Characteristic of Pseudomonas Syringae Pv. Atrofaciens Isolated from Weeds of Wheat Field

Total Page:16

File Type:pdf, Size:1020Kb

Characteristic of Pseudomonas Syringae Pv. Atrofaciens Isolated from Weeds of Wheat Field applied sciences Article Characteristic of Pseudomonas syringae pv. atrofaciens Isolated from Weeds of Wheat Field Liudmyla Butsenko 1, Lidiia Pasichnyk 1 , Yuliia Kolomiiets 2, Antonina Kalinichenko 3,* , Dariusz Suszanowicz 3 , Monika Sporek 4 and Volodymyr Patyka 1 1 Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine; [email protected] (L.B.); [email protected] (L.P.); [email protected] (V.P.) 2 Department of Ecobiotechnology and Biodiversity, National University of Life and Environmental Sciences of Ukraine, 03143 Kyiv, Ukraine; [email protected] 3 Institute of Environmental Engineering and Biotechnology, University of Opole, 45-040 Opole, Poland; [email protected] 4 Institute of Biology, University of Opole, 45-040 Opole, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-787-321-587 Abstract: The aim of this study was the identification of the causative agent of the basal glume rot of wheat Pseudomonas syringae pv. atrofaciens from the affected weeds in wheat crops, and determination of its virulent properties. Isolation of P. syringae pv. atrofaciens from weeds of wheat crops was carried out by classical microbiological methods. To identify isolated bacteria, their morphological, cultural, biochemical, and serological properties as well as fatty acids and Random Amplification of Polymorphic DNA (RAPD)-PCR (Polymerase chain reaction) profiles with the OPA-13 primer were studied. Pathogenic properties were investigated by artificial inoculation of wheat plants and weed plants, from which bacteria were isolated. For the first time, bacteria that are virulent both for weeds and wheat were isolated from weeds growing in wheat crops. It was shown that the fatty acids profiles of the bacteria isolated from the weeds contained typical for P. syringae pv. Citation: Butsenko, L.; Pasichnyk, L.; atrofaciens fatty acids, in particular, hydroxy acids: 3-hydroxydecanoic, 2-hydroxydodecanoic, and Kolomiiets, Y.; Kalinichenko, A.; 3-hydroxydodecanoic. RAPD-PCR profiles of the newly isolated strains were identical to those of the Suszanowicz, D.; Sporek, M.; Patyka, P. syringae atrofaciens P. syringae atrofaciens V. Characteristic of Pseudomonas collection strains pv. UCM B-1011 and pv. UCM B-1014 syringae pv. atrofaciens Isolated from and contained a dominant fragment of 700 bp. The isolated strains, according to their phenotypic Weeds of Wheat Field. Appl. Sci. 2021, and genotypic properties, were identified as P. syringae pv. atrofaciens. It was established that the 11, 286. https://doi.org/10.3390/ causative agent of basal glume rot of wheat P. syringae pv. atrofaciens is polyphagous and capable of app11010286 infecting a wide range of plants. The main control measure for cereals diseases caused by P. syringae pv. Atrofaciens—crop rotations with nonhost species, should be revised, and alternative control Received: 3 November 2020 methods must be proposed. Accepted: 28 December 2020 Published: 30 December 2020 Keywords: Pseudomonas syringae pv. atrofaciens; basal glume rot; wheat; weeds; RAPD; fatty acids; phenotypic and genotypic properties Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional clai- ms in published maps and institutio- nal affiliations. 1. Introduction Nowadays, around the world, researchers have noted the increasingly threatening spread and aggressiveness of phytopathogenic bacteria [1,2]. This trend is also observed in Copyright: © 2020 by the authors. Li- Ukraine [3,4]. This also applies to wheat, one of the most valuable and important grain censee MDPI, Basel, Switzerland. crops and ranks first in the world’s sown area [5]. Bacterial diseases spread data are This article is an open access article often not realistic, as they are based as a rule on observing symptoms without isolation of distributed under the terms and con- the pathogen and its identification [2]. Pseudomonas syringae pv. atrofaciens has been the ditions of the Creative Commons At- main causative agent of bacterial diseases of wheat, particularly basal glume rot of wheat, tribution (CC BY) license (https:// for many years [6–9]. The study of this pathogen’s biological properties, the patterns of creativecommons.org/licenses/by/ population formation and the circulation of pathogens, and