Quantitative SUMO Proteomics Identifies PIAS1 Substrates Involved
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dynamics of Gene Silencing During X Inactivation Using Allele-Specific RNA-Seq Hendrik Marks1*, Hindrik H
Marks et al. Genome Biology (2015) 16:149 DOI 10.1186/s13059-015-0698-x RESEARCH Open Access Dynamics of gene silencing during X inactivation using allele-specific RNA-seq Hendrik Marks1*, Hindrik H. D. Kerstens1, Tahsin Stefan Barakat3, Erik Splinter4, René A. M. Dirks1, Guido van Mierlo1, Onkar Joshi1, Shuang-Yin Wang1, Tomas Babak5, Cornelis A. Albers2, Tüzer Kalkan6, Austin Smith6, Alice Jouneau7, Wouter de Laat4, Joost Gribnau3 and Hendrik G. Stunnenberg1* Abstract Background: During early embryonic development, one of the two X chromosomes in mammalian female cells is inactivated to compensate for a potential imbalance in transcript levels with male cells, which contain a single X chromosome. Here, we use mouse female embryonic stem cells (ESCs) with non-random X chromosome inactivation (XCI) and polymorphic X chromosomes to study the dynamics of gene silencing over the inactive X chromosome by high-resolution allele-specific RNA-seq. Results: Induction of XCI by differentiation of female ESCs shows that genes proximal to the X-inactivation center are silenced earlier than distal genes, while lowly expressed genes show faster XCI dynamics than highly expressed genes. The active X chromosome shows a minor but significant increase in gene activity during differentiation, resulting in complete dosage compensation in differentiated cell types. Genes escaping XCI show little or no silencing during early propagation of XCI. Allele-specific RNA-seq of neural progenitor cells generated from the female ESCs identifies three regions distal to the X-inactivation center that escape XCI. These regions, which stably escape during propagation and maintenance of XCI, coincide with topologically associating domains (TADs) as present in the female ESCs. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Redefining the Specificity of Phosphoinositide-Binding by Human
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins Nilmani Singh1†, Adriana Reyes-Ordoñez1†, Michael A. Compagnone1, Jesus F. Moreno Castillo1, Benjamin J. Leslie2, Taekjip Ha2,3,4,5, Jie Chen1* 1Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; 2Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205; 3Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; 4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205; 5Howard Hughes Medical Institute, Baltimore, MD 21205, USA †These authors contributed equally to this work. *Correspondence: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT Pleckstrin homology (PH) domains are presumed to bind phosphoinositides (PIPs), but specific interaction with and regulation by PIPs for most PH domain-containing proteins are unclear. Here we employed a single-molecule pulldown assay to study interactions of lipid vesicles with full-length proteins in mammalian whole cell lysates. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
UNIVERSITY of CALIFORNIA RIVERSIDE Investigations Into The
UNIVERSITY OF CALIFORNIA RIVERSIDE Investigations into the Role of TAF1-mediated Phosphorylation in Gene Regulation A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Cell, Molecular and Developmental Biology by Brian James Gadd December 2012 Dissertation Committee: Dr. Xuan Liu, Chairperson Dr. Frank Sauer Dr. Frances M. Sladek Copyright by Brian James Gadd 2012 The Dissertation of Brian James Gadd is approved Committee Chairperson University of California, Riverside Acknowledgments I am thankful to Dr. Liu for her patience and support over the last eight years. I am deeply indebted to my committee members, Dr. Frank Sauer and Dr. Frances Sladek for the insightful comments on my research and this dissertation. Thanks goes out to CMDB, especially Dr. Bachant, Dr. Springer and Kathy Redd for their support. Thanks to all the members of the Liu lab both past and present. A very special thanks to the members of the Sauer lab, including Silvia, Stephane, David, Matt, Stephen, Ninuo, Toby, Josh, Alice, Alex and Flora. You have made all the years here fly by and made them so enjoyable. From the Sladek lab I want to thank Eugene, John, Linh and Karthi. Special thanks go out to all the friends I’ve made over the years here. Chris, Amber, Stephane and David, thank you so much for feeding me, encouraging me and keeping me sane. Thanks to the brothers for all your encouragement and prayers. To any I haven’t mentioned by name, I promise I haven’t forgotten all you’ve done for me during my graduate years. -
Differential Regulation of Estrogen Receptor Α Expression in Breast
