1 0.01 −1 −3 2×10 −3 −3 keV keV 5×10 keV 2×10 −1 −1 −1 −3 10 −3 2×10 10−3 5×10−4 10−3 −4 −4 Counts s Counts s 5×10 Counts s 5×10 2 2 2 σ 0 σ 0 σ 0 −2 −2 −2 0.51 2 0.51 2 1 2 Energy (keV) Energy (keV) Energy (keV) NGC 4772 NGC 4939 NGC 4945
Recommended publications
  • Arxiv:1904.07129V1 [Astro-Ph.GA] 15 Apr 2019
    Draft version April 16, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 SPIRE SPECTROSCOPY OF EARLY TYPE GALAXIES Ryen Carl Lapham and Lisa M. Young Physics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801; [email protected], [email protected] Draft version April 16, 2019 ABSTRACT We present SPIRE spectroscopy for 9 early-type galaxies (ETGs) representing the most CO-rich and far-infrared (FIR) bright galaxies of the volume-limited Atlas3D sample. Our data include detections of mid to high J CO transitions (J=4-3 to J=13-12) and the [C I] (1-0) and (2-1) emission lines. CO spectral line energy distributions (SLEDs) for our ETGs indicate low gas excitation, barring NGC 1266. We use the [C I] emission lines to determine the excitation temperature of the neutral gas, as well as estimate the mass of molecular hydrogen. The masses agree well with masses derived from CO, making this technique very promising for high redshift galaxies. We do not find a trend between the [N II] 205 flux and the infrared luminosity, but we do find that the [N II] 205/CO(6-5) line ratio is correlated with the 60/100 µm Infrared Astronomical Satellite (IRAS) colors. Thus the [N II] 205/CO(6-5) ratio can be used to infer a dust temperature, and hence the intensity of the interstellar radiation field (ISRF). Photodissociation region (PDR) models show that use of [C I] and CO lines in addition to the typical [C II], [O I], and FIR fluxes drive the model solutions to higher densities and lower values of G0.
    [Show full text]
  • Linking Dust Emission to Fundamental Properties in Galaxies: the Low-Metallicity Picture?
    A&A 582, A121 (2015) Astronomy DOI: 10.1051/0004-6361/201526067 & c ESO 2015 Astrophysics Linking dust emission to fundamental properties in galaxies: the low-metallicity picture? A. Rémy-Ruyer1;2, S. C. Madden2, F. Galliano2, V. Lebouteiller2, M. Baes3, G. J. Bendo4, A. Boselli5, L. Ciesla6, D. Cormier7, A. Cooray8, L. Cortese9, I. De Looze3;10, V. Doublier-Pritchard11, M. Galametz12, A. P. Jones1, O. Ł. Karczewski13, N. Lu14, and L. Spinoglio15 1 Institut d’Astrophysique Spatiale, CNRS, UMR 8617, 91405 Orsay, France e-mail: [email protected]; [email protected] 2 Laboratoire AIM, CEA/IRFU/Service d’Astrophysique, Université Paris Diderot, Bât. 709, 91191 Gif-sur-Yvette, France 3 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics & Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Laboratoire d’Astrophysique de Marseille – LAM, Université d’Aix-Marseille & CNRS, UMR 7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France 6 Department of Physics, University of Crete, 71003 Heraklion, Greece 7 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 8 Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 9 Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail H30, PO Box 218, Hawthorn VIC 3122, Australia 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Max-Planck für Extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching-bei-München, Germany 12 European Southern Observatory, Karl-Schwarzschild-Str.
