Timing Belt Interference Caution Note: Camshaft

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Carmax 6067 170 Turnpike Rd Westborough, MA 01581

  • YMMS: 1991 Chevrolet Lumina Z34
  • Sep 3, 2020

License: Odometer:
Engine: 3.4L Eng VIN:

TIMING BELT INTERFERENCE CAUTION

NOTE: CAMSHAFT DRIVE BELTS OR TIMING BELTS -

The condition of camshaft drive belts should always be checked on vehicles which have more than 50,000 miles. Although some manufacturers do not recommend replacement at a specified mileage, others require it at 60,000-100,000 miles. A camshaft drive belt failure may cause extensive damage to internal engine components on most engines, although some designs do not allow piston-to-valve contact. These designs are often called "Free Wheeling". Many manufacturers changed their maintenance and warranty schedules in the mid-1980's to reflect timing belt inspection and/or replacement at 50,000- 60,000 miles. Most service interval schedules shown in this section reflect these changes. Belts or components should be inspected and replaced if any of the following conditions exist:

Crack Or Tears In Belt Surface Missing, Damaged, Cracked Or Rounded Teeth Oil Contamination Damaged Or Faulty Tensioners Incorrect Tension Adjustment

REMOVAL & INSTALLATION

Tip: Timing belt

CAUTION: For 1996-97 models, this application is an interference engine. Do not rotate camshaft or crankshaft when timing belt is removed, or engine damage may occur.

NOTE: The camshaft timing procedure has been updated by TSB bulletin No. 47-61-34, dated December, 1994.

REMOVAL

Tip: timing 3.4 x motor
1. Disconnect negative battery cable. Remove air cleaner and duct assembly. Drain engine coolant. 2. Remove accelerator and cruise control cables from throttle body. Remove fuel rail cover. Relieve fuel pressure. Remove fuel lines from fuel rail. Remove fuel mounting bracket.

3. Remove heater hose and bracket from lower intake manifold. Remove PCV valve and vacuum line from throttle body. Remove electrical connectors from EGR valve, canister purge solenoid and MAP sensor. Remove EGR valve, and position aside. Remove vacuum lines from upper intake manifold tee.

4. Remove wiring loom bracket for rear spark plug wires. Remove upper intake manifold. Remove coolant recovery tank. Remove serpentine drive belt and drive belt tensioner.

5. Siphon fluid from power steering pump. Disconnect power steering lines and remove power steering pump.

6. On 1991-93 vehicles only, reposition Powertrain Control Module (PCM) out of way. Remove PCM mounting bracket. On 1994-95 vehicles only, disconnect PCM connectors and secure out of way.

7. On all vehicles, note position for reassembly reference and remove spark plug wires from spark plugs. Remove wiring harness cover at right side (passenger) strut tower. Remove fuel line bracket.

8. Remove timing belt covers. Remove breather hose from rear camshaft cover and crankcase vent from breather manifold. Remove camshaft carrier covers.

9. Remove side plate bolts securing timing belt tensioner actuator. Rotate actuator assembly from tensioner pulley socket and out of mounting base. Remove timing belt tensioner pulley. See Fig 1.

NOTE: Actuator assembly uses a tapered bushing between the actuator and mounting base. DO NOT lose or damage the bushing when removing the actuator assembly.

10. Position timing belt tensioner actuator in vise with rod tip (rubber boot end) pointing down. 11. Straighten out a standard paper clip (.032" with no serrations) and form a loop at one end. See Fig 2.
Remove rubber end plug from rear of tensioner actuator. Push paper clip through end of vent plug and into pilot hole. Insert a small screwdriver into the screw slot inside actuator, behind rubber end plug.

CAUTION: Allow oil to flow towards boot end of actuator for at least 5 minutes prior to refilling.

NOTE: Tensioner actuator is oil filled. Removal of plug may allow oil to escape. DO NOT remove vent plug.

12. Retract actuator plunger by rotating screw in a clockwise direction until it is fully retracted. Push on paper clip and slowly rotate screw counterclockwise until paper clip engages. Remove timing belt.

13. Rotate crankshaft so that No. 1 cylinder is at TDC of compression stroke. Mark the timing indicator with White paint or equivalent on the crankshaft balancer and front cover. See Fig 3.

