Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei Davide Lena

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei Davide Lena Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 4-2015 Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei Davide Lena Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Lena, Davide, "Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei" (2015). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei A Search for Recoiling Supermassive Black Holes Gas Kinematics in the Circumnuclear Region of Two Seyfert Galaxies Davide Lena A dissertation submitted in partial fulfillment of the requirements for the degree of Ph.D. in Astrophysical Sciences and Technology in the College of Science, School of Physics and Astronomy Rochester Institute of Technology © D. Lena April, 2015 Cover image: flux map for the [NII]λ6583 emission line in the nuclear region of the Seyfert galaxy NGC 1386. The map was derived from integral field observations performed with the Gemini Multi Object Spectrograph on the Gemini-South Observatory. Certificate of Approval Astrophysical Sciences and Technologies R·I·T College of Science Rochester, NY, USA The Ph.D. Dissertation of DAVIDE LENA has been approved by the undersigned members of the dissertation committee as satisfactory for the degree of Doctor of Philosophy in Astrophysical Sciences and Technology. Dr. Harvey E. Rhody, Committee Chair Date Dr. Andrew Robinson, Dissertation Adviser Date Dr. David Merritt Date Dr. Michael W. Richmond Date Dr. Daniel Batcheldor Date An astronomer walks into a bar, and he is dragged toward the center of the galaxy. To my lovely girlfriend. ABSTRACT Super-massive black holes (SBHs) have long been identified as the en- gines of active galactic nuclei (AGNs) and are now considered to play a key role in galaxy evolution. In this dissertation I present results from two ob- servational studies conducted on nearby AGNs with the aim of furthering our understanding of SBH growth and their interplay with the host galaxies. The first study is an observational search for SBHs spatially offset from the center of their host galaxies. Such offsets can be considered signatures of gravitational recoil following the coalescence of an SBH binary system (formed in the aftermath of a galaxy merger) due to emission of gravita- tional waves. The study is based on a photometric analysis of fourteen nearby elliptical galaxies observed with the Hubble Space Telescope. I find that parsec-scale offsets are common. However, while these are individu- ally consistent with residual gravitational recoil oscillations, there is a high probability that larger offsets than those actually observed should have been found in the sample as a whole. There are a number of possible explanations for this result: the galaxy merger rate may be lower than current estimates; SBH-binaries may reach the merger stage with a configuration which min- imizes recoil velocities; or the SBH oscillations are more quickly damped than predicted. In the second study I use integral field spectroscopy obtained with the Gemini South telescope to investigate the kinematics of the circum-nuclear ionized gas in two active galaxies: NGC 1386, a Seyfert 2, and NGC 1365, a Seyfert 1. The goal of the study is to investigate outflows in low-luminosity AGNs, and the