Trends in Antibiotic Use by Birth Season and Birth Year

Total Page:16

File Type:pdf, Size:1020Kb

Trends in Antibiotic Use by Birth Season and Birth Year Alan C. Kinlaw, PhD, a, b Til Stürmer, MD, PhD, a, b Jennifer L. Lund, PhD, b Lars Pedersen, PhD, c TrendsMichael D. Kappelman, inMD, MPH, Antibiotic d Julie L. Daniels, PhD, b Trine Fr Useøslev, MSc, c by b, e c, f BirthChristina D. Mack, Season PhD, Henrik Toft Sø rensen,and MD, DMSc, Birth PhD Year OBJECTIVES: abstract We examined 2 birth cohort effects on antibiotic prescribing during the first year of life (henceforth, infancy) in Denmark: (1) the birth season effect on timing and overall occurrence of antibiotic prescribing, and (2) the birth year effect amid emerging METHODS: N nationwide pneumococcal vaccination programs and changing prescribing guidelines. We linked data for all live births in Denmark from 2004 to 2012 ( = 561 729) across the National Health Service Prescription Database, Medical Birth Registry, and Civil Registration System. Across birth season and birth year cohorts, we estimated 1-year risk, rate, and burden of redeemed antibiotic prescriptions during infancy. We used interrupted time series methods to assess prescribing trends across birth year cohorts. Graphical RESULTS: displays of all birth cohort effect data are included. The 1-year risk of having at least 1 redeemed antibiotic prescription during infancy was 39.5% (99% confidence interval [CI]: 39.3% to 39.6%). The hazard of a first – prescription increased with age throughout infancy and varied by season; subsequently, Kaplan-Meier derived risk functions varied by birth season cohort. After rollout of a first vaccination program and new antibiotic prescribing guidelines, 1-year risk decreased by 4.4% over 14 months (99% CI: 3.4% to 5.5%); it decreased again after rollout of a second CONCLUSIONS: vaccination program by 6.9% over 3 years (99% CI: 4.4% to 9.3%). In Denmark, birth season and birth year cohort effects influenced timing and risk of antibiotic prescribing during infancy. Future studies of antibiotic stewardship, effectiveness, and safety in children should consider these cohort effects, which may render NIH some children inherently more susceptible than others to downstream antibiotic effects. WHAT’SW KNO N ON THIS SUBJECT: Widespread a b d Cecil G. Sheps Center for Health Services Research, Departments of Epidemiology and Pediatrics, University antibiotic use leads to bacterial resistance, and of North Carolina at Chapel Hill, Chapel Hill, North Carolina; cDepartment of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark; eQuintilesIMS, Durham, North Carolina; and fDivision of Epidemiology, unnecessary antibiotic use in early life may cause Department of Health Research and Policy, Stanford University, Stanford, California excess immune dysfunction in childhood. Antibiotic prescribing is influenced by seasonal and temporal Dr Kinlaw conceptualized and designed the study, conducted data analysis, interpreted factors, but data are limited regarding cohort data, drafted the initial manuscript, and reviewed and revised the manuscript; Dr St rmer ü effects on antibiotic use in children. conceptualized and designed the study, interpreted data, drafted the initial manuscript, and reviewed and revised the manuscript; Drs Lund, Kappelman, Daniels, Mack, and Sørensen WHAT THIS STUDY AddS: In this study, we conceptualized and designed the study, interpreted data, and reviewed and revised the characterize birth season and birth year cohort manuscript; Dr Pedersen and Ms Frøslev contributed to data analysis, interpreted data, effects on antibiotic prescribing during infancy, and reviewed and revised the manuscript; and all authors approved the final manuscript as which merit consideration in pediatric studies of submitted. antibiotic stewardship, effectiveness, and safety. DOI: https:// doi. org/ 10. 1542/ peds. 2017- 0441 We also provide new information on correlation Accepted for publication Jun 9, 2017 between risk, rate, and burden of antibiotic Address correspondence to Alan C. Kinlaw, PhD, Cecil G. Sheps Center for Health Services prescribing. Research, University of North Carolina at Chapel Hill, CB#7590, Chapel Hill, NC 27599. E-mail: [email protected] PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). To cite: Kinlaw AC, Stürmer T, Lund JL, et al. Trends in Antibiotic Use by Birth Season and Birth Year. Pediatrics. 