Trim24 Targets Endogenous P53 for Degradation

Total Page:16

File Type:pdf, Size:1020Kb

Trim24 Targets Endogenous P53 for Degradation Trim24 targets endogenous p53 for degradation Kendra Alltona,b,1, Abhinav K. Jaina,b,1, Hans-Martin Herza, Wen-Wei Tsaia,b, Sung Yun Jungc, Jun Qinc, Andreas Bergmanna, Randy L. Johnsona,b, and Michelle Craig Bartona,b,2 aDepartment of Biochemistry and Molecular Biology, Program in Genes and Development, Graduate School of Biomedical Sciences and bCenter for Stem Cell and Developmental Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030; and cDepartment of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030 Edited by Carol L. Prives, Columbia University, New York, NY, and approved May 15, 2009 (received for review December 23, 2008) Numerous studies focus on the tumor suppressor p53 as a protector regulator of p53 suggests that potential therapeutic targets to of genomic stability, mediator of cell cycle arrest and apoptosis, restore p53 functions remain to be identified. and target of mutation in 50% of all human cancers. The vast majority of information on p53, its protein-interaction partners and Results and Discussion regulation, comes from studies of tumor-derived, cultured cells Creation of a Mouse and Stem Cell Model for p53 Analysis. To where p53 and its regulatory controls may be mutated or dysfunc- facilitate analysis of endogenous p53 in normal cells, we per- tional. To address regulation of endogenous p53 in normal cells, formed gene targeting to create mouse embryonic stem (ES) we created a mouse and stem cell model by knock-in (KI) of a cells and mice (12), which express endogenously regulated p53 tandem-affinity-purification (TAP) epitope at the endogenous protein fused with a C-terminal TAP tag (p53-TAPKI, Fig. 1A) Trp-53 locus. Mass spectrometry of TAP-purified p53-complexes (13). Germline transmission of the p53-TAPKI allele was con- from embryonic stem cells revealed Tripartite-motif protein 24 firmed by Southern hybridization and allele-specific PCR ( Fig. (Trim24), a previously unknown partner of p53. Mutation of S1A). p53-TAPKI remains entirely responsive to exogenous and TRIM24 homolog, bonus,inDrosophila led to apoptosis, which endogenous stimuli in p53TAP-KI/ϩ ES cells and mice. The could be rescued by p53-depletion. These in vivo analyses establish induction of apoptosis (Fig. S1B) and expression levels of TRIM24/bonus as a pathway that negatively regulates p53 in p53-regulated genes, Cdkn1a (p21/CIP1), Mdm2, and Perp (Fig. Drosophila. The Trim24-p53 link is evolutionarily conserved, as S1C), were virtually identical over a time course of doxorubicin TRIM24 depletion in human breast cancer cells caused p53-depen- exposure in p53-TAPKI and wild-type ES cells. Chromatin dent, spontaneous apoptosis. We found that Trim24 ubiquitylates immunoprecipitation (ChIP) showed that p53-TAPKI and p53 and negatively regulates p53 levels, suggesting Trim24 as a ther- proteins are identical in their interactions with endogenous apeutic target to restore tumor suppression by p53. p53-response elements of specific genes (Fig. S1D). In ES cells, p53-mediated apoptosis is independent of tran- apoptosis ͉ bonus ͉ TAP ͉ ubiquitylation scription, as it is primarily driven by p53-mitochondrial interac- tions (14). Therefore, we performed analyses in vivo to assess lthough intensively studied in tumor cells, the mechanisms p53-TAPKI response to stress, where downstream functions Athat regulate tumor suppressor p53 in normal cells remain of p53 are primarily driven by p53-regulated transcription. poorly understood. Biochemical analysis of endogenous p53 p53TAP-KI/ϩ mice were intercrossed to obtain viable, homozygous poses a challenge, as p53 is held at low levels in non-transformed p53-TAPKI (p53TAP-KI/TAP-KI) mice, which were born at the cells in the absence of stress (1). Mutant p53 generally exhibits expected ratio of genotypes and show no tumor development 1 increased protein stability in tumor-derived cells (2, 3). This year after birth (Fig. S1E). We exposed embryonic day 13.5 offers opportunities for molecular analysis, although of a protein (e13.5) embryos, of wild-type, heterozygous, and homozygous that may display loss- or gain-of-function (4). Indeed, several