Comparative Genomics and Pathogenicity Potential of Members of the Pseudomonas Syringae Species Complex on Prunus Spp Michela Ruinelli1, Jochen Blom2, Theo H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbiological Quality and Occurrence of Antibiotic Resistant Bacteria in Ready-To-Eat Salad
Microbiological quality and occurrence of antibiotic resistant bacteria in ready-to-eat salad Tamara Lupan Master thesis for a diploma in Food Technology and Nutrition, 30 ECTS credits Department of Food Technology, Engineering and Nutrition, Faculty of Engineering, Lund University Abstract An increase in demand for fresh vegetables resulted in an increased production of minimally processed, ready-to-eat salad in Sweden. That also brought new food safety challenges that are yet to be addressed. To assess whether ready-to-eat leafy green vegetables present a threat in terms of food borne outbreaks, aerobic bacteria, as well as bacteria belonging to the Enterobacteriaceae family, were recovered, using selective media, from 3 different sets (n=18) of ready-to-eat rocket salad. Bacterial investigation showed that most bacteria retrieved from ready-to-eat rocket salad belongs to the Pseudomonadaceae family, which are typical spoilage bacteria commonly associated with vegetables. No food-borne pathogens (e.g. Clostridium botulinum, Escherichia coli O157:H7, Salmonella spp., Shigella spp., Listeria monocytogenes) were isolated from any of three sets of rocket salad. Following the assumption that microbiological quality of the salad could change during the storage period, as well as a result of salad bags being opened, sealed, stored and opened again in the household, the total aerobic count as well as the total amount of Enterobacteriaceae were assessed every day before the best-before date. Following the NSW food Authority guidance on the microbiological status of ready-to-eat food, it can be confirmed, that each of three sets of salad were from the first day after packaging, unsatisfactory in regards to total aerobic count, showing values higher than 5 log CFU/g. -
Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms. -
Soybean Resistance Genes Specific for Different Pseudomonas Syringue Avirwlence Genes Are Auelic, Or Closely Linked, at the RPG1 Locus
Copyright 0 1995 by the Genetics Society of America Soybean Resistance Genes Specific for Different Pseudomonas syringue Avirwlence Genes are AUelic, or Closely Linked, at the RPG1 Locus Tom Ashfield,* Noel T. Keen,+ Richard I. Buzzell: and Roger W. Innes* *Department of Biology, Indiana University, Bloomington, Indiana 47405, $Department of Plant Pathology, University of California, Riverside, California 92521, and fAgriculture & Agri-food Canada, Research Station, Harrow, Ontario NOR lG0, Canada Manuscript received July6, 1995 Accepted for publication September 11, 1995 ABSTRACT RPGl and RPMl are disease resistance genes in soybean and Arabidopsis, respectively, that confer resistance to Pseudomonas syringae strains expressing the avirulence gene awB. RPMl has recently been demonstrated to have a second specificity, also conferring resistance to P. syringae strains expressing [email protected] we show that alleles, or closely linked genes, exist at the RPGl locus in soybean that are specific for either awB or awR@ml and thus can distinguish between these two avirulence genes. ESISTANCE displayed by particular plant cultivars genes specific to avirulence genes of both the soybean R to specific races of a pathogen is often mediated pathogen Psgand the tomato pathogen Pst. The inabil- by single dominant resistance genes (R-genes). Typi- ity of Pstto cause disease in any soybean cultivarcan be cally, these R-genes interact with single dominant “avir- explained, atleast in part, by the presence of a battery of ulence” (aw) genes in the pathogen. Such specific in- resistance genes in soybean that correspond to one or teractions between races of pathogens and cultivars of more avirulence genes present in all Pst strains. -