techniques that will allow 4.0/). Appl. Sci. 2021, 11, 286. https://doi.org/10.3390/app11010286 https://www.mdpi.com/journal/applsci Appl. Sci. 2021, 11, 286 2 of 12 influencing these processes are of fundamental and practical importance and will not lose their relevance. The causative agent of the basal glume rot of wheat belongs to the species of Pseu- domonas syringae, which, according to much research, is the most important bacterial plant pathogen in terms of economics and scientific studies [10]. Pseudomonas syringae pv. atrofa- ciens causes basal glume rot of wheat in Russia, Bulgaria, Italy, Germany, New Zealand, and Iran [8,11]. The scientific literature data confirm the high harmfulness of this pathogen and its ability to cause epiphytotics [12]. This pathogen’s danger is its ability to colonize both the host plant and other plant species of the phyllosphere effectively. Forming epiphytic populations, which is the primary inoculum for plant infection, P. syringae pv. atrofaciens can cause mass plant damage when favorable weather conditions occur [13–15]. It is known that for a long time, the causative agent of the basal glume rot of wheat had been found as an epiphyte on non-crops plant species and also on annual and perennial weeds [14]. Weeds’ ability to serve as an ecological niche for agents of bacterial diseases that can affect crops has been discussed [16], and it was proved experimentally that weeds could serve as sources of dangerous epiphytic populations of phytopathogenic bacteria [17]. At the same time, the presence of the pathogens common both for cultivated plants and weeds in crops and the problem of the specialization of the pathogens that affect weeds remain unclear. Therefore, our study aimed to identify phytopathogenic bacteria on affected weeds in wheat crops and to establish their relationship with the causative agent of the basal glume rot of wheat. 2. Material and Methods Bacterial strains used in research. Strains of Pseudomonas syringae pv. atrofaciens, which are stored in the collection of microorganisms of the Department of phytopathogenic bacteria of the Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine (NASU), Kyiv were used in the study: P. syringae pv. atrofaciens UCM B-1011 (PDDCC 4394), P. syringae pv. atrofaciens UCM B-1014, and P. syringae pv. atrofaciens 9780. Also, we used the type strain P. syringae pv. syringae UCM B-1027 (NCPPB 281). Isolation of P. syringae pv. atrofaciens. In order to detect the strains of P. syringae pv. atrofaciens, wheat fields in the Kyiv region, Ukraine (50◦05016.3” N 30◦02056.8” E) were surveyed 2019 and selected weed plants of Sonchus arvensis L. and Papaver argemone L. with symptoms of bacterial infection were collected. Bacteria isolation was carried out by plating the pieces of plants, pounded with 0.1 mL of sterile tap water, on potato agar. For the bacteria isolation, the parts of plants were selected on the border of healthy and damaged tissues. The morphology and structure of bacterial colonies were studied after 72 h growing on potato agar in Petri dishes [18]. Cell morphology and motility were determined in Gram-stained and “crushed drop” preparations, respectively, under a Sigeta MB-201 microscope using a one-day bacterial culture grown in nutrient broth (NB) [5,18]. For the initial selection of the isolates from weeds, the LOPAT test (Levan production, Oxidase, Protopectinase activity on potato, Arginine dihydrolase, hypersensitive reaction on Tobacco) was used [18]. Physiological and biochemical characterization. For studying the physiological and biochemical properties of the bacterial isolates from weeds, the test system NEFERMtest24 (MikroLaTEST®, ErbaLachema, Czech Republic) was used. Oxidase was detected in the cells of the isolated strains by test strips Bactident Oxidase (Merck, Germany). Fermentative and oxidative glucose metabolism (OF-test) were determined by the breakable microwell plate (OFtest, Erba Lachema). The ability to induce rot on potato was investigated by applying 0.01 mL of bacterial suspension (1 × 107 colony-forming unit (CFU)/mL) on potato discs [18]. Potato discs were incubated for 24 h at 25 ◦C, and then the presence of rot was registered. Pathogenicity tests. To study the virulent properties of isolated strains, artificial inoculation of S. arvensis and P. argemone plants, from which bacterial strains were obtained, Appl. Sci. 2021, 11, 286 3 of 12 was carried out under field