Esg-642 4.2 Liter

Total Page:16

File Type:pdf, Size:1020Kb

Esg-642 4.2 Liter ESG-642 42 LITER INDUSTRIAL ENGINE SERVICE MANUAL FPP-194-309 April, 2001 Ford Power Products 28333 Telegraph Rd, Suite 300 Southfield, MI 48034 248 945 4500 (Fax) 248 945 4501 Ford Power Products, LTD 20/586 Arisdale Avenue South Ockendon Essex, RM 15 5TJ England 44 1708 672 415 (Fax) 44 1708 672 815 Ford Power Products, GmbH Stolberger Str 313 D-50933 Köln, Germany 49 221 94700 551 (Fax) 49 221 94700 560 HEALTH & SAFETY ! WARNING: THE FOLLOWING HEALTH AND SAFETY RECOMMENDATIONS SHOULD BE CAREFULLY OBSERVED. CARRYING OUT CERTAIN OPERATIONS AND HANDLING SOME SUBSTANCES CAN BE DAN- GEROUS OR HARMFUL TO THE OPERATOR IF THE CORRECT SAFETY PRECAUTIONS ARE NOT OBSERVED. SOME SUCH PRECAUTIONS ARE RECOMMENDED AT THE APPROPRIATE POINTS IN THIS BOOK. WHILE IT IS IMPORTANT THAT THESE RECOMMENDED SAFETY PRECAUTIONS ARE OB- SERVED, CARE NEAR MACHINERY IS ALWAYS NECESSARY, AND NO LIST CAN BE EXHAUS- TIVE. ALWAYS BE CAUTIOUS TO AVIOD POTENTIAL SAFETY RISKS. The following recommendations are for general guidance: 1. Always wear correctly fitting protective clothing which should be laundered regularly. Loose or baggy clothing can be extremely dangerous when working on running engines or machinery. Clothing which becomes impregnated with oil or other substances can constitute a health hazard due to prolonged contact with the skin even through underclothing. 2. So far as practicable, work on or close to engines or machinery only when they are stopped. If this is not practicable, remember to keep tools, test equipment and all parts of the body well away from the moving parts of the engine or equipment—fans, drive belts and pulleys are particularly dangerous. The electric cooling fan used on some installations is actuated automatically when the coolant reaches a specified temperature. For this reason, care should be taken to ensure that the ignition/isolating switch is OFF when working in the vicinity of the fan as an increase in coolant temperature may cause the fan suddenly to operate. 3. Avoid contact with exhaust pipes, exhaust manifolds and silencers when an engine is, or has recently been running; these can be very hot and can cause severe burns. 4. Many liquids used in engines or vehicles are harmful if taken internally or splashed into the eyes. In the event of accidentally swallowing gasoline (petrol), oil, diesel fuel, antifreeze, battery acid etc, DO NOT ENCOURAGE VOMITING AND OBTAIN QUALIFIED MEDICAL ASSISTANCE IMMEDIATELY. Wear protective goggles when handling liquids which are harmful to the eyes; these include ammonia and battery acid. If any of these substances are splashed in the eyes, wash out thoroughly with clean water and OBTAIN QUALIFIED MEDICAL ASSISTANCE IMMEDIATELY. ! WARNING: ! The Engine Exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects or other reproductive harm. IMPORTANT SAFETY NOTICE Appropriate service methods and proper repair procedures are essential for the safe, reliable operation of all industrial engines as well as the personal safety of the individual doing the work. This Service Manual provides general directions for accomplishing service and repair work with tested, effective techniques. Following them will help assure reliability. Section 01 ESG-642 Section 02 ENGINE - 4 2L Section 03 IGNITION Section 04 FUEL Section Index Section 05 COOLING Section 06 CHARGING Reproduction in any manner, in whole or in part, is prohibited without the express permission in writing from: Section 07 STARTER Ford Power Products, Marketing Department Ford Power Products policy is one of continuous ELECTRONICS & DIAGNOSTIC improvement and while every effort is made to ensure Section 08 that this publication is up to date and correct in all TROUBLE CODES respects, the right to change prices, specifications and equipment at any time without notice is reserved Accordingly this publication is not to be regarded as a final description of any individual engine Section 09 METRICS Section 10 DEALERS ESG-642 INDEX SUBJECT PAGE SUBJECT PAGE 01 Description ................................................................... 01-3 Diagnosis And Testing (Continued) Introduction .................................................................. 01-3 Valves and Cylinder Head .........................................01-22 Engine Identification Nameplate ................................. 