2017;140(3):e20170441 Downloaded from www.aappublications.org/news by guest on September 28, 2021 PEDIATRICS Volume 140, number 3, September 2017:e20170441 ARTICLE Kinlaw et al https://doi.org/10.1542/peds.2017-0441 September 2017 Trends in Antibiotic Use by Birth Season and Birth Year 3 140 Pediatrics 2017 ROUGH GALLEY PROOF 24 30 During early life, children are often antibiotic prescribing guidelines. from 2004. We used Anatomical prescribed antibiotics for bacterial In 2007, the Danish childhood Therapeutic Chemical (ATC) J01 ’ infections. Approximately 20% vaccination program introduced codes to identify prescriptions for to 50% of children s antibiotic the 7-valent– PCV (PCV7), replacing systemic antibiotics redeemed from prescriptions are– used to treat it with the25 13-valent27 PCV (PCV13) January 1, 2004, to December 31, nonbacterial upper1 3 respiratory– in 2010. No studies have 2013, and classified antibiotics by tract infections, for 2,which 4 6 they evaluated the impact of these chemical substance (henceforth, are largely ineffective. In events on antibiotic prescribing in medication). Western industrialized countries Denmark during the first year of life Risk, Rate, and Burden of Antibiotic in particular, increasing advocacy (henceforth, infancy). Prescribing for rational antibiotic prescribing– Our objectives were to estimate has been associated with decreased 7 10 birth season cohort effects on population-level antibiotic use. antibiotic prescribing during infancy To examine differences by birth year In addition, pneumococcal conjugate in Denmark, and birth year cohort cohort in overall and medication- vaccination (PCV) programs have effects on antibiotic prescribing specific prescribing, we estimated 3 been associated with decreased potentially brought about by the IRF measures of antibiotic prescribing: risk of acute otitis media and lower 11 bulletin and PCV programs. (1) 1-year risk of at least 1 redeemed respiratory tract infections, 2 of – METHODS antibiotic prescription during infancy the most common indications for 4,12 16 by using Kaplan-Meier methods to antibiotics in children. Taken account for censoring at death or together, there is a need to better This cohort study included all live emigration; (2) incidence rate of characterize the changing patterns of births in Denmark from 2004 to redeemed antibiotic prescriptions, antibiotic prescribing in children. 2012, identified by using the Danish allowing for multiple redeemed Previous studies of trends in early life Medical Birth Registry (MBR), prescriptions per infant (henceforth, antibiotic prescribing have focused which has registered all live births – ’ 28 rate); and (3) 1-year burden of on rates in3, 8, cross-sectional9, 17 23 population in Denmark since 1973. We used antibiotic prescriptions, on the samples, counting multiple each child s unique 10-digit personal basis of the total days supplied for prescriptions per child and tending to registration number to link their – redeemed antibiotic prescriptions present results for coarse age groups individual-level data across multiple throughout infancy. For rate and ’ (eg, 0 4 years) or groups defined registries. After excluding children burden, we also computed each by the year or season when they with inconsistent identification medication s share of overall were observed (eg, during winter information (Supplemental prescribing, ie, the proportion of all 2010). In addition, studies of rates Information), we examined the antibiotic prescriptions (for the rate) implicitly estimate the frequency of remaining cohort from birth for 365 or all days supplied (for the burden). providers prescribing or dispensing days or until death or emigration. Birth Season Cohort Effect on antibiotics to groups of children; Time to First Redeemed Antibiotic To identify birth cohorts, we grouped Prescription however, studies of risk aggregate children by week, month, season individual-level data to clarify which (winter: December to February; well-defined cohorts of children spring: March to May; summer: June receive or redeem a given number to August; autumn: September to We assessed the impact of birth of prescriptions over a specific November), and year of birth. We