mechanisms channeling gas (the SBH fuel) from the inner kiloparsec down to a few tens of parsecs from the SBH. I find that the dom- inant kinematic components can be explained as a combination of rotation i in the large-scale galactic disk and compact outflows along the axis of the AGN \radiation cone". However, in the case of NGC 1386, there is also compelling evidence for an equatorial outflow, which provides a new clue to the physical processes operating in AGNs. Keywords: (recoiling) supermassive black holes, active galaxies, gas kinematics, integral field spectroscopy, individual galaxies: NGC 1386, 1365. ii CONTENTS Abstract i Declaration viii Acknowledgements x List of published work xii List of Tables xiii List of Figures xiv 1 Introduction 1 1.1 Supermassive black holes . 2 1.2 The AGN unification model . 3 1.2.1 What is the torus? . 7 1.3 AGN feeding and feedback . 10 1.3.1 Inflows . 10 1.3.2 Outflows . 13 1.4 Galaxy mergers and recoiling black holes . 16 1.5 Chapter synopsis . 18 2 Recoiling supermassive black holes: a search in the nearby universe 20 2.1 Introduction . 20 iii CONTENTS 2.2 The sample . 22 2.3 Data Analysis . 27 2.3.1 The inner photocenter . 27 2.3.2 The SBH position . 32 2.3.3 The photocenter{AGN displacement . 33 2.3.4 Errors and biases . 34 2.3.4.1 Position uncertainties . 34 2.3.4.2 Possible biases . 37 2.4 Results . 38 2.4.1 Images, surface brightness and isophotal center distri- butions . 51 2.5 Discussion . 75 2.5.1 The AGN nature of the nuclear point sources . 75 2.5.2 Recoiling SBHs . 76 2.5.3 Distribution of recoil displacements . 83 2.5.4 Other displacement mechanisms . 87 2.6 Notes on individual sources . 98 2.6.1 NGC 4278 (high/intermediate) . 98 2.6.2 NGC 5846 (intermediate) . 100 2.6.3 NGC 4486 (M87, intermediate) . 101 2.6.4 NGC 1399 (low) . 104 2.6.5 IC 4296 (low) . 105 2.6.6 NGC 5419 (low, double nucleus) . 108 2.6.7 Notes on other galaxies . 109 2.6.7.1 NGC 4168 . 109 2.6.7.2 NGC 4261 . 110 2.6.7.3 NGC 4373 . 111 2.6.7.4 NGC 4552 . 111 2.6.7.5 NGC 4636 . 112 2.6.7.6 NGC 4696 (double nucleus) . 112 2.6.7.7 IC 1459 . 113 2.6.7.8 IC 4931 . 114 2.7 Summary and Conclusions . 114 3 Integral field spectroscopy of nearby Seyfert galaxies 117 3.1 Introduction . 117 iv CONTENTS 3.2 Integral field spectroscopy . 118 3.3 The Gemini Multi Object Spectrograph IFU . 120 3.4 Observations . 121 3.5 Data reduction . 121 3.5.1 Calibration data . 122 3.5.2 Science data . 124 3.6 Fitting of the spectral features . 124 3.6.1 Emission lines . 125 3.6.2 Absorption lines . 126 4 Gas kinematics in the Seyfert 2 galaxy NGC 1386 129 4.1 Introduction . 129 4.2 Observations . 134 4.3 Emission line fitting . 135 4.3.1 Uncertainties . 141 4.4 Results . 141 4.4.1 Gas kinematics . 141 4.4.1.1 Velocity and velocity dispersion . 141 4.4.1.2 Uncertainties . 147 4.4.1.3 Channel maps . 150 4.4.2 Stellar kinematics . 150 4.4.2.1 Velocity and velocity dispersion . 150 4.4.2.2 Uncertainties . 152 4.4.3 Line fluxes . 155 4.4.4 Gas excitation . 158 4.4.5 Electron density . 158 4.5 Discussion . 162 4.5.1 The stellar velocity field . 162 4.5.1.1 Stability of the solution . 163 4.5.2 The gas velocity field . 165 4.5.2.1 Stability of the solution . 168 4.5.2.2 Comparison with previous work . 168 4.6 Interpretation . 174 4.6.1 The narrow component - disk rotation . 174 4.6.2 The broad component - nuclear outflow . 