01-3 Valve Train Analysis – Dynamic .................................01-22 Rocker Arm ................................................................01-22 Safety Notices .............................................................. 01-5 Push Rods .................................................................01-22 Notes, Cautions and Warnings ................................... 01-5 Positive Rotator and Valve Spring Retainer Keys .....01-22 General Warnings ........................................................ 01-5 Valves and Cylinder Head .........................................01-22 Camshaft Lobe Lift .....................................................01-22 Battery Handling And Charging .................................. 01-6 OHV Engines .............................................................01-22 Typical Engine With Push Rods .................................01-22 Foreward ....................................................................... 01-7 Hydraulic Valve Tappet ..............................................01-23 Engine Identification .................................................... 01-7 Leakdown Testing ......................................................01-23 European Service Identification Plate ........................ 01-8 General Service Procedures ....................................01-25 Sprockets ...................................................................01-25 U.S.A. Engine Identification Decal .............................. 01-9 Gears .........................................................................01-26 Camshaft Journal Diameter .......................................01-26 Description And Operation ........................................01-10 Camshaft Journal Clearance – OHV Engines ..........01-27 Engine System ...........................................................01-10 Camshaft Lobe Surface .............................................01-27 Camshaft Lobe Lift .....................................................01-28 Diagnosis And Testing ...............................................01-11 Camshaft Runout .......................................................01-28 Engine System ...........................................................01-11 Crankshaft Main Bearing Journal Diameter ..............01-29 Special Tools..............................................................01-11 Crankshaft Main Bearing Journal Taper....................01-29 Inspection and Verification .........................................01-11 Crankshaft Main Bearing Journal Clearance ............01-30 Symptom Chart ..........................................................01-11 Bearing Inspection .....................................................01-31 Component Tests .......................................................01-14 Crankcase End Play ..................................................01-31 Engine Oil Leaks .......................................................01-14 Cylinder Bore Taper ...................................................01-33 Fluorescnt Oil Aditive Method ....................................01-14 Cylinder Bore Out-of-Round ......................................01-33 Pressure Method .......................................................01-15 Piston Inspection .......................................................01-33 Testing Procedure ......................................................01-15 Piston Diameter .........................................................01-34 Leakage Points ..........................................................01-15 Piston to Cylinder Bore Clearance ............................01-34 Under Engine ............................................................01-15 Piston Selection .........................................................01-35 With Transmission and Flywheel Removed ..............01-15 Piston Ring End Gap .................................................01-35 Compression Tests ....................................................01-15 Piston Ring-to-Groove Clearance .............................01-36 Test Results ................................................................01-16 Crankshaft Connecting Rod Journal Diameter .........01-37 Compression Pressure Limit Chart ...........................01-16 Crankshaft Connecting Rod Journal Taper ...............01-37 Interpreting Compression Readings .........................01-16 Connecting Rod Cleaning .........................................01-38 