season on age at first redeemed follow-up interval. Currently, data ascertained demographic information antibiotic prescription during are limited regarding cohort effects from the MBR and Civil Registration infancy by using Kaplan-Meier on the risk of overall and medication- 29 System and used the MBR to methods to account for censoring at specific antibiotic use during early identify clinical characteristics of the death or emigration. Infants were childhood. Datamother, on pregnancy,Antibiotics and birth event. stratified by birth season cohort In Denmark, recent policy and and assessed using age as the time guideline changes may have scale. We estimated the hazard (ie, induced changes in antibiotic The Danish National Health instantaneous risk) function for first ’ – prescribing. The Danish Health and Service Prescription Database redeemed antibiotic prescription Medicine Authority s Institute for contains nationwide records for and the Kaplan-Meier derived risk Rational Pharmacotherapy (IRF), all prescriptions
Recommended publications
  • Milk and Dairy Beef Drug Residue Prevention
    Milk and Dairy Beef Drug Residue Prevention Producer Manual of Best Management Practices 2014 Connecting Cows, Cooperatives, Capitol Hill, and Consumers www.nmpf.org email: [email protected] National Milk Producers Federation (“NMPF”) does not endorse any of the veterinary drugs or tests identified on the lists in this manual. The lists of veterinary drugs and tests are provided only to inform producers what products may be available, and the producer is responsible for determining whether to use any of the veterinary drugs or tests. All information regarding the veterinary drugs or tests was obtained from the products’ manufacturers or sponsors, and NMPF has made no further attempt to validate or corroborate any of that information. NMPF urges producers to consult with their veterinarians before using any veterinary drug or test, including any of the products identified on the lists in this manual. In the event that there might be any injury, damage, loss or penalty that results from the use of these products, the manufacturer of the product, or the producer using the product, shall be responsible. NMPF is not responsible for, and shall have no liability for, any injury, damage, loss or penalty. ©2014 National Milk Producers Federation Cover photo courtesy of DMI FOREWORD The goal of our nation’s dairy farmers is to produce the best tasting and most wholesome milk possible. Our consumers demand the best from us and we meet the needs of our consumers every day. Day in and day out, we provide the best in animal husbandry and animal care practices for our animals.
    [Show full text]
  • Multi-Residual Quantitative Analytical Method for Antibiotics in Sea Food by LC/MS/MS
    PO-CON1742E Multi-residual quantitative analytical method for antibiotics in sea food by LC/MS/MS ASMS 2017 TP 198 Anant Lohar, Shailendra Rane, Ashutosh Shelar, Shailesh Damale, Rashi Kochhar, Purushottam Sutar, Deepti Bhandarkar, Ajit Datar, Pratap Rasam and Jitendra Kelkar Shimadzu Analytical (India) Pvt. Ltd., 1 A/B, Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai-400059, Maharashtra, India. Multi-residual quantitative analytical method for antibiotics in sea food by LC/MS/MS Introduction Antibiotics are widely used in agriculture as growth LC/MS/MS method has been developed for quantitation of enhancers, disease treatment and control in animal feeding multi-residual antibiotics (Table 1) from sea food sample operations. Concerns for increased antibiotic resistance of using LCMS-8040, a triple quadrupole mass spectrometer microorganisms have prompted research into the from Shimadzu Corporation, Japan. Simultaneous analysis environmental occurrence of these compounds. of multi-residual antibiotics often exhibit peak shape Assessment of the environmental occurrence of antibiotics distortion owing to their different chemical nature. To depends on development of sensitive and selective overcome this, autosampler pre-treatment feature was analytical methods based on new instrumental used [1]. technologies. Table 1. List of antibiotics Sr.No. Name of group Name of compound Number of compounds Flumequine, Oxolinic Acid, Ciprofloxacin, Danofloxacin, Difloxacin.HCl, 1 Fluoroquinolones 8 Enrofloxacin, Sarafloxacin HCl Trihydrate,