Author Manuscript Published OnlineFirst on January 10, 2014; DOI: 10.1158/0008-5472.CAN-13-2020 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. CAN-13-2020R Differential Regulation of Estrogen Receptor α Expression in Breast Cancer Cells by Metastasis-Associated Protein 1 Hyun-Jin Kang1, Min-Ho Lee1, Hae-Lim Kang1, Sung-Hae Kim1, Jung-Ranh Ahn1, Hyelin Na1, Tae-Young Na1, Yona Kim2, Je Kyung Seong2, and Mi-Ock Lee1 1College of Pharmacy and Bio-MAX institute, Research Institute of Pharmaceutical Sciences; and 2College of Veterinary Medicine, BK21 Plus Program for Veterinary Science, Seoul National University, Seoul, Korea; Keywords: Estrogen receptor α; MTA1; IFI16; epigenetics, hormone sensitivity Hyun-Jin Kang, Min-Ho Lee, and Hae-Lim Kang contributed equally to this work. Corresponding Authors: Mi-Ock Lee Ph. D., College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea. Phone: 82-2-880-9331; Fax: 82-2-887-2692; E-mail: [email protected] Downloaded from cancerres.aacrjournals.org on September 29, 2021. © 2014 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 10, 2014; DOI: 10.1158/0008-5472.CAN-13-2020 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT Metastasis-associated protein 1 (MTA1) is a component of the nucleosome remodeling and histone deacetylase (HDAC) complex, which plays an important role in progression of breast cancer. Although MTA1 is known as a repressor of the transactivation function of estrogen receptor (ER)α, its involvement in the epigenetic control of transcription of the ERα gene ESR1 has not been studied. -
SLIC-CAGE: High-Resolution Transcription Start Site Mapping Using Nanogram-Levels of Total RNA
bioRxiv preprint doi: https://doi.org/10.1101/368795; this version posted July 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. SLIC-CAGE: high-resolution transcription start site mapping using nanogram-levels of total RNA Nevena Cvetesic1, 2*, Harry G. Leitch1,2, Malgorzata Borkowska1,2, Ferenc Müller3, Piero Carninci4,5, Petra Hajkova1,2 and Boris Lenhard1,2,6* 1Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK 2MRC London Institute of Medical Sciences, London W12 0NN, UK 3Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK 4RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama City, Kanagawa 230-0045, Japan 5RIKEN Omics Science Center, Yokohama City, Kanagawa 230-0045, Japan 6Sars International Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway *Correspondence to: Nevena Cvetesic Institute of Clinical Sciences, Faculty of Medicine, Imperial College London and MRC London Institute of Medical Sciences, London, W12 0NN, UK e-mail: [email protected] Boris Lenhard Institute of Clinical Sciences, Faculty of Medicine, Imperial College London and MRC London Institute of Medical Sciences, London, W12 0NN, UK e-mail: [email protected] Running title: TSS discovery using Super-Low Input Carrier-CAGE Keywords: cap analysis of gene expression; low input material; degradable nucleic acid carrier; promoters; gene expression profiling 1 bioRxiv preprint doi: https://doi.org/10.1101/368795; this version posted July 19, 2018. -
Mir-17-92 Fine-Tunes MYC Expression and Function to Ensure
ARTICLE Received 31 Mar 2015 | Accepted 22 Sep 2015 | Published 10 Nov 2015 DOI: 10.1038/ncomms9725 OPEN miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth Marija Mihailovich1, Michael Bremang1, Valeria Spadotto1, Daniele Musiani1, Elena Vitale1, Gabriele Varano2,w, Federico Zambelli3, Francesco M. Mancuso1,w, David A. Cairns1,w, Giulio Pavesi3, Stefano Casola2 & Tiziana Bonaldi1 The synergism between c-MYC and miR-17-19b, a truncated version of the miR-17-92 cluster, is well-documented during tumor initiation. However, little is known about miR-17-19b function in established cancers. Here we investigate the role of miR-17-19b in c-MYC-driven lymphomas by integrating SILAC-based quantitative proteomics, transcriptomics and 30 untranslated region (UTR) analysis upon miR-17-19b overexpression. We identify over one hundred miR-17-19b targets, of which 40% are co-regulated by c-MYC. Downregulation of a new miR-17/20 target, checkpoint kinase 2 (Chek2), increases the recruitment of HuR to c- MYC transcripts, resulting in the inhibition of c-MYC translation and thus interfering with in vivo tumor growth. Hence, in established lymphomas, miR-17-19b fine-tunes c-MYC activity through a tight control of its function and expression, ultimately ensuring cancer cell homeostasis. Our data highlight the plasticity of miRNA function, reflecting changes in the mRNA landscape and 30 UTR shortening at different stages of tumorigenesis. 1 Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan 20139, Italy. 2 Units of Genetics of B cells and lymphomas, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy. -
Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance
biomolecules Review Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance Catherine Gough and Ari Sadanandom * Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1913341263 Abstract: Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness. Keywords: post-translational modifications; plant immunity; phosphorylation; ubiquitination; SUMOylation; defence Citation: Gough, C.; Sadanandom, A. 1. Introduction Understanding and Exploiting Plant growth and survival are constantly threatened by biotic stress, including plant Post-Translational Modifications for pathogens consisting of viruses, bacteria, fungi, and chromista. In the context of agriculture, Plant Disease Resistance. Biomolecules crop yield losses due to pathogens are estimated to be around 20% worldwide in staple 2021, 11, 1122. https://doi.org/ crops [1]. The spread of pests and diseases into new environments is increasing: more 10.3390/biom11081122 extreme weather events associated with climate change create favourable environments for food- and water-borne pathogens [2,3]. Academic Editors: Giovanna Serino The significant estimates of crop losses from pathogens highlight the need to de- and Daisuke Todaka velop crops with disease-resistance traits against current and emerging pathogens. -