p53/TAPKI genotype, to ␥-irradiation to induce an apoptotic assumptions about p53 regulation, including the relative impor- response that is p53-dependent (15). Sections of the central tance of specific post-translational modifications, sites of muta- nervous system (CNS) and immunohistochemistry (IHC) for tion, and interactions with regulatory proteins, have been chal- activated, cleaved caspase 3 showed that p53-TAPKI mounted an lenged in mouse models where in vivo functions of p53 can be apoptotic response in vivo, indistinguishable from wild-type p53 determined (3, 5–7). (Fig. 1B). In addition to its principle role in maintenance of genomic To regulate apoptosis and multiple downstream pathways, p53 stability and tumor suppression, p53 regulates specific functions forms a tetrameric complex (16). Endogenous p53-TAPKI and in normal cells (1). These include regulation of gene expression wild-type p53 expressed in p53TAP-KI/ϩ ES cells formed mixed during development (8, 9), cellular progression to senescence hetero-tetramer p53-TAPKI/wild-type p53 protein complexes, and aging (10), and metabolic functions (6). Although a fractionating between 200 kDa and Ͼ1 MDa by size-exclusion p53ERTAM mouse model, where p53 function and response may chromatography (Fig. S1F). Taken together, these data show be temporally regulated (11), has been invaluable, questions that TAP-fusion to p53 and formation of heteromeric, p53 regarding endogenous regulation and control of p53, before protein complexes did not disrupt p53-functions in transcription stress stimuli, transformation, or tumorigenesis, remain unan- and apoptosis. swered. To elucidate mechanisms that regulate endogenous p53, we developed a mouse and stem cell model based on TAP-tag fusion with the ORF of Tpr53, which allows TAP-purification Author contributions: A.K.J., A.B., R.L.J., and M.C.B. designed research; K.A., A.K.J., H.-M.H., and analysis of p53 protein partners and post-translational W.-W.T., S.Y.J., and R.L.J. performed research; K.A., A.K.J., H.-M.H., J.Q., A.B., R.L.J., and modifications by mass spectrometry. Here, we describe a M.C.B. analyzed data; and A.K.J., A.B., and M.C.B. wrote the paper. protein-interaction partner of p53 that negatively regulates p53 The authors declare no conflict of interest. protein stability by ubiquitylation. We addressed the in vivo This article is a PNAS Direct Submission. significance of Trim24/bonus-p53 interaction in Drosophila, and See Commentary on page 11431. uncovered a negative regulator of p53 levels in this organism. 1K.A. and A.K.J. contributed equally to this work. Human tumor-derived cancer cells, which retain wild-type TP53, 2To whom correspondence should be addressed. E-mail: [email protected]. respond to siRNA-targeted depletion of TRIM24 by undergoing This article contains supporting information online at www.pnas.org/cgi/content/full/ apoptosis. This identification of a previously unknown, negative 0813177106/DCSupplemental. 11612–11616 ͉ PNAS ͉ July 14, 2009 ͉ vol. 106 ͉ no. 28 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0813177106 Downloaded by guest on September 23, 2021 S3A) or lacking (Fig. S2D) p53 did not show significant effects A of Trim24 depletion, supporting the p53-dependence of Trim24- mediated regulation. SEE COMMENTARY An In Vivo Analysis of the Trim24-p53 Regulatory Pathway. Mamma- lian Trim24 is 1 of 3 members of the TIF1 subfamily within the larger TRIM group of 70 family members (25). Protein-protein interactions between TRIM family members are known, and siRNA depletion of Trim24, Trim28, and Trim33 (TIF1␣, TIF1ß, and TIF1␥, respectively) revealed compensation, which may alter Trim24-regulated responses. Mammalian Trim28 (Kap1, TIF1ß) has known roles in epigenetic silencing, E3-SUMO- ligase activity and interacts with several proteins, including TAP-KI/+ TAP-KI/TAP-KI B WT p53 p53 Mdm2 and E2F1 (26–28). To determine if Trim24 specifically regulates p53 in vivo, we turned to Drosophila where the gene bonus is the single, evolutionarily conserved homologue of the TIF1 subfamily (29), and most similar to TRIM24 and TRIM33. Bonus is a member of the Polycomb group of genes, and is required for male viability and metamorphosis (29). By mosaic No IR analysis in imaginal