    [Show full text]
  • (OTC) Antibiotics in the European Union and Norway, 2012
    Perspective Analysis of licensed over-the-counter (OTC) antibiotics in the European Union and Norway, 2012 L Both 1 , R Botgros 2 , M Cavaleri 2 1. Public Health England (PHE), London, United Kingdom 2. Anti-infectives and Vaccines Office, European Medicines Agency (EMA), London, United Kingdom Correspondence: Marco Cavaleri ([email protected]) Citation style for this article: Both L, Botgros R, Cavaleri M. Analysis of licensed over-the-counter (OTC) antibiotics in the European Union and Norway, 2012. Euro Surveill. 2015;20(34):pii=30002. DOI: http://dx.doi.org/10.2807/1560-7917.ES.2015.20.34.30002 Article submitted on 16 September 2014 / accepted on 09 February 2015 / published on 27 August 2015 Antimicrobial resistance is recognised as a growing throughout the EU; however, there are still consider- problem that seriously threatens public health and able differences in Europe due to the different health- requires prompt action. Concerns have therefore been care structures and policies (including the extent of raised about the potential harmful effects of making pharmacist supervision for OTC medicines), reimburse- antibiotics available without prescription. Because of ment policies, and cultural differences of each Member the very serious concerns regarding further spread of State. Therefore, the availability of OTC medicines var- resistance, the over-the-counter (OTC) availability of ies in the EU and products sold as POM in certain coun- antibiotics was analysed here. Topical and systemic tries can be obtained as OTC medicines in others. OTC antibiotics and their indications were determined across 26 European Union (EU) countries and Norway As risk minimisation is an important criterion for some by means of a European survey.
    [Show full text]
  • Sulfonamides and Sulfonamide Combinations*
    Sulfonamides and Sulfonamide Combinations* Overview Due to low cost and relative efficacy against many common bacterial infections, sulfonamides and sulfonamide combinations with diaminopyrimidines are some of the most common antibacterial agents utilized in veterinary medicine. The sulfonamides are derived from sulfanilamide. These chemicals are structural analogues of ρ-aminobenzoic acid (PABA). All sulfonamides are characterized by the same chemical nucleus. Functional groups are added to the amino group or substitutions made on the amino group to facilitate varying chemical, physical and pharmacologic properties and antibacterial spectra. Most sulfonamides are too alkaline for routine parenteral use. Therefore the drug is most commonly administered orally except in life threatening systemic infections. However, sulfonamide preparations can be administered orally, intramuscularly, intravenously, intraperitoneally, intrauterally and topically. Sulfonamides are effective against Gram-positive and Gram-negative bacteria. Some protozoa, such as coccidians, Toxoplasma species and plasmodia, are generally sensitive. Chlamydia, Nocardia and Actinomyces species are also sensitive. Veterinary diseases commonly treated by sulfonamides are actinobacillosis, coccidioidosis, mastitis, metritis, colibacillosis, pododermatitis, polyarthritis, respiratory infections and toxo- plasmosis. Strains of rickettsiae, Pseudomonas, Klebsiella, Proteus, Clostridium and Leptospira species are often highly resistant. Sulfonamides are bacteriostatic antimicrobials
    [Show full text]
  • A Rapid Multi-Residue Method for the Determination of Sulfonamide And
    A RAPID MULTIRESIDUE METHOD FOR THE DETERMINATION OF SULFONAMIDE AND ß-LACTAM RESIDUES IN BOVINE MILK Gordon Kearney NOTE Waters Corporation, Manchester, UK Introduction Method Various sulfonamide and ß-lactam antibacterial Three recovery samples at 4 ppb and three at compounds may be used to treat disease in lactating 40 ppb were prepared. Matrix matched external dairy cattle and it is therefore necessary to monitor calibration standards were prepared at 0, 1, 10, 20, milk for the presence of residues of these drugs. In 50 and 100 ppb. Since 1 mL milk is equivalent to the European Union, maximum residue level (MRL) 0.5 mL final extract, a concentration of 1 ppb residue values range from 100 ppb, as a total concentration in milk is equivalent to