175 4.6.2.1 Mass outflow rate . 176 v CONTENTS 4.6.3 Equatorial rotation or expansion? . 179 4.6.4 Velocity residuals in the large-scale disk . 179 4.6.5 The geometry and kinematics of the nuclear region . 180 4.7 Summary and Conclusions . 182 5 Gas kinematics in the Seyfert 1 galaxy NGC 1365 186 5.1 Introduction . 186 5.2 Observations . 189 5.3 Emission line fitting . 190 5.3.1 Uncertainties . 192 5.4 Results . 193 5.4.1 Gas kinematics . 193 5.4.1.1 Velocity and velocity dispersion . 193 5.4.1.2 Uncertainties . 195 5.4.2 Line fluxes . 197 5.4.2.1 Uncertainties . 197 5.4.3 Electron density . 197 5.4.4 Line ratios . 198 5.5 Discussion . 205 5.5.1 Non-circular motions in the gas velocity field . 205 5.5.1.1 Uncertainties . 206 5.5.2 Evidence for an outflow? . 207 5.5.3 Is there any evidence for gas inflows? . 211 5.6 Summary and conclusion . 212 6 Summary and Conclusion 214 6.1 Recoiling SBHs . 214 6.1.1 Is there evidence that SBHs are offset from the center of their host galaxies? . 215 6.1.2 The role of powerful radio jets . 216 6.1.3 Do massive ellipticals really grow via mergers? . 217 6.1.4 The configuration of SBH-binaries at the time of merger217 6.1.5 The gas content of massive ellipticals . 218 6.1.6 Concluding remarks and future directions . 219 6.2 Gas kinematics . 221 6.2.1 NGC 1386 . 223 6.2.2 NGC 1365 . 224 vi CONTENTS 6.2.3 The energy budget of AGN feedback . 225 6.2.4 The structure of active nuclei . 226 6.2.4.1 The torus . 227 6.2.4.2 The narrow line region . 229 6.2.5 Concluding remarks and future directions . 230 Bibliography 232 vii DECLARATION I, Davide Lena (\the Author"), declare that no part of this disserta- tion is substantially the same as any that has been submitted for a degree or diploma at the Rochester Institute of Technology or any other University.
Recommended publications
  • VEGAS: a VST Early-Type Galaxy Survey. the Faint Substructures of NGC 4472 Stellar Halo
    VEGAS: A VST Early-type GAlaxy Survey. The faint substructures of NGC 4472 stellar halo. MARILENA SPAVONE ON THE BEHALF OF THE VEGAS TEAM: M. CAPACCIOLI, M. CANTIELLO, A. GRADO, E. IODICE, F. LA BARBERA, N.R. NAPOLITANO, C. TORTORA, L. LIMATOLA, M. PAOLILLO, T. PUZIA, R. PELETIER, A.J. ROMANOWSKY, D. FORBES, G. RAIMONDO OUTLINE The VST VEGAS survey Science aims Results on NGC 4472 field Conclusions Future plans MARILENA SPAVONE STELLAR HALOS 2015 ESO-GARCHING, 23-27 FEBRUARY THE VEGAS SURVEY Multiband u, g, r, i survey of ~ 110 galaxies with vrad < 4000 km/s in all environments (field to clusters). An example Obj. name Morph. type u g r i IC 1459 E3 5630 1850 1700 NGC 1399 E1 8100 5320 2700 NGC 3115 S0 14800 8675 6030 Observations to date (to P94) g-BAND ~ 16% i-BAND ~ 19% r-BAND ~ 3% + FORNAX u-BAND ~ 1% MARILENA SPAVONE STELLAR HALOS 2015 ESO-GARCHING, 23-27 FEBRUARY THE VEGAS SURVEY Multiband u, g, r, i survey of ~ 110 galaxies with vrad < 4000 km/s in all environments (field to clusters). OT ~ 350 h @ vst over 5 years Expected SB limits: 27.5 g, 2 27.0 r and 26.2 i mag/arcsec . g band expected SB limit MARILENA SPAVONE STELLAR HALOS 2015 ESO-GARCHING, 23-27 FEBRUARY THE VEGAS SURVEY Multiband u, g, r, i survey of ~ 110 galaxies with vrad < 4000 km/s in all environments (field to clusters). ~ 350 h @ vst over 5 years Expected SB limits: 27.5 g, 27.0 r and 26.2 i mag/arcsec2.