Cylinder Leakage Detection ......................................01-17 Connecting Rod Larger End Bore .............................01-38 Oil Leak and Valve Stem Seal Test ............................01-17 Piston Pin Diameter ...................................................01-39 Intake Manifold Vacuum Test .....................................01-17 Connecting Rod Bushing Diameter ..........................01-39 Interpreting Vacuum Gauge Readings ......................01-17 Connecting Rod Bend ...............................................01-40 Excessive Engine Oil Consumption ..........................01-19 Connecting Rod Twist ................................................01-40 Oil
Recommended publications
  • Engine Components and Filters: Damage Profiles, Probable Causes and Prevention
    ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer
    [Show full text]
  • Timing Belt Interference Caution Note: Camshaft
    Carmax 6067 170 Turnpike Rd Westborough, MA 01581 YMMS: 1991 Chevrolet Lumina Z34 Sep 3, 2020 Engine: 3.4L Eng License: VIN: Odometer: TIMING BELT INTERFERENCE CAUTION NOTE: CAMSHAFT DRIVE BELTS OR TIMING BELTS - The condition of camshaft drive belts should always be checked on vehicles which have more than 50,000 miles. Although some manufacturers do not recommend replacement at a specified mileage, others require it at 60,000-100,000 miles. A camshaft drive belt failure may cause extensive damage to internal engine components on most engines, although some designs do not allow piston-to-valve contact. These designs are often called "Free Wheeling". Many manufacturers changed their maintenance and warranty schedules in the mid-1980's to reflect timing belt inspection and/or replacement at 50,000- 60,000 miles. Most service interval schedules shown in this section reflect these changes. Belts or components should be inspected and replaced if any of the following conditions exist: Crack Or Tears In Belt Surface Missing, Damaged, Cracked Or Rounded Teeth Oil Contamination Damaged Or Faulty Tensioners Incorrect Tension Adjustment REMOVAL & INSTALLATION Tip: Timing belt CAUTION: For 1996-97 models, this application is an interference engine. Do not rotate camshaft or crankshaft when timing belt is removed, or engine damage may occur. NOTE: The camshaft timing procedure has been updated by TSB bulletin No. 47-61-34, dated December, 1994. REMOVAL Tip: timing 3.4 x motor 1. Disconnect negative battery cable. Remove air cleaner and duct assembly. Drain engine coolant. 2. Remove accelerator and cruise control cables from throttle body.
    [Show full text]
  • The Diffusion of Newcomen Engines, 1706-73: a Reassessment*
    1 The Diffusion of Newcomen Engines, 1706-73: A Reassessment* By Harry Kitsikopoulos Abstract The present paper attempts to quantify the diffusion of Newcomen engines in the British economy prior to the commercial application of the first Watt engine. It begins by pointing out omissions and discrepancies between the original Kanefsky database and the secondary literature leading to a number of revisions of the former. The diffusion path is subsequently drawn in terms of adopted horsepower and adjusted for the proportion of the latter being in use throughout the period. This methodology differs from previous studies which quantify diffusion based on the number of steam engines and do not take into account those falling out of use. The results are presented in terms of aggregate, sectoral, and regional patterns of diffusion. Finally, following a long held methodology of the literature on technological diffusion, the paper weighs the number of engines installed by the end of the period in relation to the potential range of adopters. In the end, this method generates a less celebratory assessment regarding the pace of diffusion of Newcomen engines. *The author wishes to thank Alessandro Nuvolari for providing access to the Kanefsky database. Two summer fellowships from the NEH/Folger Institute and Dibner Library (Smithsonian), whose staff was exceptionally helpful (especially Bill Baxter and Ron Brashear), allowed me to draw heavily material from the collection of rare books of the latter. Two graduate students, Lawrence Costa and Michel Dilmanian, proved to be superb research assistants by handling the revisions made by the author to the database, coming up with the graphs, and running the tests involved in the third appendix of the paper as well as writing it.