a concentration of 2 ng/mL in of all sulfonamides, to 4 ppb for each of the penicillin the final extract. compounds amoxillin and ampicillin[1]. In the USA, Extraction the tolerance levels are 10 ppb for both these penicillin compounds, but the use of most sulfonamides 1 mL aliquots of pasteurized, homogenized cows [2] Application is prohibited in cattle used for milk production . milk, containing 4% fat, were transferred to 2 mL polypropylene sample tubes. Recovery samples Multiresidue analyses are increasingly gaining were spiked, agitated and left to equilibrate for acceptance for the determination of residues in 30 minutes. In order to separate the lipid from the foodstuffs; methods have recently been published for aqueous portion, the tubes were centrifuged at the monitoring of over 150 pesticide compounds in 13,000 rpm for 10 minutes.
    [Show full text]
  • Third ESVAC Report
    Sales of veterinary antimicrobial agents in 25 EU/EEA countries in 2011 Third ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role Guiding principles The European Medicines Agency is the European Union • We are strongly committed to public and animal (EU) body responsible for coordinating the existing health. scientific resources put at its disposal by Member States • We make independent recommendations based on for the evaluation, supervision and pharmacovigilance scientific evidence, using state-of-the-art knowledge of medicinal products. and expertise in our field. • We support research and innovation to stimulate the The Agency provides the Member States and the development of better medicines. institutions of the EU the best-possible scientific advice on any question relating to the evaluation of the quality, • We value the contribution of our partners and stake- safety and efficacy of medicinal products for human or holders to our work. veterinary use referred to it in accordance with the • We assure continual improvement of our processes provisions of EU legislation relating to medicinal prod- and procedures, in accordance with recognised quality ucts. standards. • We adhere to high standards of professional and Principal activities personal integrity. Working with the Member States and the European • We communicate in an open, transparent manner Commission as partners in a European medicines with all of our partners, stakeholders and colleagues. network, the European Medicines Agency: • We promote the well-being, motivation and ongoing professional development of every member of the • provides independent, science-based recommenda- Agency.
    [Show full text]
  • Danmap 2006.Pmd
    DANMAP 2006 DANMAP 2006 DANMAP 2006 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark Statens Serum Institut Danish Veterinary and Food Administration Danish Medicines Agency National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark Editors: Hanne-Dorthe Emborg Danish Zoonosis Centre National Food Institute, Technical University of Denmark Mørkhøj Bygade 19 Contents DK - 2860 Søborg Anette M. Hammerum National Center for Antimicrobials and Contributors to the 2006 Infection Control DANMAP Report 4 Statens Serum Institut Artillerivej 5 DK - 2300 Copenhagen Introduction 6 DANMAP board: National Food Institute, Acknowledgements 6 Technical University of Denmark: Ole E. Heuer Frank Aarestrup List of abbreviations 7 National Veterinary Institute, Tecnical University of Denmark: Sammendrag 9 Flemming Bager Danish Veterinary and Food Administration: Summary 12 Justin C. Ajufo Annette Cleveland Nielsen Statens Serum Institut: Demographic data 15 Dominique L. Monnet Niels Frimodt-Møller Anette M. Hammerum Antimicrobial consumption 17 Danish Medicines Agency: Consumption in animals 17 Jan Poulsen Consumption in humans 24 Layout: Susanne Carlsson Danish Zoonosis Centre Resistance in zoonotic bacteria 33 Printing: Schultz Grafisk A/S DANMAP 2006 - September 2007 Salmonella 33 ISSN 1600-2032 Campylobacter 43 Text and tables may be cited and reprinted only with reference to this report. Resistance in indicator bacteria 47 Reprints can be ordered from: Enterococci 47 National Food Institute Escherichia coli 58 Danish Zoonosis Centre Tecnical University of Denmark Mørkhøj Bygade 19 DK - 2860 Søborg Resistance in bacteria from Phone: +45 7234 - 7084 diagnostic submissions 65 Fax: +45 7234 - 7028 E.