discs, we found that clones of cells mutated in bonus, marked by green fluorescent protein (GFP, Fig. 3A), are small and highly apoptotic (Fig. 3Ai, cleaved caspase 3- positive). RNAi-mediated depletion of Drosophila p53 (D-p53) rescued the bonus apoptotic phenotype, resulting in considerably larger bonus clones and an absence of caspase 3 cleavage (Fig. 3B). Similar rescue was achieved by a dominant-negative form of 5 Gy IR mutant D-p53. These observations suggested that loss of bonus causes unrestrained D-p53 activity and induces apoptosis. Thus, bonus may be the principle negative regulator of D-p53 activity Fig. 1. Knock-in of a C-terminal TAP-tag does not disrupt regulatory func- and cell death in tissues of Drosophila, which has no ortholog of tions of p53. (A) Targeting strategy: Homologous recombination and target- Mdm2 or previously identified pathway regulating p53 protein ing, as shown, generated a C-terminal TAP tag fusion of p53 by inserting a stability (30). loxP-flanked PGK-neo cassette into intron 10 of p53 and a TAP-tag cassette in The link between TRIM24/bonus and p53-dependent cell frame with full-length p53 into exon 11. After selection of targeted ES cells, the neo cassette was removed by introduction of a cre-expressing plasmid to death is conserved through evolution. Loss of TRIM24 in the create p53TAP-KI/ϩ ES cells (see SI Text for details). (B) Apoptosis in vivo: IHC of human breast cancer cell line MCF7 (Fig.
Recommended publications
  • Clinical and Molecular Relevance of Genetic Variants in the Non-Coding
    Clinical and molecular relevance of genetic variants in the non-coding transcriptome of patients with cytogenetically normal acute myeloid leukemia by Dimitrios Papaioannou, Hatice G. Ozer, Deedra Nicolet, Amog P. Urs, Tobias Herold, Krzysztof Mrózek, Aarif M.N. Batcha, Klaus H. Metzeler, Ayse S. Yilmaz, Stefano Volinia, Marius Bill, Jessica Kohlschmidt, Maciej Pietrzak, Christopher J. Walker, Andrew J. Carroll, Jan Braess, Bayard L. Powell, Ann-Kathrin Eisfeld, Geoffrey L. Uy, Eunice S. Wang, Jonathan E. Kolitz, Richard M. Stone, Wolfgang Hiddemann, John Byrd, Clara D. Bloomfield, and Ramiro Garzon Haematologica 2021 [Epub ahead of print] Citation: Dimitrios Papaioannou, Hatice G. Ozer, Deedra Nicolet, Amog P. Urs, Tobias Herold, Krzysztof Mrózek, Aarif M.N. Batcha, Klaus H. Metzeler, Ayse S. Yilmaz, Stefano Volinia, Marius Bill, Jessica Kohlschmidt, Maciej Pietrzak, Christopher J. Walker, Andrew J. Carroll, Jan Braess, Bayard L. Powell, Ann-Kathrin Eisfeld, Geoffrey L. Uy, Eunice S. Wang, Jonathan E. Kolitz, Richard M. Stone, Wolfgang Hiddemann, John Byrd, Clara D. Bloomfield, and Ramiro Garzon. Clinical and molecular relevance of genetic variants in the non-coding transcriptome of patients with cytogenetically normal acute myeloid leukemia. Haematologica. 2021; 106:xxx doi:10.3324/haematol.2021.266643 Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Role of CREB/CRTC1-Regulated Gene Transcription During Hippocampal-Dependent Memory in Alzheimer’S Disease Mouse Models
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Institut de Neurociències Universitat Autònoma de Barcelona Departament de Bioquímica i Biologia Molecular Unitat de Bioquímica, Facultat de Medicina Role of CREB/CRTC1-regulated gene transcription during hippocampal-dependent memory in Alzheimer’s disease mouse models Arnaldo J. Parra Damas TESIS DOCTORAL Bellaterra, 2015 Institut de Neurociències Departament de Bioquímica i Biologia Molecular Universitat Autònoma de Barcelona Role of CREB/CRTC1-regulated gene transcription during hippocampal-dependent memory in Alzheimer’s disease mouse models Papel de la transcripción génica regulada por CRTC1/CREB durante memoria dependiente de hipocampo en modelos murinos de la enfermedad de Alzheimer Memoria de tesis doctoral presentada por Arnaldo J. Parra Damas para optar al grado de Doctor en Neurociencias por la Universitat Autonòma de Barcelona. Trabajo realizado en la Unidad de Bioquímica y Biología Molecular de la Facultad de Medicina del Departamento de Bioquímica y Biología Molecular de la Universitat Autònoma de Barcelona, y en el Instituto de Neurociencias de la Universitat Autònoma de Barcelona, bajo la dirección del Doctor Carlos Saura Antolín.