    [Show full text]
  • The SBF Survey of Galaxy Distances. I. Sample Selection, Photometric
    TheSBFSurveyofGalaxyDistances.I. Sample Selection, Photometric Calibration, and the Hubble Constant1 John L. Tonry2 and John P. Blakeslee2 Physics Dept. Room 6-204, MIT, Cambridge, MA 02139; Edward A. Ajhar2 Kitt Peak National Observatory, National Optical Astronomy Observatories, P.O. Box 26732 Tucson, AZ 85726; Alan Dressler Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101 ABSTRACT We describe a program of surface brightness fluctuation (SBF) measurements for determining galaxy distances. This paper presents the photometric calibration of our sample and of SBF in general. Basing our zero point on observations of Cepheid variable stars we find that the absolute SBF magnitude in the Kron-Cousins I band correlates well with the mean (V −I)0 color of a galaxy according to M I =(−1.74 ± 0.07) + (4.5 ± 0.25) [(V −I)0 − 1.15] for 1.0 < (V −I) < 1.3. This agrees well with theoretical estimates from stellar popula- tion models. Comparisons between SBF distances and a variety of other estimators, including Cepheid variable stars, the Planetary Nebula Luminosity Function (PNLF), Tully-Fisher (TF), Dn−σ, SNII, and SNIa, demonstrate that the calibration of SBF is universally valid and that SBF error estimates are accurate. The zero point given by Cepheids, PNLF, TF (both calibrated using Cepheids), and SNII is in units of Mpc; the zero point given by TF (referenced to a distant frame), Dn−σ, and SNIa is in terms of a Hubble expan- sion velocity expressed in km/s. Tying together these two zero points yields a Hubble constant of H0 =81±6 km/s/Mpc.
    [Show full text]
  • Compact Jets Causing Large Turmoil in Galaxies Enhanced Line Widths Perpendicular to Radio Jets As Tracers of Jet-ISM Interaction?
    A&A 648, A17 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039869 & c G. Venturi et al. 2021 Astrophysics MAGNUM survey: Compact jets causing large turmoil in galaxies Enhanced line widths perpendicular to radio jets as tracers of jet-ISM interaction? G. Venturi1,2, G. Cresci2, A. Marconi3,2, M. Mingozzi4, E. Nardini3,2, S. Carniani5,2, F. Mannucci2, A. Marasco2, R. Maiolino6,7,8 , M. Perna9,2, E. Treister1, J. Bland-Hawthorn10,11, and J. Gallimore12 1 Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile e-mail: [email protected] 2 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy e-mail: [email protected] 3 Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy 4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 5 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy 6 Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Ave., Cambridge CB3 0HE, UK 7 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 8 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 9 Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica Cra. de Ajalvir Km. 4, 28850 Torrejón de Ardoz, Madrid, Spain 10 Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia 11 ARC Centre of Excellence for All Sky Astrophysics in Three Dimensions (ASTRO-3D), Canberra ACT2611, Australia 12 Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA Received 6 November 2020 / Accepted 13 January 2021 ABSTRACT Context.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]
  • Professor Catriona Macleod
    RRR | Cover 2015 v2 11/9/16 10:17 AM Page 1 C M Y CM MY CY CMY K Composite RRR 2015 | Features 11/12/16 1:36 PM Page 1 C M Y CM MY CY CMY K RHODES UNIVERSITY RESEARCH REPORT A publication of the Rhodes University Research Office, compiled and edited by Tarryn Gillitt, Busi Goba, Patricia Jacob, Jill Macgregor and Jaine Roberts Design & Layout: Sally Dore Research Office Director: Jaine Roberts [email protected] Tel: +27 (46) 603 8756/7572 www.ru.ac.za Cover: Rhodes University researchers Pam Maseko, Nomalanga Mkhize, Heila Lotz-Sisitka, Ruth Simbao, Anthea Garman and Catriona Macleod Cover Photos: Paul Greenway/www.3pphotography.com RESEARCH REPORT 2015 Composite RRR 2015 | Features 11/12/16 1:36 PM Page 2 C M Y CM MY CY CMY K CONTENTS 01 FOREWORD Dr Sizwe