    [Show full text]
  • Pharmaceuticals As Environmental Contaminants
    PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational
    [Show full text]
  • Sales of Veterinary Antimicrobial Agents in 29 European Countries in 2014
    Sales of veterinary antimicrobial agents in 29 European countries in 2014 Trends across 2011 to 2014 Sixth ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role • publishes impartial and comprehensible information about medicines and their use; The European Medicines Agency is the European Union body responsible for coordinating the existing scientific resources • develops best practice for medicines evaluation and put at its disposal by Member States for the evaluation, supervision in Europe, and contributes alongside the supervision and pharmacovigilance of medicinal products. Member States and the European Commission to the harmonisation of regulatory standards at the international The Agency provides the Member States and the institutions level. of the European Union (EU) and the European Economic Area (EEA) countries with the best-possible scientific advice Guiding principles on any questions relating to the evaluation of the quality, safety and efficacy of medicinal products for human or • We are strongly committed to public and animal health. veterinary use referred to it in accordance with the provisions of EU legislation relating to medicinal products. • We make independent recommendations based on scien- tific evidence, using state-of-the-art knowledge and The founding legislation of the Agency is Regulation (EC) expertise in our field. No 726/2004. • We support research and innovation to stimulate the Principal activities development of better medicines. Working with the Member States and the European Commission as partners in a European medicines network, the European • We value the contribution of our partners and stakeholders Medicines Agency: to our work.
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Transformation and Excretion of Drugs in Biological Systems. VII.1) Effect of Biotransformation on Renal Excretion of Sulfonamides
    570 Vol.20 (1972) (Chem. Pharm. Bull. UDC 547.551.25.096:15.31.03 20(3) 570-580 (1972)) Transformation and Excretion of Drugs in Biological Systems. VII.1) Effect of Biotransformation on Renal Excretion of Sulfonamides TAKAICHIARITA, RYOHEIHORI,2a) MASAHIKO TAKADA, SHIGETAKAAKUZU and AYAKOMISAWA2b) Faculty of PharmaceuticalScience, Hokkaido University2a)and Pharmacy, Hokkaido UniversityHospital2b) (ReceivedSeptember 9, 1971) Sulfanilamide,sulfathiazole, sulfisomezoleand their five biotransformedproducts were applied to renal clearance experiments in dogs and protein binding experiments to dog plasma protein in order to elucidate their renal excretion behaviors. Clearance ratio of sulfisomezoleis considerablylow compared with that of other two sulfonamides. Biotransformationof sulfisomezoleto sulfisomezole-N4-acetateand sulfisomezole-N1- glucuronideled to remarkable rise of clearance ratio. N4-acetylationof sulfathiazolerather reduced clearance ratio compared with the original sulfonamide. On the contrary, N4-acetylationof sulfanilamidelead to rise of clearance ratio, in spite of high clearance ratio of sulfanilamide. N4-acetylatedproducts of the three sulfonamidesare considerablysecreted through proximal tubule. Proximal tubular secretionof sulfisomezole-N1-glucuronideis insuffici- ent. N4-acetylationof the three sulfonamidesincreased affinity for dog plasma protein. On the other hand, reducedaffinity of sulfisomezole-N1-glucuronidefor dog plasma protein was observed. Furthermore, correlation between renal excretion and biotransformationof
    [Show full text]