Pseudomonas Syringae Subsp. Savastanoi (Ex Smith) Subsp
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, Apr. 1982, p. 146-169 Vol. 32. No. 2 0020-771 3/82/020166-O4$02.OO/O Pseudomonas syringae subsp. savastanoi (ex Smith) subsp. nov., nom. rev., the Bacterium Causing Excrescences on Oleaceae and Neriurn oleander L. J. D. JANSE Department of Bacteriology, Plant Protection Service, 6700 HC, Wageningen, The Netherlands From a study of the so-called bacterial canker of ash, caused by a variant of “Pseudomonas savastanoi” (Smith) Stevens, it became evident that this variant and the variants of “P. savastanoi” which cause olive knot and oleander knot can be distinguished from one another on the basis of their pathogenicity and host range. All isolates of “P. savastanoi” were recently classified by Dye et al. (Plant Pathol. 59:153-168,1980) as members of a single pathovar of P. syringae van Hall. It appears, however, that these isolates differ sufficiently from the other members of P. syringae to justify subspecies rank for them. The following classification and nomenclature are therefore proposed: Pseudomonas syringae subsp. savastanoi (ex Smith) subsp. nov., nom. rev., to include the olive pathogen (pathovar oleae), the ash pathogen (pathovar fraxini), and the oleander pathogen (pathovar nerii). The type strain of P. syringae subsp. savastanoi is ATCC 13522 (= NCPPB 639). “Pseudomonas savastanoi” (Smith 1908) Ste- mended in the International Code of Nomencla- vens 1913 was previously used as the name of ture of Bacteria (8). the bacterium which causes pernicious excres- According to the available data, the present cences on several species of the Oleaceae. classificationand nomenclature of the organisms (Names in quotation marks are not on the Ap- under discussion are inadequate. -
Isolation and Identification of Bacterial Glum Blotch and Leaf Blight on Wheat (Triticum Aestivum L.) in Iran
African Journal of Biotechnology Vol. 9 (20), pp. 2860-2865, 17 May, 2010 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2010 Academic Journals Full Length Research Paper Isolation and identification of bacterial glum blotch and leaf blight on wheat (Triticum aestivum L.) in Iran Mostafa Niknejad Kazempour1*, Maesomeh Kheyrgoo1, Hassan Pedramfar1 and Heshmat Rahimian2 1Department Plant Pathology, Faculty of Agricultural Sciences, University of Guilan, Rasht – Iran. 2Department Plant Pathology, Faculty of Agricultural Sciences, Mazanderan University, Sary – Iran. Accepted 27 March, 2009 Basal glume blotch and leaf blight of wheat caused by Pseudomonas syringae pv. atrofaciens and P. syringae pv. syringae respectively are the bacterial diseases of wheat in Iran. The disease causes damage on wheat which leads to lots of yield and crop losses in the host plants. During the spring and summer of 2005-2006 different wheat fields in Guilan province (Roodsar, Langrud, Rostamabad, loshan, and Roodbar) were surveyed. Samples were collected from infected wheats with glumes blotch and leaf blight. Infected tissues were washed with sterile distilled water and crushed in peptone water. Then 50 µl of the extract were cultured on King’s B and NA media containing cyclohexamide (50 µg/ml). After 48 to 72 h, bacterial colonies were selected and purified. On the basis of morphological, physiological and biochemical characteristics, pathogenicity and PCR with specific primers, the isolated were placed in two groups. The first group consists of 20 isolates that caused leaf blight, identified as P. syringae pv. Syringae, while the second group is made up of 18 isolates that caused basal glumes blotch identified as P. -
Characteristic of Pseudomonas Syringae Pv. Atrofaciens Isolated from Weeds of Wheat Field