    [Show full text]
  • VEGAS: a VST Early-Type Galaxy Survey. the Faint Substructures of NGC 4472 Stellar Halo
    VEGAS: A VST Early-type GAlaxy Survey. The faint substructures of NGC 4472 stellar halo. MARILENA SPAVONE ON THE BEHALF OF THE VEGAS TEAM: M. CAPACCIOLI, M. CANTIELLO, A. GRADO, E. IODICE, F. LA BARBERA, N.R. NAPOLITANO, C. TORTORA, L. LIMATOLA, M. PAOLILLO, T. PUZIA, R. PELETIER, A.J. ROMANOWSKY, D. FORBES, G. RAIMONDO OUTLINE The VST VEGAS survey Science aims Results on NGC 4472 field Conclusions Future plans MARILENA SPAVONE STELLAR HALOS 2015 ESO-GARCHING, 23-27 FEBRUARY THE VEGAS SURVEY Multiband u, g, r, i survey of ~ 110 galaxies with vrad < 4000 km/s in all environments (field to clusters). An example Obj. name Morph. type u g r i IC 1459 E3 5630 1850 1700 NGC 1399 E1 8100 5320 2700 NGC 3115 S0 14800 8675 6030 Observations to date (to P94) g-BAND ~ 16% i-BAND ~ 19% r-BAND ~ 3% + FORNAX u-BAND ~ 1% MARILENA SPAVONE STELLAR HALOS 2015 ESO-GARCHING, 23-27 FEBRUARY THE VEGAS SURVEY Multiband u, g, r, i survey of ~ 110 galaxies with vrad < 4000 km/s in all environments (field to clusters). OT ~ 350 h @ vst over 5 years Expected SB limits: 27.5 g, 2 27.0 r and 26.2 i mag/arcsec . g band expected SB limit MARILENA SPAVONE STELLAR HALOS 2015 ESO-GARCHING, 23-27 FEBRUARY THE VEGAS SURVEY Multiband u, g, r, i survey of ~ 110 galaxies with vrad < 4000 km/s in all environments (field to clusters). ~ 350 h @ vst over 5 years Expected SB limits: 27.5 g, 27.0 r and 26.2 i mag/arcsec2.
    [Show full text]
  • THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
    The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M .
    [Show full text]
  • The SBF Survey of Galaxy Distances. I. Sample Selection, Photometric
    TheSBFSurveyofGalaxyDistances.I. Sample Selection, Photometric Calibration, and the Hubble Constant1 John L. Tonry2 and John P. Blakeslee2 Physics Dept. Room 6-204, MIT, Cambridge, MA 02139; Edward A. Ajhar2 Kitt Peak National Observatory, National Optical Astronomy Observatories, P.O. Box 26732 Tucson, AZ 85726; Alan Dressler Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101 ABSTRACT We describe a program of surface brightness fluctuation (SBF) measurements for determining galaxy distances. This paper presents the photometric calibration of our sample and of SBF in general. Basing our zero point on observations of Cepheid variable stars we find that the absolute SBF magnitude in the Kron-Cousins I band correlates well with the mean (V −I)0 color of a galaxy according to M I =(−1.74 ± 0.07) + (4.5 ± 0.25) [(V −I)0 − 1.15] for 1.0 < (V −I) < 1.3. This agrees well with theoretical estimates from stellar popula- tion models. Comparisons between SBF distances and a variety of other estimators, including Cepheid variable stars, the Planetary Nebula Luminosity Function (PNLF), Tully-Fisher (TF), Dn−σ, SNII, and SNIa, demonstrate that the calibration of SBF is universally valid and that SBF error estimates are accurate. The zero point given by Cepheids, PNLF, TF (both calibrated using Cepheids), and SNII is in units of Mpc; the zero point given by TF (referenced to a distant frame), Dn−σ, and SNIa is in terms of a Hubble expan- sion velocity expressed in km/s. Tying together these two zero points yields a Hubble constant of H0 =81±6 km/s/Mpc.