conditions and of plants of the spring wheat variety Pecherianka in the greenhouse. Artificial infection of wheat seedlings seven days old was performed by pricking through a drop of bacterial suspension with a concentration of 1 × 107 CFU/mL. The development of visible symptoms of damage evidenced the bacterium virulence. The results of artificial infection were analyzed according to a 5-point scale in 10 days after the inoculation of bacteria [5]. Highly aggressive strains caused the damage from three to four scores, while weakly aggressive—1–2 scores. Aggressiveness was determined as the average score of disease symptoms in ten inoculated plants. Also, the pathogenic properties of bacteria that were isolated from
Recommended publications
  • Soybean Resistance Genes Specific for Different Pseudomonas Syringue Avirwlence Genes Are Auelic, Or Closely Linked, at the RPG1 Locus
    Copyright 0 1995 by the Genetics Society of America Soybean Resistance Genes Specific for Different Pseudomonas syringue Avirwlence Genes are AUelic, or Closely Linked, at the RPG1 Locus Tom Ashfield,* Noel T. Keen,+ Richard I. Buzzell: and Roger W. Innes* *Department of Biology, Indiana University, Bloomington, Indiana 47405, $Department of Plant Pathology, University of California, Riverside, California 92521, and fAgriculture & Agri-food Canada, Research Station, Harrow, Ontario NOR lG0, Canada Manuscript received July6, 1995 Accepted for publication September 11, 1995 ABSTRACT RPGl and RPMl are disease resistance genes in soybean and Arabidopsis, respectively, that confer resistance to Pseudomonas syringae strains expressing the avirulence gene awB. RPMl has recently been demonstrated to have a second specificity, also conferring resistance to P. syringae strains expressing [email protected] we show that alleles, or closely linked genes, exist at the RPGl locus in soybean that are specific for either awB or awR@ml and thus can distinguish between these two avirulence genes. ESISTANCE displayed by particular plant cultivars genes specific to avirulence genes of both the soybean R to specific races of a pathogen is often mediated pathogen Psgand the tomato pathogen Pst. The inabil- by single dominant resistance genes (R-genes). Typi- ity of Pstto cause disease in any soybean cultivarcan be cally, these R-genes interact with single dominant “avir- explained, atleast in part, by the presence of a battery of ulence” (aw) genes in the pathogen. Such specific in- resistance genes in soybean that correspond to one or teractions between races of pathogens and cultivars of more avirulence genes present in all Pst strains.
    [Show full text]
  • Pseudomonas Syringae Subsp. Savastanoi (Ex Smith) Subsp
    INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, Apr. 1982, p. 146-169 Vol. 32. No. 2 0020-771 3/82/020166-O4$02.OO/O Pseudomonas syringae subsp. savastanoi (ex Smith) subsp. nov., nom. rev., the Bacterium Causing Excrescences on Oleaceae and Neriurn oleander L. J. D. JANSE Department of Bacteriology, Plant Protection Service, 6700 HC, Wageningen, The Netherlands From a study of the so-called bacterial canker of ash, caused by a variant of “Pseudomonas savastanoi” (Smith) Stevens, it became evident that this variant and the variants of “P. savastanoi” which cause olive knot and oleander knot can be distinguished from one another on the basis of their pathogenicity and host range. All isolates of “P. savastanoi” were recently classified by Dye et al. (Plant Pathol. 59:153-168,1980) as members of a single pathovar of P. syringae van Hall. It appears, however, that these isolates differ sufficiently from the other members of P. syringae to justify subspecies rank for them. The following classification and nomenclature are therefore proposed: Pseudomonas syringae subsp. savastanoi (ex Smith) subsp. nov., nom. rev., to include the olive pathogen (pathovar oleae), the ash pathogen (pathovar fraxini), and the oleander pathogen (pathovar nerii). The type strain of P. syringae subsp. savastanoi is ATCC 13522 (= NCPPB 639). “Pseudomonas savastanoi” (Smith 1908) Ste- mended in the International Code of Nomencla- vens 1913 was previously used as the name of ture of Bacteria (8). the bacterium which causes pernicious excres- According to the available data, the present cences on several species of the Oleaceae. classificationand nomenclature of the organisms (Names in quotation marks are not on the Ap- under discussion are inadequate.