    [Show full text]
  • Timing Belt Installation
    1996 Toyota Camry Sedan 4-Door L4-132 2164cc 2.2L DOHC (5S-FE) Vehicle > Engine, Cooling and Exhaust > Engine > Timing Components > Timing Belt > Service and Repair > Procedures > Timing Belt Replace TIMING BELT INSTALLATION 1. INSTALL OIL PUMP PULLEY (a)Align the cutouts of the pulley and shaft, and slide on the pulley. (b)Using SST, install the nut. SST 09960-10010 (09962-01000, 09963-00500) Torque: 24 Nm (245 kgf-cm, 18 ft-lb) 2. INSTALL CRANKSHAFT TIMING PULLEY (a)Align the timing pulley set key with the key groove of the pulley. (b)Install the timing pulley. facing the sensor side inward. NOTICE: Do not scratch the sensor part of the crankshaft timing pulley. 3. INSTALL NO.2 IDLER PULLEY (a)Install the pulley with the bolt. Torque: 42 Nm (425 kgf-cm. 31 ft-lb) HINT: Use a bolt 42 mm (1.65 in.) in length. (b)Check that the idler pulley moves smoothly. 4. TEMPORARILY INSTALL NO.1 IDLER PULLEY AND TENSION SPRING (a)Align the bracket pin hole the pivot pin. (b)Install the pulley with the bolt. Do not tighten the bolt yet. HINT: Use a bolt 42 mm (1.65 in.) in length. (c)Install the tension spring. (d)Pry the pulley toward the left as far as it will go and tighten the bolt. (e)Check that the idler pulley moves smoothly. 5. TEMPORARILY INSTALL TIMING BELT NOTICE: The engine should be cold. (a)Using the crankshaft pulley bolt. turn the crankshaft and position the key groove of the crankshaft timing pulley upward.
    [Show full text]
  • A Study of Technology Used and Comparison Between Traditional and Hf120 (Advanced Aero Engine)
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-4 Issue-4, September 2015 A Study of Technology Used and Comparison Between Traditional and Hf120 (Advanced Aero Engine) Vivek Kumar, Rajeshwar Prasad Singh, Vikash Kumar Abstract- Paper includes detailed study of the HF120 turbofan The two companies began talks in 2003 with the goal of engine, which is the first product from GE Honda Aero providing durable and economical engines for business Engines. This paper is to showcase state of art technology aviation. The idea was to combine the strengths of each involved in gas turbine engines and to bring out various aspects and future trends in field of propulsion technology. parent company in technology leadership, manufacturing Paper also includes development in gas turbine engine that have expertise, and performance engine tradition to provide helped to achieve great fuel efficiency and less noise, increased modern business aviation engines with the performance power, thrust and also advancements made in the field of and availability of large commercial engines. A strategic materials have contributed in a major way in gas turbine in alliance between the two companies lead to planning of accordance to the future trends that have come up in recent 50/50 project intended to develop, certify and market the years. The paper reviews the evolutionary process that has taken place over the years with reference to the different design Honda engine. The HF120, product from GE Honda Aero concepts used for aero engines. At General Electric, the official Engines, utilizes Honda's world-renowned expertise in corporate slogan is “Imagination at work.” At Honda, it’s “The manufacturing, research and development and GE's power of dreams.” Two of the world's most respected names in experience in aerospace technology, durability, and propulsion have come together to design and manufacture certification.
    [Show full text]
  • 4.6L/5.4L Sohc Modular ( 2 Valve ) Mechanical Flat
    4.6L/5.4L SOHC MODULAR (2 VALVE ) MECHANICAL FLAT TAPPET Ford Low Lift Design 1994-1998 (Early Model Cylinder Head) Advertised Duration Gross Lift Suitable Description Part Lobe Duration @ .050" Lobe Lift (1.8) Component Number Sep Intake Exhaust Intake Exhaust Intake Exhaust Intake Exhaust Kit FACTORY OEM SPECS (1994-98) Stock 233° Lobe 242° 186° Lobe 191° Stock .256" .259" .461" .466" 242° Valve 254° 202° Valve 207° STAGE 1 62811-2 252° Lobe 256° 204° Lobe 208° 84706 .296" .296" .532" .532" Hot street profi le. Emphasis on mid range. Spring recommended. RPM Range: 1500 to 6000+ on 4.6L, 5.4L will be lower MTO 114° 266° Valve 270° 220° Valve 224° 84707 STAGE 2 62812-2 258° Lobe 258° 212° Lobe 212° 84706 114° .296" .296" .532" .532" Designed specifi cally for supercharger applications for street use. RPM Range: 1750 to 6500+ on 4.6L, 5.4L will be lower MTO 272° Valve 272° 230° Valve 230° 84707 STAGE 3 62813-2 258° Lobe 258° 212° Lobe 212° 114° Designed specifi cally for supercharger applications for street use. RPM Range: 1750 to 6500+ on 4.6L, 5.4L will be lower MTO 272° Valve 272° 230° Valve 230° CUSTOM GROUND 4.6L/5.4L CAMS 00080-2 Special order custom ground profi les available for an additional charge. Proprietary and confi dential profi les also Refer to www.crower.com for available. camshaft recommendation Note: These cams use .000" intake and exhaust valve lash. NOTE: These cams require aftermarket cam bolt kit #86053-2. The factory bolt WILL NOT work.