    [Show full text]
  • Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange
    Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange Atlas Karte (2000.0) Kulmination um Cambridge 10, 16, Mitternacht: Star Atlas 17 12, 13, Sky Atlas Benachbarte Sternbilder: 20, 21 Ant Cnc Cen Crv Crt Leo Lib 9. Februar Lup Mon Pup Pyx Sex Vir Deklinationsbereic h: -35° ... 7° Fläche am Himmel: 1303° 2 Mythologie und Geschichte: Bei der nördlichen Wasserschlange überlagern sich zwei verschiedene Bilder aus der griechischen Mythologie. Das erste Bild zeugt von der eher harmlosen Wasserschlange aus der Geschichte des Raben : Der Rabe wurde von Apollon ausgesandt, um mit einem goldenen Becher frisches Quellwasser zu holen. Stattdessen tat sich dieser an Feigen gütlich und trug bei seiner Rückkehr die Wasserschlange in seinen Fängen, als angebliche Begründung für seine Verspätung. Um jedermann an diese Untat zu erinnern, wurden der Rabe samt Becher und Wasserschlange am Himmel zur Schau gestellt. Von einem ganz anderen Schlag war die Wasserschlange, mit der Herakles zu tun hatte: In einem Sumpf in der Nähe von Lerna, einem See und einer Stadt an der Küste von Argo, hauste ein unsagbar gefährliches und grässliches Untier. Diese Schlange soll mehrere Köpfe gehabt haben. Fünf sollen es gewesen sein, aber manche sprechen auch von sechs, neun, ja fünfzig oder hundert Köpfen, aber in jedem Falle war der Kopf in der Mitte unverwundbar. Fürchterlich war es, da diesen grässlichen Mäulern - ob die Schlange nun schlief oder wachte - ein fauliger Atem, ein Hauch entwich, dessen Gift tödlich war. Kaum schlug ein todesmutiger Mann dem Untier einen Kopf ab, wuchsen auf der Stelle zwei neue Häupter hervor, die noch furchterregender waren. Eurystheus, der König von Argos, beauftragte Herakles in seiner zweiten Aufgabe diese lernäische Wasserschlange zu töten.
    [Show full text]
  • April Constellations of the Month
    April Constellations of the Month Leo Small Scope Objects: Name R.A. Decl. Details M65! A large, bright Sa/Sb spiral galaxy. 7.8 x 1.6 arc minutes, magnitude 10.2. Very 11hr 18.9m +13° 05’ (NGC 3623) high surface brighness showing good detail in medium sized ‘scopes. M66! Another bright Sb galaxy, only 21 arc minutes from M65. Slightly brighter at mag. 11hr 20.2m +12° 59’ (NGC 3627) 9.7, measuring 8.0 x 2.5 arc minutes. M95 An easy SBb barred spiral, 4 x 3 arc minutes in size. Magnitude 10.5, with 10hr 44.0m +11° 42’ a bright central core. The bar and outer ring of material will require larger (NGC 3351) aperature and dark skies. M96 Another bright Sb spiral, about 42 arc minutes east of M95, but larger and 10hr 46.8m +11° 49’ (NGC 3368) brighter. 6 x 4 arc minutes, magnitude 10.1. Located about 48 arc minutes NNE of M96. This small elliptical galaxy measures M105 only 2 x 2.1 arc minutes, but at mag. 10.3 has very high surface brightness. 10hr 47.8m +12° 35’ (NGC 3379) Look for NGC 3384! (110NGC) and NGC 3389 (mag 11.0 and 12.2) which form a small triangle with M105. NGC 3384! 10hr 48.3m +12° 38’ See comment for M105. The brightest galaxy in Leo, this Sb/Sc spiral galaxy shines at mag. 9.5. Look for NGC 2903!! 09hr 32.2m +21° 30’ a hazy patch 11 x 4.7 arc minutes in size 1.5° south of l Leonis.