applied sciences Article Characteristic of Pseudomonas syringae pv. atrofaciens Isolated from Weeds of Wheat Field Liudmyla Butsenko 1, Lidiia Pasichnyk 1 , Yuliia Kolomiiets 2, Antonina Kalinichenko 3,* , Dariusz Suszanowicz 3 , Monika Sporek 4 and Volodymyr Patyka 1 1 Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine; [email protected] (L.B.); [email protected] (L.P.); [email protected] (V.P.) 2 Department of Ecobiotechnology and Biodiversity, National University of Life and Environmental Sciences of Ukraine, 03143 Kyiv, Ukraine; [email protected] 3 Institute of Environmental Engineering and Biotechnology, University of Opole, 45-040 Opole, Poland; [email protected] 4 Institute of Biology, University of Opole, 45-040 Opole, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-787-321-587 Abstract: The aim of this study was the identification of the causative agent of the basal glume rot of wheat Pseudomonas syringae pv. atrofaciens from the affected weeds in wheat crops, and determination of its virulent properties. Isolation of P. syringae pv. atrofaciens from weeds of wheat crops was carried out by classical microbiological methods. To identify isolated bacteria, their morphological, cultural, biochemical, and serological properties as well as fatty acids and Random Amplification of Polymorphic DNA (RAPD)-PCR (Polymerase chain reaction) profiles with the OPA-13 primer were studied. Pathogenic properties were investigated by artificial inoculation of wheat plants and weed plants, from which bacteria were isolated. For the first time, bacteria that are virulent both for weeds and wheat were isolated from weeds growing in wheat crops. -
The Microbiota Continuum Along the Female Reproductive Tract and Its Relation to Uterine-Related Diseases
ARTICLE DOI: 10.1038/s41467-017-00901-0 OPEN The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases Chen Chen1,2, Xiaolei Song1,3, Weixia Wei4,5, Huanzi Zhong 1,2,6, Juanjuan Dai4,5, Zhou Lan1, Fei Li1,2,3, Xinlei Yu1,2, Qiang Feng1,7, Zirong Wang1, Hailiang Xie1, Xiaomin Chen1, Chunwei Zeng1, Bo Wen1,2, Liping Zeng4,5, Hui Du4,5, Huiru Tang4,5, Changlu Xu1,8, Yan Xia1,3, Huihua Xia1,2,9, Huanming Yang1,10, Jian Wang1,10, Jun Wang1,11, Lise Madsen 1,6,12, Susanne Brix 13, Karsten Kristiansen1,6, Xun Xu1,2, Junhua Li 1,2,9,14, Ruifang Wu4,5 & Huijue Jia 1,2,9,11 Reports on bacteria detected in maternal fluids during pregnancy are typically associated with adverse consequences, and whether the female reproductive tract harbours distinct microbial communities beyond the vagina has been a matter of debate. Here we systematically sample the microbiota within the female reproductive tract in 110 women of reproductive age, and examine the nature of colonisation by 16S rRNA gene amplicon sequencing and cultivation. We find distinct microbial communities in cervical canal, uterus, fallopian tubes and perito- neal fluid, differing from that of the vagina. The results reflect a microbiota continuum along the female reproductive tract, indicative of a non-sterile environment. We also identify microbial taxa and potential functions that correlate with the menstrual cycle or are over- represented in subjects with adenomyosis or infertility due to endometriosis. The study provides insight into the nature of the vagino-uterine microbiome, and suggests that sur- veying the vaginal or cervical microbiota might be useful for detection of common diseases in the upper reproductive tract. -
Presence Absence Polymorphism for Alternative Pathogenicity Islands In
Presence͞absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis Hitoshi Araki†‡, Dacheng Tian§, Erica M. Goss†, Katrin Jakob†, Solveig S. Halldorsdottir†, Martin Kreitman†, and Joy Bergelson†¶ †Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637; and §Department of Biology, Nanjing University, Nanjing 210093, Republic of China Communicated by Tomoko Ohta, National Institute of Genetics, Mishima, Japan, March 1, 2006 (received for review January 25, 2006) The contribution of arms race dynamics to plant–pathogen coevo- pathogens are defined and differentiated from close relatives by lution has been called into question by the presence of balanced horizontally acquired