    [Show full text]
  • 127 Emissions
    EMISSIONS 127 Heater Hose Fitting, Carburetor A.I.R. Pipe and EGR Tube Stud Kits and Pipe Plugs 1980-96 F100 F150 F250 Bronco These often overlooked items are always a good idea to have on hand when working on intake, carburetors, engine plumbing, or vacuum 1 accessories. High quality Aluminum Heater Hose Fittings are available in clear or black anodized finish with straight or 90 degree bends. The threaded NPT (National Pipe Thread) fitting 3 ensures a leak free seal and the single barbed outlet allows proper hose connection. PART DESCRIPTION APPLICATION PRICE 55-3750-F STRAIGHT FITTING-CLEAR 1/2"NPT 5/8" BARB $10.95 55-3751-F STRAIGHT FITTING-BLACK 1/2"NPT 5/8" BARB $10.95 55-3754-F 90 DEGREE FITTING-CLEAR 1/2"NPT 5/8" BARB $20.95 2 55-3755-F 90 DEGREE FITTING-BLACK 1/2"NPT 5/8" BARB $20.95 5 6 Carburetor Stud Kits feature 5/16" black bullet nosed 4 studs complete with nuts and washers in 1-1/2" to 2" lengths for added depth when using carburetor spacers or adapters. High strength Grade 8 steel W/EFI = With Electronic Fuel Injection studs allow the use of an engine lift plate for engine W/O CA = Without California Emissions removal and installation. PART ILL# DESCRIPTION APPLICATION REQD PRICE PART DESCRIPTION APPLICATION PRICE 42-6030 (1) A.I.R.MANIFOLD TUBE 4.9L 80-86 (1) $94.95 55-3760-F CARBURETOR STUD KIT 5/16" X 1-1/2" $10.95 42-6031 A.I.R.MANIFOLD TUBE 4.9L 87-96 (1) $59.95 55-3761-F CARBURETOR STUD KIT 5/16" X 2" $10.95 42-6051 (2) A.I.R.CROSSOVER PIPE-RR (1) $62.95 W/EFI 5.0L 85-96 Steel Pipe Plug Fitting Sets are available in clear zinc or black finish featuring recessed Allen head fittings 42-6036 A.I.R.CROSSOVER PIPE 5.8L 80-11/84 (1) $84.95 in 8 convenient sizes.