Mabizela, Vice-Chancellor 03 INTRODUCTION Dr Peter Clayton, Deputy Vice-Chancellor: Research & Development 05 TOP 30 RESEARCHERS 06 PHD GRADUATES 11 VICE-CHANCELLOR’S BOOK AWARD Professor Anthea Garman 13 VICE-CHANCELLOR’S DISTINGUISHED SENIOR RESEARCH AWARD Professor Catriona Macleod 15 VICE-CHANCELLOR’S DISTINGUISHED RESEARCH AWARD Dr Adrienne Edkins 17 SARChI CHAIRS Professor Heila Lotz-Sisitka, Professor Ruth Simbao and Dr Adrienne Edkins 23 AFRICAN LANGUAGES, SCHOOL OF LANGUAGES AND LITERATURE Associate Professor Pamela Maseko 25 DEPARTMENT OF HISTORY Dr Nomalanga Mkhize RESEARCH REPORT 2015 Composite RRR 2015 | Features 11/12/16 1:34 PM Page 3 C M Y CM MY CY CMY K RHODES RESEARCH 2015 RESEARCH REPORT DEPARTMENT PUBLICATIONS AFFILIATES, INSTITUTES AND 28 Publications from the Vice-Chancellorate
    [Show full text]
  • Probing the Physics of Narrow Line Regions in Active Galaxies II: the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7)
    Probing the Physics of Narrow Line Regions in Active Galaxies II: The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) Michael A. Dopita1,2, Prajval Shastri3, Rebecca Davies1, Lisa Kewley1,4, Elise Hampton1, Julia Scharw¨achter5, Ralph Sutherland1, Preeti Kharb3, Jessy Jose3, Harish Bhatt3, S. Ramya 3, Chichuan Jin6, Julie Banfield7, Ingyin Zaw8, St´ephanie Juneau9, Bethan James10 & Shweta Srivastava11 [email protected] ABSTRACT Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph (WiFeS) mounted on the ANU 2.3m telescope located at the Siding Spring Observatory to deliver an integral field of 38×25 arcsec at a spectral resolution of R = 7000 in the red (530−710nm), and R = 3000 in the blue (340 − 560nm). From these data cubes we have extracted the Narrow Line Region (NLR) spectra from a 4 arc sec aperture centred on the nucleus. We also determine the Hβ and [O III] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O III] λ5007 luminosities determined 1RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia 2Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia 3Indian Institute of Astrophysics, Koramangala 2B Block, Bangalore 560034, India 4Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, USA 5LERMA, Observatoire de Paris, CNRS, UMR 8112, 61 Avenue de l’Observatoire, 75014, Paris, France 6Qian Xuesen Laboratory for Space Technology, Beijing, China 7CSIRO Astronomy & Space Science, P.O.
    [Show full text]
  • Integral Field Unit Spectroscopy of 10 Early Type Galactic Nuclei: I-Principal
    Mon. Not. R. Astron. Soc. 000, 1–?? (2002) Printed 10 October 2018 (MN LaTEX style file v2.2) Integral field unit spectroscopy of 10 early type galactic nuclei: I - Principal component analysis Tomography and nuclear activity T.V. Ricci,1? J.E. Steiner,1 R.B. Menezes1 1Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05508-900, São Paulo, Brazil Released 2002 Xxxxx XX ABSTRACT Most massive galaxies show emission lines that can be characterized as LINERs. To what extent this emission is related to AGNs or to stellar processes is still an open question. In this paper, we analysed a sample of such galaxies to study the central re- gion in terms of nuclear and circumnuclear emission lines, as well as the stellar compo- nent properties. For this reason, we selected 10 massive (σ >200 km s−1) nearby (d < 31 Mpc) galaxies and observed them with the IFU/GMOS (integral field unit/Gemini Multi-Object Spectrograph) spectrograph on the Gemini South Telescope. The data were analysed with principal component analysis (PCA) Tomography to assess the main properties of the objects. Two spectral regions were analysed: a yellow region (5100-5800 Å), adequate to show the properties of the stellar component, and a red region (6250-6800 Å), adequate to analyse the gaseous component. We found that all objects previously known to present emission lines have a central AGN-type emitting source. They also show gaseous and stellar kinematics typical of discs. Such discs may be co-aligned (NGC 1380 and ESO 208 G-21), in counter-rotation (IC 1459 and NGC 7097) or misaligned (IC 5181 and NGC 4546).