    [Show full text]
  • The Essential Role of the Crtc2-CREB Pathway in Β Cell Function And
    The Essential Role of the Crtc2-CREB Pathway in β cell Function and Survival by Chandra Eberhard A thesis submitted to the School of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Masters of Science in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa September 28, 2012 © Chandra Eberhard, Ottawa, Canada, 2013 Abstract: Immunosuppressants that target the serine/threonine phosphatase calcineurin are commonly administered following organ transplantation. Their chronic use is associated with reduced insulin secretion and new onset diabetes in a subset of patients, suggestive of pancreatic β cell dysfunction. Calcineurin plays a critical role in the activation of CREB, a key transcription factor required for β cell function and survival. CREB activity in the islet is activated by glucose and cAMP, in large part due to activation of Crtc2, a critical coactivator for CREB. Previous studies have demonstrated that Crtc2 activation is dependent on dephosphorylation regulated by calcineurin. In this study, we sought to evaluate the impact of calcineurin-inhibiting immunosuppressants on Crtc2-CREB activation in the primary β cell. In addition, we further characterized the role and regulation of Crtc2 in the β cell. We demonstrate that Crtc2 is required for glucose dependent up-regulation of CREB target genes. The phosphatase calcineurin and kinase regulation by LKB1 contribute to the phosphorylation status of Crtc2 in the β cell. CsA and FK506 block glucose-dependent dephosphorylation and nuclear translocation of Crtc2. Overexpression of a constitutively active mutant of Crtc2 that cannot be phosphorylated at Ser171 and Ser275 enables CREB activity under conditions of calcineurin inhibition.
    [Show full text]
  • TAZ-CAMTA1 and YAP-TFE3 Alter the TAZ/YAP Transcriptome By
    RESEARCH ARTICLE TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex Nicole Merritt1†, Keith Garcia1,2†, Dushyandi Rajendran3, Zhen-Yuan Lin3, Xiaomeng Zhang4, Katrina A Mitchell4,5, Nicholas Borcherding6, Colleen Fullenkamp1, Michael S Chimenti7, Anne-Claude Gingras3, Kieran F Harvey4,5,8, Munir R Tanas1,2,9,10* 1Department of Pathology, University of Iowa, Iowa City, United States; 2Cancer Biology Graduate Program, University of Iowa, Iowa City, United States; 3Lunenfeld- Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States; 4Peter MacCallum Cancer Centre, Melbourne, Australia; 5Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; 6Department of Pathology and Immunology, Washington University, St. Louis, United States; 7Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, United States; 8Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, Australia; 9Holden Comprehensive Cancer Center, University of Iowa, Iowa City, United States; 10Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, United States *For correspondence: Abstract Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early [email protected] in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined †These authors contributed proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the equally to this work Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion Competing interests: The proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3.