    [Show full text]
  • A Model-Based Design Approach to Redesign a Crankshaft for Powder Metal Manufacturing
    A model-based design approach to redesign a crankshaft for powder metal manufacturing VASILEIOS ANGELOPOULOS Master of Science Thesis Stockholm, Sweden 2015 A model-based design approach to redesign a crankshaft for powder metal manufacturing VASILEIOS ANGELOPOULOS Master of Science Thesis MMK 2015:100 MKN 154 KTH Industrial Engineering and Management Machine Design SE-100 44 STOCKHOLM Examensarbete MMK 2015:100 MKN 154 En modellbaserad designstrategi att omkonstruera en vevaxel för pulvermetallurgi Angelopoulos Vasileios Godkänt Examinator Handledare 2015-11-08 Ulf Sellgren Stefan Björklund Uppdragsgivare Kontaktperson Höganäs ab Marcus Persson Sammanfattning En vevaxel är en motorkomponent som används för att omvandla den fram- och återgående rörelsen hos kolv och vevstake till en roterande rörelse. De klassiska metoderna att tillverka vevaxlar har varit dominerande och inte gett någon plats för alternativa tillverkningsmetoder. Powder manufacturing är en metod som kan revolutionera produktionens effektivitet och ekonomi. För att denna tillverkningsmetod ska vara möjlig måste vevaxeln tillverkas i delar. Webs, counter-weights och journal shafts måste produceras individuellt för att sedan sammanfogas. Den största utmaningen för denna avhandling är att förstå om vevaxelns counter webs kan tillverkas med samma form eller med så få olika former som möjligt. Denna avhandling handlar främst om att fastställa dessa tekniska krav och föreslå en ny, modulär design för PM. En kinematisk-kinetisk analys utförs med hjälp av en befintlig vevaxel som skannats och omvandlats till en CAD-modell. De numeriska värdena jämförs med en MBS-modell från Adams. Vevaxeln analyseras med avseende på balansering då motvikternas placering, massa och geometriska egenskaper undersöks. Nya modeller som följer de tekniska krav som krävs skapas och utvärderas med Pugh-matris.
    [Show full text]
  • Poppet Valve
    POPPET VALVE A poppet valve is a valve consisting of a hole, usually round or oval, and a tapered plug, usually a disk shape on the end of a shaft also called a valve stem. The shaft guides the plug portion by sliding through a valve guide. In most applications a pressure differential helps to seal the valve and in some applications also open it. Other types Presta and Schrader valves used on tires are examples of poppet valves. The Presta valve has no spring and relies on a pressure differential for opening and closing while being inflated. Uses Poppet valves are used in most piston engines to open and close the intake and exhaust ports. Poppet valves are also used in many industrial process from controlling the flow of rocket fuel to controlling the flow of milk[[1]]. The poppet valve was also used in a limited fashion in steam engines, particularly steam locomotives. Most steam locomotives used slide valves or piston valves, but these designs, although mechanically simpler and very rugged, were significantly less efficient than the poppet valve. A number of designs of locomotive poppet valve system were tried, the most popular being the Italian Caprotti valve gear[[2]], the British Caprotti valve gear[[3]] (an improvement of the Italian one), the German Lentz rotary-cam valve gear, and two American versions by Franklin, their oscillating-cam valve gear and rotary-cam valve gear. They were used with some success, but they were less ruggedly reliable than traditional valve gear and did not see widespread adoption. In internal combustion engine poppet valve The valve is usually a flat disk of metal with a long rod known as the valve stem out one end.
    [Show full text]
  • History of a Forgotten Engine Alex Cannella, News Editor
    POWER PLAY History of a Forgotten Engine Alex Cannella, News Editor In 2017, there’s more variety to be found un- der the hood of a car than ever. Electric, hybrid and internal combustion engines all sit next to a range of trans- mission types, creating an ever-increasingly complex evolu- tionary web of technology choices for what we put into our automobiles. But every evolutionary tree has a few dead end branches that ended up never going anywhere. One such branch has an interesting and somewhat storied history, but it’s a history that’s been largely forgotten outside of columns describing quirky engineering marvels like this one. The sleeve-valve engine was an invention that came at the turn of the 20th century and saw scattered use between its inception and World War II. But afterwards, it fell into obscurity, outpaced (By Andy Dingley (scanner) - Scan from The Autocar (Ninth edition, circa 1919) Autocar Handbook, London: Iliffe & Sons., pp. p. 38,fig. 21, Public Domain, by the poppet valves we use in engines today that, ironically, https://commons.wikimedia.org/w/index.php?curid=8771152) it was initially developed to replace. Back when the sleeve-valve engine was first developed, through the economic downturn, and by the time the econ- the poppet valves in internal combustion engines were ex- omy was looking up again, poppet valve engines had caught tremely noisy contraptions, a concern that likely sounds fa- up to the sleeve-valve and were quickly becoming just as miliar to anyone in the automotive industry today. Charles quiet and efficient.