    [Show full text]
  • The Alien Vascular Flora of Tuscany (Italy)
    Quad. Mus. St. Nat. Livorno, 26: 43-78 (2015-2016) 43 The alien vascular fora of Tuscany (Italy): update and analysis VaLerio LaZZeri1 SUMMARY. Here it is provided the updated checklist of the alien vascular fora of Tuscany. Together with those taxa that are considered alien to the Tuscan vascular fora amounting to 510 units, also locally alien taxa and doubtfully aliens are reported in three additional checklists. The analysis of invasiveness shows that 241 taxa are casual, 219 naturalized and 50 invasive. Moreover, 13 taxa are new for the vascular fora of Tuscany, of which one is also new for the Euromediterranean area and two are new for the Mediterranean basin. Keywords: Vascular plants, Xenophytes, New records, Invasive species, Mediterranean. RIASSUNTO. Si fornisce la checklist aggiornata della fora vascolare aliena della regione Toscana. Insieme alla lista dei taxa che si considerano alieni per la Toscana che ammontano a 510 unità, si segnalano in tre ulteriori liste anche i taxa che si ritengono essere presenti nell’area di studio anche con popolazioni non autoctone o per i quali sussistono dubbi sull’effettiva autoctonicità. L’analisi dello status di invasività mostra che 241 taxa sono casuali, 219 naturalizzati e 50 invasivi. Inoltre, 13 taxa rappresentano una novità per la fora vascolare di Toscana, dei quali uno è nuovo anche per l’area Euromediterranea e altri due sono nuovi per il bacino del Mediterraneo. Parole chiave: Piante vascolari, Xenofte, Nuovi ritrovamenti, Specie invasive, Mediterraneo. Introduction establishment of long-lasting economic exchan- ges between close or distant countries. As a result The Mediterranean basin is considered as one of this context, non-native plant species have of the world most biodiverse areas, especially become an important component of the various as far as its vascular fora is concerned.
    [Show full text]
  • I1.3 Arable Land with Unmixed Crops Grown by Low-Intensity Agricultural Methods
    European Red List of Habitats - Screes Habitat Group I1.3 Arable land with unmixed crops grown by low-intensity agricultural methods Summary Species-rich arable weed vegetation, characterised by now rare native and archaeophyte annual plants, is a survivor of ancient low-intensity agriculture and widely distributed across Europe but survives in abundance only in the mountainous areas of the Mediterranean region, particularly Italy. Since the intensification of agricultural practices in the middle of the 20th century, much of it subsidised by agri- environment funding, a significant decrease both in quantity and quality has been observed caused by excessive use of herbicides, biocides, and chemical fertilizers, improved seed-cleaning methods, sowing highly productive and competitive varieties of cereals, and removal of refugial habitats in the landscape due to merging of small fields into large ones. Such threats continue in many places, especially threatening surviving outliers. A large scale improvement of quantity and quality may require a revision of Common Agricultural Policy and agri-environment funding schemes and promotion of restoration initiatives. Synthesis Despite variable data quality, a lack of data from several countries and different interpretations of the habitat definition, the decreases in quantity and quality have been calculated using the territorial data from a sufficient number of countries to build an overall European average. Due to a large decrease in area over the last 50 years, the habitat qualifies for category Endangered under criterion A1. All countries except Italy (-20% to -40%) and Switzerland (-37.5%) reported a decrease in area between -50% and -99%. If the Italian and Swiss data were neglected, the overall assessment would result in category Critically Endangered.
    [Show full text]
  • Isolation and Identification of Bacterial Glum Blotch and Leaf Blight on Wheat (Triticum Aestivum L.) in Iran
    African Journal of Biotechnology Vol. 9 (20), pp. 2860-2865, 17 May, 2010 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2010 Academic Journals Full Length Research Paper Isolation and identification of bacterial glum blotch and leaf blight on wheat (Triticum aestivum L.) in Iran Mostafa Niknejad Kazempour1*, Maesomeh Kheyrgoo1, Hassan Pedramfar1 and Heshmat Rahimian2 1Department Plant Pathology, Faculty of Agricultural Sciences, University of Guilan, Rasht – Iran. 2Department Plant Pathology, Faculty of Agricultural Sciences, Mazanderan University, Sary – Iran. Accepted 27 March, 2009 Basal glume blotch and leaf blight of wheat caused by Pseudomonas syringae pv. atrofaciens and P. syringae pv. syringae respectively are the bacterial diseases of wheat in Iran. The disease causes damage on wheat which leads to lots of yield and crop losses in the host plants. During the spring and summer of 2005-2006 different wheat fields in Guilan province (Roodsar, Langrud, Rostamabad, loshan, and Roodbar) were surveyed. Samples were collected from infected wheats with glumes blotch and leaf blight. Infected tissues were washed with sterile distilled water and crushed in peptone water. Then 50 µl of the extract were cultured on King’s B and NA media containing cyclohexamide (50 µg/ml). After 48 to 72 h, bacterial colonies were selected and purified. On the basis of morphological, physiological and biochemical characteristics, pathogenicity and PCR with specific primers, the isolated were placed in two groups. The first group consists of 20 isolates that caused leaf blight, identified as P. syringae pv. Syringae, while the second group is made up of 18 isolates that caused basal glumes blotch identified as P.