    [Show full text]
  • Appendix A: the HRS+ Members
    Appendix A: The HRS+ Members 207 Table A.1: The general properties of galaxies comprising the HRS+ sample. Each column contains: (1) the HRS+ identification 208 number; (2) an alternative name taken from either the New General Catalogue (NGC; Dreyer, 1888), the Catalogue of Galaxies and Clusters of Galaxies (CGCG; Zwicky et al., 1961), Uppsala General Catalogue (UGC; Nilson, 1973), the Virgo Cluster Catalogue (VCC; Binggeli et al., 1985), and the Index Catalogue (IC; Dreyer, 1908); (3) J2000 right ascension, from NED; (4) J2000 declination, from NED; (5) distance; (6) the morphological classification from NED; (7) total 2MASS K band magnitude −2 (Skrutskie et al., 2006); (8) the optical isophotal distance D25 (25 mag arcsec ); (9) the heliocentric radial velocity from NED; (10) the cluster or cloud membership; and (11) the galactic extinction Schlegel et al., 1998. ◦ ′ ′′ −1 HRS+ Alt.Name R.A.(hms) Dec.( ) D (Mpc) Type KStot D25 (′) V (km s ) Member AB (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 1 CGCG 123-035 10 17 39.66 +22 48 35.9 15.7 Pec 11.59 1.00 1175 Leo Cl. 0.13 2 UGC 5588 10 20 57.13 +25 21 53.4 17.2 S? 11.03 0.52 1291 Leo Cl. 0.10 3 NGC 3226 10 23 27.01 +19 53 54.7 15.3 E2:pec;LINER;Sy3 8.57 3.16 1169 Leo Cl. 0.10 4 NGC 3227 10 23 30.58 +19 51 54.2 15.4 SAB(s)pec;Sy1.5 7.64 5.37 1148 Leo Cl.
    [Show full text]
  • The Cheshire Cat Gravitational Lens: the Formation of a Massive Fossil Group
    THE UNIVERSITY OF ALABAMA University Libraries The Cheshire Cat Gravitational Lens: The Formation of a Massive Fossil Group Jimmy A. Irwin – University of Alabama et al. Deposited 09/10/2018 Citation of published version: Irwin, J., et al. (2015): The Cheshire Cat Gravitational Lens: The Formation of a Massive Fossil Group. The Astrophysical Journal, 806(2). http://dx.doi.org/10.1088/0004- 637X/806/2/268 © 2015. The American Astronomical Society. All rights reserved. The Astrophysical Journal, 806:268 (14pp), 2015 June 20 doi:10.1088/0004-637X/806/2/268 © 2015. The American Astronomical Society. All rights reserved. THE CHESHIRE CAT GRAVITATIONAL LENS: THE FORMATION OF A MASSIVE FOSSIL GROUP Jimmy A. Irwin1, Renato Dupke1,2,3,4, Eleazar R. Carrasco5, W. Peter Maksym1, Lucas Johnson1, and Raymond E. White III1 1 Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487, USA; [email protected] 2 Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109, USA 3 Observatório Nacional, Rua Gal. José Cristino 77, São Cristóvão, CEP20921-400 Rio de Janeiro RJ, Brazil 4 Eureka Scientific Inc., 2452 Delmer St. Suite 100, Oakland, CA 94602, USA 5 Gemini Observatory/AURA, Southern Operations Center, AURA, Casilla 603, La Serena, Chile Received 2014 July 4; accepted 2015 April 28; published 2015 June 23 ABSTRACT The Cheshire Cat is a relatively poor group of galaxies dominated by two luminous elliptical galaxies surrounded by at least four arcs from gravitationally lensed background galaxies that give the system a humorous appearance. Our combined optical/X-ray study of this system reveals that it is experiencing a line of sight merger between two groups with a roughly equal mass ratio with a relative velocity of ∼1350 km s−1.