NOTE: Remove timing marks from camshaft and intermediate shaft sprockets.

14. Position camshafts so that flat spots are "UP" for installation of Camshaft Hold-Down Tools (J 38613-
A). Install Camshaft Hold-Down Tools (J 38613-A) on both camshaft carriers. See Fig 4.

15. Remove camshaft sprocket center bolts. Note difference between early and late designs. See Fig 5.
Lightly tap on rear of sprockets to remove from camshaft.
Fig 1: Identifying Timing Belt Assembly Components

Courtesy of GENERAL MOTORS CORP.

Fig 2: Reworking Paper Clip

Courtesy of GENERAL MOTORS CORP.

Fig 3: Aligning Timing Marks

Courtesy of GENERAL MOTORS CORP.

Fig 4: Installing Camshaft Hold-Down Tools (J 38613-A)

Courtesy of GENERAL MOTORS CORP.

Fig 5: Identifying Camshaft Timing Sprocket Designs

Courtesy of GENERAL MOTORS CORP.

INSPECTION

1. To determine if timing belt length is within specifications, measure tensioner actuator from centerline of tensioner actuator to end of rubber boot. See Fig 6. If measurement is 3.2-3.7" (80.5-94.0 mm) for a used belt, the belt is in acceptable range. Replace belt is measurement is more than 3.7" (94 mm).

2. Inspect belt teeth and back side of belt for cracks, tears or other damage. Inspect components for excessive wear or unusual conditions. Note any evidence of oil or other fluid intrusion.
Fig 6: Measuring Timing Belt Tensioner Actuator Length

Courtesy of GENERAL MOTORS CORP.

INSTALLATION

1. Install camshaft sprockets with bolts and locks. Tighten bolts finger tight. Install timing belt onto camshaft sprockets in a counterclockwise direction. Continue installing timing belt, making sure timing belt teeth are fully engaged with all sprockets.

2. Install timing belt tensioner pulley. Tighten timing belt tensioner pulley bolt to 37 ft. lbs. (50 N.m). 3. Install rubber end plug in rear of tensioner assembly until flush. Ensure plug is sealed against case.

NOTE: If tensioner oil has been lost, fill tensioner with
Mobil 1 SAE 5W-30 synthetic engine oii through plug hole. Fill to bottom of plug hole only when plunger is fully retracted and pin is installed.

4. Install actuator bushing into side plate. Install timing belt actuator and actuator side plate. Tighten side plate bolt to 20 ft. lbs. (27 N.m).

NOTE: Ensure actuator bushings and appropriate holes in side plate are clean. DO NOT lubricate bushings.

5. Rotate pulley assembly into timing belt a maximum of 11 ft. lbs. (15 N.m) to allow engagement of actuator shaft into pulley pocket arm socket. Pull the paper clip from the actuator. Retighten pulley assembly 11 ft. lbs. (15 N.m) counterclockwise to seat pulley into belt.

6. Tighten both right hand camshaft sprockets (bank closest to firewall) to 96 ft. lbs. (130 N.m). Remove camshaft hold-down from righthand camshaft carrier.

7. Rotate crankshaft one full turn (360 degrees) clockwise, as viewed from front of engine. Align crankshaft reference marks. See Fig 3. Make sure both righthand camshaft flat spots are down. Tighten both lefthand camshaft sprockets (bank closest to radiator) to 96 ft. lbs. (130 N.m). Remove camshaft hold-down from lefthand camshaft carrier.

8. Rotate engine clockwise (as viewed from front) 2 times to seat belt and verify correct valve timing.
DO NOT reverse rotation. Make sure both camshaft flat spots are up on one bank and down on opposing bank.

9. Install camshaft carrier covers. Install breather hose and crankcase vent onto rear cover. Install timing belt covers.

10. To complete installation, reverse removal procedure. Refill cooling system with 50/50 mix of water and coolant. Open air bleed valve on thermostat housing while filling cooling system. Adjust drive belts to proper tension.

TIMING BELT & CAMSHAFT TIMING PROCEDURE

CAUTION: If a valve timing related problem is caused by a slipped belt, always replace belt. If timing belt is to be removed, the "painted on" timing marks on the cam gears are no longer valid and must be removed.

NOTE: For reference, left bank is front bank, and right bank is rear bank.