TAZ-CAMTA1 and YAP-TFE3 Alter the TAZ/YAP Transcriptome By
RESEARCH ARTICLE TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex Nicole Merritt1†, Keith Garcia1,2†, Dushyandi Rajendran3, Zhen-Yuan Lin3, Xiaomeng Zhang4, Katrina A Mitchell4,5, Nicholas Borcherding6, Colleen Fullenkamp1, Michael S Chimenti7, Anne-Claude Gingras3, Kieran F Harvey4,5,8, Munir R Tanas1,2,9,10* 1Department of Pathology, University of Iowa, Iowa City, United States; 2Cancer Biology Graduate Program, University of Iowa, Iowa City, United States; 3Lunenfeld- Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States; 4Peter MacCallum Cancer Centre, Melbourne, Australia; 5Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; 6Department of Pathology and Immunology, Washington University, St. Louis, United States; 7Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, United States; 8Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, Australia; 9Holden Comprehensive Cancer Center, University of Iowa, Iowa City, United States; 10Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, United States *For correspondence: Abstract Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early [email protected] in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined †These authors contributed proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the equally to this work Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion Competing interests: The proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3. -
Ginkgolic Acid, a Sumoylation Inhibitor, Promotes Adipocyte
www.nature.com/scientificreports OPEN Ginkgolic acid, a sumoylation inhibitor, promotes adipocyte commitment but suppresses Received: 25 October 2017 Accepted: 15 January 2018 adipocyte terminal diferentiation Published: xx xx xxxx of mouse bone marrow stromal cells Huadie Liu1,2, Jianshuang Li2, Di Lu2, Jie Li1,2, Minmin Liu 3, Yuanzheng He4, Bart O. Williams2, Jiada Li1 & Tao Yang 2 Sumoylation is a post-translational modifcation process having an important infuence in mesenchymal stem cell (MSC) diferentiation. Thus, sumoylation-modulating chemicals might be used to control MSC diferentiation for skeletal tissue engineering. In this work, we studied how the diferentiation of mouse bone marrow stromal cells (mBMSCs) is afected by ginkgolic acid (GA), a potent sumoylation inhibitor also reported to inhibit histone acetylation transferase (HAT). Our results show that GA promoted the diferentiation of mBMSCs into adipocytes when cultured in osteogenic medium. Moreover, mBMSCs pre-treated with GA showed enhanced pre-adipogenic gene expression and were more efciently diferentiated into adipocytes when subsequently cultured in the adipogenic medium. However, when GA was added at a later stage of adipogenesis, adipocyte maturation was markedly inhibited, with a dramatic down-regulation of multiple lipogenesis genes. Moreover, we found that the efects of garcinol, a HAT inhibitor, difered from those of GA in regulating adipocyte commitment and adipocyte maturation of mBMSCs, implying that the GA function in adipogenesis is likely through its activity as a sumoylation inhibitor, not as a HAT inhibitor. Overall, our studies revealed an unprecedented role of GA in MSC diferentiation and provide new mechanistic insights into the use of GA in clinical applications. -
Trim24 Targets Endogenous P53 for Degradation
Trim24 targets endogenous p53 for degradation Kendra Alltona,b,1, Abhinav K. Jaina,b,1, Hans-Martin Herza, Wen-Wei Tsaia,b, Sung Yun Jungc, Jun Qinc, Andreas Bergmanna, Randy L. Johnsona,b, and Michelle Craig Bartona,b,2 aDepartment of Biochemistry and Molecular Biology, Program in Genes and Development, Graduate School of Biomedical Sciences and bCenter for Stem Cell and Developmental Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030; and cDepartment of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030 Edited by Carol L. Prives, Columbia University, New York, NY, and approved May 15, 2009 (received for review December 23, 2008) Numerous studies focus on the tumor suppressor p53 as a protector regulator of p53 suggests that potential therapeutic targets to of genomic stability, mediator of cell cycle arrest and apoptosis, restore p53 functions remain to be identified. and target of mutation in 50% of all human cancers. The vast majority of information on p53, its protein-interaction partners and Results and Discussion regulation, comes from studies of tumor-derived, cultured cells Creation of a Mouse and Stem Cell Model for p53 Analysis. To where p53 and its regulatory controls may be mutated or dysfunc- facilitate analysis of endogenous p53 in normal cells, we per- tional. To address regulation of endogenous p53 in normal cells, formed gene targeting to create mouse embryonic stem (ES) we created a mouse and stem cell model by knock-in (KI) of a cells and mice (12), which express endogenously regulated p53 tandem-affinity-purification (TAP) epitope at the endogenous protein fused with a C-terminal TAP tag (p53-TAPKI, Fig.