    [Show full text]
  • ALABAMA University Libraries
    THE UNIVERSITY OF ALABAMA University Libraries O VI In Elliptical Galaxies: Indicators of Cooling Flows Joel N. Bregman – University of Michigan Eric D. Miller – MIT Alex E. Athey – Carnegie Institution of Washington Jimmy A. Irwin – University of Michigan Deposited 09/13/2018 Citation of published version: Bregman, J., Miller, E., Athey, A., Irwin, J. (2005): O VI In Elliptical Galaxies: Indicators of Cooling Flows The Astrophysical Journal, 635(2). DOI: 10.1086/497421 © 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. The Astrophysical Journal, 635:1031–1043, 2005 December 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. O vi IN ELLIPTICAL GALAXIES: INDICATORS OF COOLING FLOWS Joel N. Bregman Department of Astronomy, University of Michigan, Ann Arbor, MI 48109; [email protected] Eric D. Miller Kavli Institute for Astrophysics and Space Science, MIT, Cambridge, MA 02139; [email protected] Alex E. Athey The Observatories, Carnegie Institution of Washington, Pasadena, CA 91101; [email protected] and Jimmy A. Irwin Department of Astronomy, University of Michigan, Ann Arbor, MI 48109; [email protected] Received 2005 April 25; accepted 2005 August 23 ABSTRACT Early-type galaxies often contain a hot X-ray–emitting interstellar medium [(3 8) ; 106 K] with an apparent radiative cooling time much less than a Hubble time. If unopposed by a heating mechanism, the gas will radiatively 4 À1 cool to temperatures P10 K at a rate proportional to LX /TX , typically 0.03–1 M yr . We can test whether gas is cooling through the 3 ; 105 K range by observing the O vi doublet, whose luminosity is proportional to the cooling rate.
    [Show full text]
  • Giacomo Venturi Phd Student at University of Florence / INAF - Arcetri Astrophysical Observatory Visitor at Kavli Institute for Cosmology, Cambridge
    The Laws of Star Formation: From the Cosmic Dawn to the Present Universe July 4, 2018 Outflows versus star formation in nearby AGN from the MAGNUM survey Giacomo Venturi PhD student at University of Florence / INAF - Arcetri Astrophysical Observatory Visitor at Kavli Institute for Cosmology, Cambridge A. Marconi (P.I.), M. Mingozzi, S. Carniani, R. Maiolino, G. Cresci, E. Nardini et al. Galaxy evolution: the need for outflows Stellar (SN) feedback accounts for the lack of low-mass galaxies Feedback damps/quenches star formation! acting through outflows/jets! driven by SNe or AGN AGN feedback accounts for the lack of massive galaxies Silk & Mamon 2012 G. Venturi Outflows vs star formation in nearby AGN from the MAGNUM survey "2 Detecting outflows Ionized outflows traced by broad wings in [OIII] in luminous AGN at z ~ 1–3 Brusa+2016 peak of AGN activity [OIII] velocity Star Formation (Hα) [OIII] wing map Star Formation (Hα) Cresci+15a Carniani+16 Bongiorno+07 … but low-resolution, very difficult to measure outflow physical properties and study feedback in detail G. Venturi! Outflows vs star formation in nearby AGN from the MAGNUM survey ! "3 MAGNUM survey Study in detail outflows and feedback in nearby (D < 50 Mpc) Seyfert galaxies with VLT/MUSE FOV covers 1 to 15 kpc with resolution: 15 pc (@4Mpc) to 115 pc (@30Mpc) VLT/MUSE FOV 1'⨉1' Centaurus A Circinus IC 5063 NGC 1068 NGC 1365 NGC 1386 NGC 2992 NGC 4945 NGC 5643 NGC 6810 G. Venturi! Outflows vs star formation in nearby AGN from the MAGNUM survey ! "4 Part 1: NGC 1365 Detailed study of ionized gas in the central kpcs of NGC 1365:! AGN vs star formation, mapping the outflow properties! from optical (MUSE) and X-ray (Chandra) data! (Venturi et al., subm.) G.