    [Show full text]
  • Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY
    Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY COPYRIGHT © 2021 by WÄRTSILÄ FINLAND OY All rights reserved. No part of this booklet may be reproduced or copied in any form or by any means (electronic, mechanical, graphic, photocopying, recording, taping or other information retrieval systems) without the prior written permission of the copyright owner. THIS PUBLICATION IS DESIGNED TO PROVIDE AN ACCURATE AND AUTHORITATIVE INFORMATION WITH REGARD TO THE SUBJECT-MATTER COVERED AS WAS AVAILABLE AT THE TIME OF PRINTING. HOWEVER, THE PUBLICATION DEALS WITH COMPLICATED TECHNICAL MATTERS SUITED ONLY FOR SPECIALISTS IN THE AREA, AND THE DESIGN OF THE SUBJECT-PRODUCTS IS SUBJECT TO REGULAR IMPROVEMENTS, MODIFICATIONS AND CHANGES. CONSEQUENTLY, THE PUBLISHER AND COPYRIGHT OWNER OF THIS PUBLICATION CAN NOT ACCEPT ANY RESPONSIBILITY OR LIABILITY FOR ANY EVENTUAL ERRORS OR OMISSIONS IN THIS BOOKLET OR FOR DISCREPANCIES ARISING FROM THE FEATURES OF ANY ACTUAL ITEM IN THE RESPECTIVE PRODUCT BEING DIFFERENT FROM THOSE SHOWN IN THIS PUBLICATION. THE PUBLISHER AND COPYRIGHT OWNER SHALL UNDER NO CIRCUMSTANCES BE HELD LIABLE FOR ANY FINANCIAL CONSEQUENTIAL DAMAGES OR OTHER LOSS, OR ANY OTHER DAMAGE OR INJURY, SUFFERED BY ANY PARTY MAKING USE OF THIS PUBLICATION OR THE INFORMATION CONTAINED HEREIN. Wärtsilä 32 Product Guide Introduction Introduction This Product Guide provides data and system proposals for the early design phase of marine engine installations. For contracted projects specific instructions for planning the installation are always delivered. Any data and information herein is subject to revision without notice. This 1/2021 issue replaces all previous issues of the Wärtsilä 32 Project Guides. Issue Published Updates 1/2021 15.03.2021 Technical data updated.
    [Show full text]
  • Webasto Product – North America Idle Reduction Technology
    Webasto Product – North America Idle Reduction Technology Webasto History - 108 Years of Excellence 1901 Wilhelm Baier, Sr. founded the company in Esslingen, Germany WilhElm BAier in STOckdorf WEBASTO Webasto World Wide Locations Aserbeitschan Australia Austria Belgium Belarus Bulgaria China Czech Republic Denmark Estonia France Finland Region Convertible Global Comfort Georgia Roof & Body Solution Germany Great Britain CRB GCS Greece Hungary Iceland Europe India Italy Japan America Korea Latvia Lithuania Asia Netherlands Norway Poland Russia Sweden Switzerland Slovakia Slovenia Spain South Africa Turkey Ukraine USA Webasto Worldwide Global . Sales $2.1 Billion . 6,300 Colleagues North America . Sales $540 Million . 1,650 Colleagues . Locations: Fenton, Rochester Hills and Livonia - Michigan Santa Fe Springs - California Lexington - Kentucky Webasto – North America Is idle reduction the right business decision for you? © Webasto, 2007 Enhancing Your Bottom Line with Idle Reduction Ready to go means delivery schedules are realized and business is running at the highest levels of efficiency. Webasto has a solution for……. Defense Vehicles Sleepers Day Cabs Vocational Fire & Rescue School Bus Core Principles of a Webasto Solution Mission Readiness Return on Investment Safety Core Principles of a Webasto Solution Mission Readiness Mission Readiness Provide heat where you need it, when you need it! Webasto has a heating solutions that will ensure a vehicle is ready to go. • A Webasto heater can: • Pre-warm the vehicle’s engine • Keep
    [Show full text]