    [Show full text]
  • Seed Dormancy and Germination in an Ecological Context ANNUAL WEEDS Comparative Studies of Annual Weeds
    Linköping Studies in Science and Technology SEED DORMANCY AND Dissertation No. 1088 GERMINATION IN AN ECOLOGICAL CONTEXT COMPARATIVE STUDIES OF Seed dormancy and germination in an ecological context ANNUAL WEEDS comparative studies of annual weeds Laila M. Karlsson LAILA M. KARLSSON Department of Physics, Chemistry and Biology Division of Ecology Linköping University SE-581 83 Linköping, Sweden Contents List of papers iv Abstract v Frövila och groning i ett ekologiskt sammanhang — jämförande studier av annuella ogräs: sammanfattning (in Swedish) vi Overview: Seed dormancy and germination in an ecological context — comparative studies of annual weeds 1 1. Introduction 1 1.1. Weeds and germination ecology 1 1.2. Germination 2 1.3. Germination timing 6 1.4. Seed dormancy 9 1.5. Comparisons 13 1.6. Aim 14 2. Methods 14 3. Results 16 3.1. General 16 3.2. Papaver 16 3.3. Lamium 18 3.4. Asteraceae 19 4. Discussion 19 4.1. Experimental methods 19 4.2. Variations within species 20 4.3. Describing and comparing dormancy and germination 22 4.3.1. Purpose 22 4.3.2. Statistics 23 4.3.3. Seed dormancy description 25 4.3.4. Picturing general responses 29 4.4. Comparisons of seed dormancy and germination 31 4.4.1. Dormancy pattern 31 4.4.2. Germination preferences 33 4.4.3. Dormancy strength 34 Seed dormancy and germination in an ecological context 4.5. Implications for the field 35 – comparative studies of annual weeds 4.5.1. Germination studies vs emergence in nature 35 4.5.2. Papaver 36 4.5.3.
    [Show full text]
  • 44 * Papaveraceae 1
    44 * PAPAVERACEAE 1 Dennis I Morris 2 Annual or perennial herbs, rarely shrubs, with latex generally present in tubes or sacs throughout the plants. Leaves alternate, exstipulate, entire or more often deeply lobed. Flowers often showy, solitary at the ends of the main and lateral branches, bisexual, actinomorphic, receptacle hypogynous or perigynous. Sepals 2–3(4), free or joined, caducous. Petals (0–)4–6(–12), free, imbricate and often crumpled in the bud. Stamens usually numerous, whorled. Carpels 2-many, joined, usually unilocular, with parietal placentae which project towards the centre and sometimes divide the ovary into several chambers, ovules numerous. Fruit usually a capsule opening by valves or pores. Seeds small with crested or small raphe or with aril, with endosperm. A family of about 25 genera and 200 species; cosmopolitan with the majority of species found in the temperate and subtropical regions of the northern hemisphere. 6 genera and 15 species naturalized in Australia; 4 genera and 9 species in Tasmania. Papaveraceae are placed in the Ranunculales. Fumariaceae (mostly temperate N Hemisphere, S Africa) and Pteridophyllaceae (Japan) are included in Papaveraceae by some authors: here they are retained as separate families (see Walsh & Norton 2007; Stevens 2007; & references cited therein). Synonymy: Eschscholziaceae. Key reference: Kiger (2007). External resources: accepted names with synonymy & distribution in Australia (APC); author & publication abbre- viations (IPNI); mapping (AVH, NVA); nomenclature (APNI, IPNI). 1. Fruit a globular or oblong capsule opening by pores just below the stigmas 2 1: Fruit a linear capsule opening lengthwise by valves 3 2. Stigmas joined to form a disk at the top of the ovary; style absent 1 Papaver 2: Stigmas on spreading branches borne on a short style 2 Argemone 3.