virulence factors (12). However, a survey polymorphisms in resistance genes of Arabidopsis thaliana, but of effectors in Pseudomonas syringae finds effectors that have less is known about the pathogen side of the interaction. Here we been acquired recently and others that have been transmitted investigate structural polymorphism in pathogenicity islands (PAIs) predominantly by descent, indicating that pathogenicity may in Pseudomonas viridiflava, a prevalent bacterial pathogen of A. evolve in both genomic contexts (13). thaliana. PAIs encode the type III secretion system along with its In this study, we investigated PAIs in P. viridiflava, which is a effectors and are essential for pathogen recognition in plants. P. prevalent bacterial pathogen of wild A. thaliana populations viridiflava harbors two structurally distinct and highly diverged PAI (14). P. viridiflava is in the P. syringae group (15). Although P. paralogs (T- and S-PAI) that are integrated in different chromo- syringae is intensively studied as a bacterial plant pathogen (13, some locations in the P. -
Pseudomonas Cerasi Sp. Nov. (Non Griffin, 1911) Isolated From
Systematic and Applied Microbiology 39 (2016) 370–377 Contents lists available at ScienceDirect Systematic and Applied Microbiology j ournal homepage: www.elsevier.de/syapm Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased ଝ tissue of cherry a,∗ b c c Monika Kałuzna˙ , Anne Willems , Joël F. Pothier , Michela Ruinelli , a a Piotr Sobiczewski , Joanna Puławska a Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland b Laboratory of Microbiology, Dept. Biochemistry and Microbiology, Fac. Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium c Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Einsiedlerstrasse 31, CH-8820 Wädenswil, Switzerland a r t i c l e i n f o a b s t r a c t T Article history: Eight isolates of Gram-negative fluorescent bacteria (58 , 122, 374, 791, 963, 966, 970a and 1021) were Received 30 March 2016 obtained from diseased tissue of cherry trees from different regions of Poland. The symptoms resem- Received in revised form 12 May 2016 bled those of bacterial canker. Based on an analysis of 16S rDNA sequences the isolates shared the Accepted 17 May 2016 T T highest over 99.9% similarity with Pseudomonas ficuserectae JCM 2400 and P. congelans DSM 14939 . Phylogenetic analysis using housekeeping genes gyrB, rpoD and rpoB revealed that they form a sepa- Keywords: T T rate cluster and confirmed their closest relation to P. syringae NCPPB 281 and P. congelans LMG 21466 . Pseudomonas sp. T DNA–DNA hybridization between the cherry isolate 58 and the type strains of these two closely related Cherry bacterial canker species revealed relatedness values of 58.2% and 41.9%, respectively. -
Complejo Pseudomonas Syringae
TESIS DOCTORAL Biología de plásmidos y dinámica génica en el complejo Pseudomonas syringae MAITE AÑORGA GARCÍA Pamplona, 2017 Memoria presentada por MAITE AÑORGA GARCÍA Para optar al grado de Doctora por la Universidad Pública de Navarra Biología de plásmidos y dinámica génica en el complejo Pseudomonas syringae Directores Dr. JESÚS MURILLO MARTÍNEZ Dra. LEIRE BARDAJI GOIKOETXEA Catedrático de Universidad Ayudante Doctor Departamento de Producción Agraria Departamento de Producción Agraria Universidad Pública de Navarra Universidad Pública de Navarra UNIVERSIDAD PÚBLICA DE NAVARRA Pamplona, 2017 COMITÉ EVALUADOR Presidente Dr. José Manuel Palacios Alberti Departamento de Biotecnología Centro de Biotecnología y Genómica de Plantas (CBGP) Universidad Politécnica de Madrid Secretaria Dra. Emilia López-Solanilla Departamento de Biotecnología Centro de Biotecnología y Genómica de Plantas (CBGP) Universidad Politécnica de Madrid Vocal Dr. Francisco Cazorla López Departamento de Microbiología Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM) Universidad de Málaga Suplente Dr. Pablo Llop Departamento de Producción Agraria Universidad Pública de Navarra Revisores externos Dr. Jaime Cubero Dabrio Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid Dr. José Antonio Gutiérrez Barranquero Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM) Universidad de Málaga Suplente de los revisores externos Dr. José Juan Rodríguez Herva Centro de Biotecnología y Genómica de Plantas (CBGP) Universidad -
