Systematic Bromodomain Protein Screens Identify Homologous Recombination and R-Loop Suppression Pathways Involved in Genome Integrity
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press RESOURCE/METHODOLOGY Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity Jae Jin Kim,1,2,9 Seo Yun Lee,1,2,9 Fade Gong,1,2,8 Anna M. Battenhouse,1,2,3 Daniel R. Boutz,1,2,3 Aarti Bashyal,4 Samantha T. Refvik,1,2,5 Cheng-Ming Chiang,6 Blerta Xhemalce,1,2,7 Tanya T. Paull,1,2,5,7 Jennifer S. Brodbelt,4,7 Edward M. Marcotte,1,2,3 and Kyle M. Miller1,2,7 1Department of Molecular Biosciences, 2Institute for Cellular and Molecular Biology, 3Center for Systems and Synthetic Biology, 4Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA; 5The Howard Hughes Medical Institute; 6Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; 7Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or ge- nome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination.
[Show full text]