    [Show full text]
  • Nuclear Activity in Circumnuclear Ring Galaxies
    International Journal of Astronomy and Astrophysics, 2016, 6, 219-235 Published Online September 2016 in SciRes. http://www.scirp.org/journal/ijaa http://dx.doi.org/10.4236/ijaa.2016.63018 Nuclear Activity in Circumnuclear Ring Galaxies María P. Agüero1, Rubén J. Díaz2,3, Horacio Dottori4 1Observatorio Astronómico de Córdoba, UNCand CONICET, Córdoba, Argentina 2ICATE, CONICET, San Juan, Argentina 3Gemini Observatory, La Serena, Chile 4Instituto de Física, UFRGS, Porto Alegre, Brazil Received 23 May 2016; accepted 26 July 2016; published 29 July 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We have analyzed the frequency and properties of the nuclear activity in a sample of galaxies with circumnuclear rings and spirals (CNRs), compiled from published data. From the properties of this sample a typical circumnuclear ring can be characterized as having a median radius of 0.7 kpc (mean 0.8 kpc, rms 0.4 kpc), located at a spiral Sa/Sb galaxy (75% of the hosts), with a bar (44% weak, 37% strong bars). The sample includes 73 emission line rings, 12 dust rings and 9 stellar rings. The sample was compared with a carefully matched control sample of galaxies with very similar global properties but without detected circumnuclear rings. We discuss the relevance of the results in regard to the AGN feeding processes and present the following results: 1) bright companion galaxies seem
    [Show full text]
  • PDF (Accepted Manuscript)
    Swinburne Research Bank http://researchbank.swinburne.edu.au Kilborn, V. A., Forbes, D. A., Barnes, D. G., et al. (2009). Southern GEMS groups II: HI distribution, mass functions and HI deficient galaxies. Originally published in Monthly Notices of the Royal Astronomical Society, 400(4): 1962–1985. Available from: http://dx.doi.org/10.1111/j.1365-2966.2009.15587.x. This version of the article copyright © 2009 The Authors. This is the author’s version of the work. It is posted here with the permission of the publisher for your personal use. No further distribution is permitted. If your library has a subscription to this journal, you may also be able to access the published version via the library catalogue. The definitive version is available at www.interscience.wiley.com. Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/71244 Mon. Not. R. Astron. Soc. 000, 1–15 (2005) Printed 3 September 2009 (MN LATEX style file v2.2) Southern GEMS groups II: HI distribution, mass functions and HI deficient galaxies⋆ Virginia A. Kilborn1,2†, Duncan A. Forbes1, David G. Barnes1,3, B¨arbel S. Koribalski2, Sarah Brough1, and Katie Kern1,2 1Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail H39, PO Box 218, Hawthorn, VIC 3122, Australia 2Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 1710, Australia 3School of Physics, University of Melbourne, Parkville, VIC 3010, Australia ABSTRACT We investigate the neutral hydrogen (H i) content of sixteen groups for which we have multi-wavelength data including X-ray observations. Wide-field imaging of the groups was obtained with the 20-cm multibeam system on the 64-m Parkes telescope.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]