    [Show full text]
  • The Island of Cyprus
    The Island of Cyprus Naturetrek Tour Report 29 March - 5th April 2014 Report compiled by Cliff Waller Naturetrek Cheriton Mill Cheriton Alresford Hampshire SO24 0NG England T: +44 (0)1962 733051 F: +44 (0)1962 736426 E: [email protected] W: www.naturetrek.co.uk Tour Report The Island of Cyprus Tour Leader: Yiannis Christofides Local Leader & Botanist Cliff Waller Naturetrek Ornithologist Participants: Kath Edwards Malcolm Forbes Pauline Grimshaw Hilary Homer Ian Homer Karen Mayer Annette Langlois Chris Meek Dave Meek Joanna O’Brien Paul O’Brien Bob Snellgrove Sandra Snellgrove Judith Stiffin Jill Wilson Day 1 Saturday 29th March London to Larnaca Everyone had an early but comfortable four hour flight from Gatwick to Paphos. We arrived more or less on time at 1.30 pm and the customs and immigration formalities were brief, so we were soon able to be greeted by Yiannis, our local guide and botanist and see our first new common birds, Hooded Crow and Wood Pigeon. It was only a 20 minute drive to our comfortable hotel and after quickly settling in we set off at 3.15 pm to walk to the Tombs of the Kings, about three quarters of a mile away, seeing Iris Gynandriris sisyrinchium near the hotel and our first Sardinian Warbler along the way. On arriving at the tombs we found a strong onshore wind was keeping any birds very low and in cover, but we did see a number of Crested Lark and European Wheatear, as well as less common species such as Spanish Sparrow and Cretzschmar’s Bunting, while brief views were also obtained of Isabelline Wheatear.
    [Show full text]
  • The Overlapping Continuum of Host Range Among Strains in the Pseudomonas Syringae Complex Cindy E
    Morris et al. Phytopathology Research (2019) 1:4 https://doi.org/10.1186/s42483-018-0010-6 Phytopathology Research RESEARCH Open Access The overlapping continuum of host range among strains in the Pseudomonas syringae complex Cindy E. Morris1* , Jay Ram Lamichhane1,2, Ivan Nikolić3, Slaviša Stanković3 and Benoit Moury1 Abstract Pseudomonas syringae is the most frequently emerging group of plant pathogenic bacteria. Because this bacterium is ubiquitous as an epiphyte and on various substrates in non-agricultural settings, there are many questions about how to assess the risk for plant disease posed by strains in the environment. Although P. syringae is considered to have discrete host ranges in defined pathovars, there have been few reports of comprehensive comparisons of host range potential. Here we present results of host range tests for 134 strains, representing eight phylogroups, from epidemics and environmental reservoirs on 15 to 22 plant species per test conducted in four separate tests to determine the patterns and extent of host range. We sought to identify trends that are indicative of distinct pathotypes and to assess if strains in the P. syringae complex are indeed restricted in their host range. We show that for each test, strains display a diversity of host ranges from very restricted to very broad regardless of the gamut of phylogroups used in the test. Overall, strains form an overlapping continuum of host range potential with equal representation of narrow, moderate and broad host ranges. Groups of distinct pathotypes, including strains with currently the same pathovar name, could not be identified. The absence of groupings was validated with statistical tests for pattern recognition.