Host Specificity and Virulence of the Phytopathogenic Bacteria Pseudomonas Savastanoi Eloy Caballo Ponce Caballo Eloy
Host specificity and virulence of the phytopathogenic bacteria Pseudomonas savastanoi Eloy Caballo Ponce Caballo Eloy TESIS DOCTORAL Eloy Caballo Ponce Director: Cayo Ramos Rodríguez Programa de Doctorado: Biotecnología Avanzada TESIS DOCTORAL TESIS Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” Universidad de Málaga – CSIC 2017 Año 2017 Memoria presentada por: Eloy Caballo Ponce para optar al grado de Doctor por la Universidad de Málaga Host specificity and virulence of the phytopathogenic bacteria Pseudomonas savastanoi Director: Cayo J. Ramos Rodríguez Catedrático. Área de Genética. Departamento de Biología Celular, Genética y Fisiología. Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM) Universidad de Málaga – Consejo Superior de Investigaciones Científicas Málaga, 2016 AUTOR: Eloy Caballo Ponce http://orcid.org/0000-0003-0501-3321 EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial- SinObraDerivada 4.0 Internacional: http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode Cualquier parte de esta obra se puede reproducir sin autorización pero con el reconocimiento y atribución de los autores. No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga (RIUMA): riuma.uma.es COMITÉ EVALUADOR Presidente Dr. Jesús Murillo Martínez Departamento de Producción Agraria Universidad Pública de Navarra Secretario Dr. Francisco Manuel Cazorla López Departamento de Microbiología Universidad de Málaga Vocal Dra. Chiaraluce Moretti Departamento de Ciencias Agrarias, Alimentarias y Medioambientales Universidad de Perugia Suplentes Dr. Pablo Rodríguez Palenzuela Departamento de Biotecnología – Biología Vegetal Universidad Politécnica de Madrid Dr. -
Scientific Prospects for Cannabis-Microbiome Research To
microorganisms Review Scientific Prospects for Cannabis-Microbiome Research to Ensure Quality and Safety of Products Vladimir Vujanovic 1,*, Darren R. Korber 1 , Silva Vujanovic 2, Josko Vujanovic 3 and Suha Jabaji 4 1 Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; [email protected] 2 Hospital Pharmacy, CISSS des Laurentides and Université de Montréal-Montreal, QC J8H 4C7, Canada; [email protected] 3 Medical Imaging, CISSS-Laurentides, Lachute, QC J8H 4C7, Canada; [email protected] 4 Plant Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-306-966-5048 Received: 4 December 2019; Accepted: 18 February 2020; Published: 20 February 2020 Abstract: Cannabis legalization has occurred in several countries worldwide. Along with steadily growing research in Cannabis healthcare science, there is an increasing interest for scientific-based knowledge in plant microbiology and food science, with work connecting the plant microbiome and plant health to product quality across the value chain of cannabis. This review paper provides an overview of the state of knowledge and challenges in Cannabis science, and thereby identifies critical risk management and safety issues in order to capitalize on innovations while ensuring product quality control. It highlights scientific gap areas to steer future research, with an emphasis on plant-microbiome sciences committed to using cutting-edge technologies for more efficient Cannabis production and high-quality products intended for recreational, pharmaceutical, and medicinal use. Keywords: Cannabis; microbiome; NCBI and USDA databases; omics; risk management; safety 1. Introduction The course of Cannabis science has been a top-down process, with the effects of the plant on humans and animals being tested before conducting extensive agronomic and ecological studies.