    [Show full text]
  • Distances to PHANGS Galaxies: New Tip of the Red Giant Branch Measurements and Adopted Distances
    MNRAS 501, 3621–3639 (2021) doi:10.1093/mnras/staa3668 Advance Access publication 2020 November 25 Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances Gagandeep S. Anand ,1,2‹† Janice C. Lee,1 Schuyler D. Van Dyk ,1 Adam K. Leroy,3 Erik Rosolowsky ,4 Eva Schinnerer,5 Kirsten Larson,1 Ehsan Kourkchi,2 Kathryn Kreckel ,6 Downloaded from https://academic.oup.com/mnras/article/501/3/3621/6006291 by California Institute of Technology user on 25 January 2021 Fabian Scheuermann,6 Luca Rizzi,7 David Thilker ,8 R. Brent Tully,2 Frank Bigiel,9 Guillermo A. Blanc,10,11 Med´ eric´ Boquien,12 Rupali Chandar,13 Daniel Dale,14 Eric Emsellem,15,16 Sinan Deger,1 Simon C. O. Glover ,17 Kathryn Grasha ,18 Brent Groves,18,19 Ralf S. Klessen ,17,20 J. M. Diederik Kruijssen ,21 Miguel Querejeta,22 Patricia Sanchez-Bl´ azquez,´ 23 Andreas Schruba,24 Jordan Turner ,14 Leonardo Ubeda,25 Thomas G. Williams 5 and Brad Whitmore25 Affiliations are listed at the end of the paper Accepted 2020 November 20. Received 2020 November 13; in original form 2020 August 24 ABSTRACT PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ∼20 Mpc. Combined with the PHANGS- ALMA, PHANGS-MUSE surveys and other multiwavelength data, the data set will provide an unprecedented look into the connections between young stars, H II regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g.
    [Show full text]
  • IRAC Near-Infrared Features in the Outer Parts of S4G Galaxies
    Mon. Not. R. Astron. Soc. 000, 1{26 (2014) Printed 15 June 2018 (MN LATEX style file v2.2) Spitzer/IRAC Near-Infrared Features in the Outer Parts of S4G Galaxies Seppo Laine,1? Johan H. Knapen,2;3 Juan{Carlos Mu~noz{Mateos,4:5 Taehyun Kim,4;5;6;7 S´ebastienComer´on,8;9 Marie Martig,10 Benne W. Holwerda,11 E. Athanassoula,12 Albert Bosma,12 Peter H. Johansson,13 Santiago Erroz{Ferrer,2;3 Dimitri A. Gadotti,5 Armando Gil de Paz,14 Joannah Hinz,15 Jarkko Laine,8;9 Eija Laurikainen,8;9 Kar´ınMen´endez{Delmestre,16 Trisha Mizusawa,4;17 Michael W. Regan,18 Heikki Salo,8 Kartik Sheth,4;1;19 Mark Seibert,7 Ronald J. Buta,20 Mauricio Cisternas,2;3 Bruce G. Elmegreen,21 Debra M. Elmegreen,22 Luis C. Ho,23;7 Barry F. Madore7 and Dennis Zaritsky24 1Spitzer Science Center - Caltech, MS 314-6, Pasadena, CA 91125, USA 2Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 3Departamento de Astrof´ısica, Universidad de La Laguna, 38206 La Laguna, Spain 4National Radio Astronomy Observatory/NAASC, Charlottesville, 520 Edgemont Road, VA 22903, USA 5European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile 6Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea 7The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA 8Division of Astronomy, Department of Physics, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland 9Finnish Centre of Astronomy with ESO (FINCA), University of Turku, V¨ais¨al¨antie20, FIN-21500 Piikki¨o 10Max-Planck Institut f¨urAstronomie, K¨onigstuhl17 D-69117 Heidelberg, Germany 11Leiden Observatory, Leiden University, P.O.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Physics And Astronomy Fast Spectral Variability in the X-ray Emission of Accreting Black Holes by Chris J. Skipper Thesis for the degree of Doctor of Philosophy October 2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Physics And Astronomy Doctor of Philosophy FAST SPECTRAL VARIABILITY IN THE X-RAY EMISSION OF ACCRETING BLACK HOLES by Chris J. Skipper The X-ray emission from accreting black holes provides the perfect probe for testing the geometry, behaviour and conditions present in the innermost regions of the accretion flow. In this thesis I use X-ray spectral analysis to investigate the properties of accret- ing black holes that extend over several orders of magnitude in accretion rate (m˙ E) and black hole mass (MBH), from the stellar mass black holes in X-ray binary systems (XRBs) to the supermassive black holes in active galactic nuclei (AGN).
    [Show full text]