    [Show full text]
  • Pseudomonas Syringae : Disease and Ice Nucleation Activity, Vol. 12
    Dr. Larry W. Moore March-April ORNAMENTALS Department of Botany and Plant 1988 Pathology NORTHWEST Vol.12, Issue2 Oregon State University ARCHIVES Pages 3-16 Corvallis, OR 97331 PSEUDOMONAS SYRINGAE: DISEASE AND ICE NUCLEATION ACTIVITY Editor's note: Because of the recent awareness of the seriousness of Pseudomonas syringae in the nursery industry, and because of the many unanswered questions, this special report is rather technical and indepth. It is intended as a review of what is known and what is unknown and as a basis for continued research and development of controls. Plant symptoms caused by Pseudomonas syringae ……………………………………………1 Severity of Pseudomonas syringae ……………………………………………………… …2 Predisposing factors increase severity ………………………………….3 (Wounding, Plant Dormancy, Soil factors, Dual infections) …………… 3 Classification of Pseudomonas syringae Isolates……………………………………………5 Sources and survival of Pseudomonas syringae Inoculum ………………………………… . 9 Buds and cankers, Systemic invasions, Latent infections, Epiphytes ……….10 Weeds and grasses, Soil ……………………………………………… …..11 Dissemination of Pseudomonas syringae Inoculum …………..……………..12 Host Specificity ……………………………………………………………………………13 Controls ………………………………………………………………………………… .1 4 Summary of control recommendations …………………………………………………..17 Plant Symptoms Caused by Pseudomonas syringae A variety of symptoms are associated with woody plants infected by Pseudomonas syringae pv. syringae a bacterium distributed widely on plants. Apparently, kinds of symptoms and symptom development are dependent upon the species of plant infected, plant part infected, the infecting strain of Pseudomonas syringae, and the environment. More than one symptom can occur simultaneously on a plant. Plant species, plant part, Pseudomonas syringae strain, and environment determine symptoms and severity. Symptoms: A) Flower blast where flowers and/or flower buds turn brown to black. B) Dead dormant buds, especially common on cherries and apricots.
    [Show full text]
  • Remarkable Changes of Weed Species in Spanish Cereal Fields from 1976 to 2007 Cirujeda, Aibar, Zaragoza
    Remarkable changes of weed species in Spanish cereal fields from 1976 to 2007 Cirujeda, Aibar, Zaragoza To cite this version: Cirujeda, Aibar, Zaragoza. Remarkable changes of weed species in Spanish cereal fields from 1976 to 2007. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2011, 31 (4), pp.675-688. 10.1007/s13593-011-0030-4. hal-00930501 HAL Id: hal-00930501 https://hal.archives-ouvertes.fr/hal-00930501 Submitted on 1 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agronomy Sust. Developm. (2011) 31:675–688 DOI 10.1007/s13593-011-0030-4 RESEARCH ARTICLE Remarkable changes of weed species in Spanish cereal fields from 1976 to 2007 Alicia Cirujeda & Joaquín Aibar & Carlos Zaragoza Accepted: 4 January 2011 /Published online: 18 March 2011 # INRA and Springer Science+Business Media B.V. 2011 Abstract Management practices, geographical gradients Convolvulus arvensis found in more than half of the and climatic factors are factors explaining weed species surveyed fields. L. rigidum was related to dryland, while composition and richness in cereal fields from Northern and the other species were found overall. Furthermore, we Central Europe.
    [Show full text]
  • Pseudomonas Syringae Pv
    Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000 Helene Feil*, William S. Feil*, Patrick Chain†‡, Frank Larimer§, Genevieve DiBartolo‡, Alex Copeland‡, Athanasios Lykidis‡, Stephen Trong‡, Matt Nolan‡, Eugene Goltsman‡, James Thiel‡, Stephanie Malfatti†‡, Joyce E. Loper¶, Alla Lapidus‡, John C. Detter‡, Miriam Land§, Paul M. Richardson‡, Nikos C. Kyrpides‡, Natalia Ivanova‡, and Steven E. Lindow*ʈ *Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; ‡Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598; †Lawrence Livermore National Laboratory, Livermore, CA 94550; ¶U.S. Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330; and §Oak Ridge National Laboratory, Oak Ridge, TN 37831 Contributed by Steven E. Lindow, June 14, 2005 The complete genomic sequence of Pseudomonas syringae pv. distinct from many P. syringae strains, such as P. syringae pv. tomato syringae B728a (Pss B728a) has been determined and is compared (Pst) strain DC3000, that poorly colonize the exterior of plants; with that of P. syringae pv. tomato DC3000 (Pst DC3000). The two these strains may be considered ‘‘endophytes’’ based on their ability pathovars of this economically important species of plant patho- to multiply mostly within the plant (3). True epiphytes such as Pss genic bacteria differ in host range and other interactions with B728a often reach surface populations of Ͼ107 cells per gram, plants, with Pss having a more pronounced epiphytic stage of whereas strains such as Pst DC3000 seldom exceed 105 cells per growth and higher abiotic stress tolerance and Pst DC3000 having gram (2, 3). Thus, these strains might be considered to occupy a more pronounced apoplastic growth habitat.
    [Show full text]