    [Show full text]
  • Histone Acetyltransferase Activity of CREB-Binding Protein Is Essential
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445902; this version posted July 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Histone acetyltransferase activity of CREB-binding protein is 2 essential for synaptic plasticity in Lymnaea 3 4 Dai Hatakeyama1,2,*, Hiroshi Sunada3, Yuki Totani4, Takayuki Watanabe5,6, Ildikó Felletár1, 5 Adam Fitchett1, Murat Eravci1, Aikaterini Anagnostopoulou1, Ryosuke Miki2, Takashi 6 Kuzuhara2, Ildikó Kemenes1, Etsuro Ito3,4, György Kemenes1,* 7 8 1Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, 9 UK. 2Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, 10 Japan. 3Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 11 769-2193, Japan. 4Department of Biology, Waseda University, Tokyo 162-8480, Japan. 12 5Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan. 13 6Laboratory of Neuroethology, Sokendai-Hayama, Hayama 240-0193, Japan. 14 15 Keywords: Long-term memory; Lymnaea; CREB-binding protein (CBP); Histone Acetyl 16 Transferase (HAT); Cerebral Giant Cell (CGC); synaptic plasticity 17 18 *Correspondence should be addressed to Dr. Dai Hatakeyama, Tokushima Bunri University, 19 180 Nishihama-Houji, Yamashiro-cho, Tokushima City, Tokushima 770-8514, Japan, 20 [email protected]; and Prof. György Kemenes, University of Sussex, Brighton, 21 BN1 9QG, United Kingdom, [email protected]. 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445902; this version posted July 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Plasma Autoantibodies Associated with Basal-Like Breast Cancers
    Published OnlineFirst June 12, 2015; DOI: 10.1158/1055-9965.EPI-15-0047 Research Article Cancer Epidemiology, Biomarkers Plasma Autoantibodies Associated with Basal-like & Prevention Breast Cancers Jie Wang1, Jonine D. Figueroa2, Garrick Wallstrom1, Kristi Barker1, Jin G. Park1, Gokhan Demirkan1, Jolanta Lissowska3, Karen S. Anderson1, Ji Qiu1, and Joshua LaBaer1 Abstract Background: Basal-like breast cancer (BLBC) is a rare aggressive PSRC1, MN1, TRIM21) that distinguished BLBC from controls subtype that is less likely to be detected through mammographic with 33% sensitivity and 98% specificity. We also discovered a screening. Identification of circulating markers associated with strong association of TP53 AAb with its protein expression (P ¼ BLBC could have promise in detecting and managing this deadly 0.009) in BLBC patients. In addition, MN1 and TP53 AAbs were disease. associated with worse survival [MN1 AAb marker HR ¼ 2.25, 95% Methods: Using samples from the Polish Breast Cancer study, a confidence interval (CI), 1.03–4.91; P ¼ 0.04; TP53, HR ¼ 2.02, high-quality population-based case–control study of breast can- 95% CI, 1.06–3.85; P ¼ 0.03]. We found limited evidence that cer, we screened 10,000 antigens on protein arrays using 45 BLBC AAb levels differed by demographic characteristics. patients and 45 controls, and identified 748 promising plasma Conclusions: These AAbs warrant further investigation in autoantibodies (AAbs) associated with BLBC. ELISA assays of clinical studies to determine their value for further understanding promising markers were performed on a total of 145 BLBC cases the biology of BLBC and possible detection. and 145 age-matched controls.
    [Show full text]
  • Trim24-Regulated Estrogen Response Is Dependent on Specific Histone Modifications in Breast Cancer Cells
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2012 TRIM24-REGULATED ESTROGEN RESPONSE IS DEPENDENT ON SPECIFIC HISTONE MODIFICATIONS IN BREAST CANCER CELLS Teresa T. Yiu Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry Commons, Cancer Biology Commons, Medicine and Health Sciences Commons, and the Molecular Biology Commons Recommended Citation Yiu, Teresa T., "TRIM24-REGULATED ESTROGEN RESPONSE IS DEPENDENT ON SPECIFIC HISTONE MODIFICATIONS IN BREAST CANCER CELLS" (2012). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 313. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/313 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TRIM24-REGULATED ESTROGEN RESPONSE IS DEPENDENT ON SPECIFIC HISTONE
    [Show full text]
  • The Product of a Thyroid Hormone-Responsive Gene Interacts with Thyroid Hormone Receptors
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8527–8532, August 1997 Biochemistry The product of a thyroid hormone-responsive gene interacts with thyroid hormone receptors CATHERINE C. THOMPSON* AND MARGARET C. BOTTCHER Department of Neuroscience, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205 Communicated by Donald D. Brown, Carnegie Institution of Washington, Baltimore, MD, May 23, 1997 (received for review April 14, 1997) ABSTRACT Thyroid hormone is a critical mediator of the function of the hr gene product (Hr), we identified proteins central nervous system (CNS) development, acting through that interact with Hr. Surprisingly, we found that Hr interacts nuclear receptors to modulate the expression of specific genes. with TR. Previously identified proteins that interact with TR Transcription of the rat hairless (hr) gene is highly up- have been shown to interact with multiple nuclear receptors (9, regulated by thyroid hormone in the developing CNS; we show 10, 14–21). In contrast, of the retinoid and steroid receptors here that hr is directly induced by thyroid hormone. By tested here, Hr interacts only with TR. The interaction of Hr identifying proteins that interact with the hr gene product with TR suggests that Hr is part of a novel autoregulatory (Hr), we find that Hr interacts directly and specifically with mechanism by which Hr may influence the expression of thyroid hormone receptor (TR)—the same protein that reg- downstream TH-responsive genes. ulates its expression. Unlike previously described receptor- interacting factors, Hr associates with TR and not with MATERIALS AND METHODS retinoic acid receptors (RAR, RXR).
    [Show full text]
  • Cyclin D Activates the Rb Tumor Suppressor by Mono-Phosphorylation
    RESEARCH ARTICLE elifesciences.org Cyclin D activates the Rb tumor suppressor by mono-phosphorylation Anil M Narasimha1†, Manuel Kaulich1†, Gary S Shapiro1†‡, Yoon J Choi2,3, Piotr Sicinski2,3, Steven F Dowdy1* 1Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States; 2Department of Genetics, Harvard Medical School, Boston, United States; 3Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Abstract The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. In this study, we find that Rb is exclusively mono-phosphorylated in early 1G phase by cyclin D:Cdk4/6. Mono- phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono- *For correspondence: sdowdy@ phosphorylated
    [Show full text]
  • Zebrafish Bloodthirsty: Developmental Expression and Identification of the Mammalian Ortholog
    1 Zebrafish bloodthirsty: Developmental Expression and Identification of the Mammalian Ortholog A thesis presented by Mo Hu to The Department of Biology In partial fulfillment of the requirements for degree of Master of Science in the field of Biology Northeastern University Boston, Massachusetts December, 2011 2 Zebrafish bloodthirsty: Developmental Expression and Identification of the Mammalian Ortholog A thesis presented by Mo Hu ABSTRACT OF THESIS Submited in partial fulfillment of the requirements for the degree of Master of Science in Biology in the Graduate School of Northeastern University December, 2011 3 Abstract Blood disorders, such as anemias, are serious diseases in humans. Because the hematopoietic program is highly conserved among vertebrates, we are using fish models to isolate novel erythropoietic genes and to elucidate the functions of the encoded proteins. In this thesis, I describe experiments to examine the developmental expression patterns of the novel zebrafish gene, bloodthirsty (bty), and to identify its probable mammalian ortholog. The novel gene bloodthirsty (bty) was discovered in a subtractive screen that isolated hematopoietic genes that were differentially expressed by the pronephric kidneys of the red-blood Antarctic rockcod, Notothenia coriiceps, and its white-blood relative, the icefish Chaenocephalus aceratus. Zebrafish bty encodes a 532 residue protein (Bloodthirsty, Bty) that belongs to the TRIM (TRIpartite Motif) protein family. Bty contains an N-terminal RING finger, two B-boxes, a coiled-coil region and a C-terminal B30.2 domain. Suppression of translation of the bty mRNA by morpholino oligonucleotide (MO) treatment suggests that Bty is involved in regulation of the terminal steps of the erythropoietic program.
    [Show full text]
  • TRIM24 As an Oncogene in the Mammary Gland
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2018 TRIM24 as an Oncogene in the Mammary Gland Aundrietta Duncan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cancer Biology Commons, Medicine and Health Sciences Commons, and the Other Genetics and Genomics Commons Recommended Citation Duncan, Aundrietta, "TRIM24 as an Oncogene in the Mammary Gland" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 845. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/845 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TRIM24 AS AN ONCOGENE IN THE MAMMARY GLAND by Aundrietta DeVan Duncan, M.S. APPROVED: ______________________________ Michelle C. Barton, Ph.D. Advisory Professor ______________________________ Richard
    [Show full text]