NOTE: Tools required: Cam Hold Down (J-38613-A),
Camshaft Sprocket Holding Tool (J-38614) and Torque Angle Meter (J-36660-A).

Removal

Tip: timing 3.4 x motor

NOTE: The camshaft timing procedure has been updated by TSB bulletin No. 47-61-34, dated December, 1994. Before

proceeding, see SECTION 6A9 - REVISED CAMSHAFT TIMING PROCEDURE for possible updated information.

For belt measurement specification, see TIMING BELT TENSION SPECIFICATIONS. TIMING BELT TENSION SPECIFICATIONS

  • Application
  • In. (mm)

Tensioner Measurement

  • New Belt
  • 3.2-3.5 (80.5-89.0)

  • 3.2-3.7 (80.5-94.0)
  • Used Belt

1. Disconnect negative battery cable. Remove air cleaner duct. Drain engine coolant. See COOLING
SYSTEM DRAINING. Disconnect accelerator and cruise control cables from throttle body. Remove the fuel injector sight shield. Remove fuel rail cover and relieve fuel pressure. See FUEL PRESSURE RELEASE. Remove fuel lines from fuel rail and remove fuel mounting bracket.

2. Remove heater hose and bracket from lower intake manifold. Remove PCV valve and vacuum line from throttle body. Disconnect electrical connector from EGR. Remove EGR valve. Disconnect electrical connection from canister purge solenoid and MAP sensor. Remove vacuum lines from upper intake manifold tee. Remove wiring loom bracket for rear spark plug wires. Disconnect power brake vacuum hose and remove upper intake manifold support bracket and manifold. Remove coolant recovery tank.

3. Remove serpentine belt and belt tensioner. Remove power steering pump. Disconnect PCM electrical connectors and reposition. Disconnect spark plug wires from spark plugs. Relocate wiring harness cover at right strut tower. Remove fuel line bracket and all upper timing belt covers (3). Remove breather hose from rear camshaft cover, and crankcase vent from breather manifold.

4. Remove camshaft carrier covers. See CAMSHAFT CARRIER & COVERS. Remove side plate bolts from actuator and rotate actuator assembly from tensioner pulley socket, and out of mounting base. See Fig 8. Remove timing belt tensioner pulley. See Fig 8. DO NOT install the rod tip or the tensioner actuator boot in the jaws of a vise or damage to the assembly may occur.

5. Position actuator in vertical position (rod tip down), lightly clamp actuator body in vise. See Fig 10.
(Position the tensioner actuator up, so the oil goes to the boot end for at least 5 minutes before refilling the actuator prior to reassembly, if necessary). Actuator assembly uses a tapered bushing between actuator and mounting base. DO NOT lose or damage bushing when removing actuator assembly.

6. Straighten out a standard paper clip .032" (.81mm) diameter, to a minimum straight length of 1.85 "
(47 mm). Form a double loop in remaining end of paper clip. See Fig 12. Actuator assembly is filled with oil and removal of the plug may allow oil to escape. DO NOT remove vent plug. Push paper clip through center of vent plug and into pilot hole. Insert a small screwdriver into screw slot inside actuator, behind rubber end plug. Retract actuator plunger by rotating screw in a clockwise direction, until it is fully retracted. Push on paper clip and slowly rotate screw counterclockwise until paper clip engages. This unloads tensioner.

7. Remove timing belt. Rotate crankshaft so No. 1 cylinder is at TDC (Top Dead Center). Mark crankshaft timing indicator (with White paint or equivalent) on crankshaft balancer and front cover only. See Fig 9.

CAUTION: Remove the painted on factory timing marks from all 4 camshafts and the intermediate shaft sprocket (they will no longer be used for timing reference). Prior to installing the Cam Hold Down, ensure that the bolt hole is free of any debris or the camshaft carrier may be damaged.

8. Position camshafts so flat spots are UP for installation of Cam Hold Down. See Fig 14. Install Cam
Hold Downs on both camshaft carriers. One on left (front head) and the other on the right (rear head). To remove camshaft sprockets, install Cam Hold Down and remove bolts, taper lock rings, and sprockets by lightly tapping on it with a soft faced hammer. See Fig 13.

Installation

NOTE: The camshaft timing procedure has been updated by TSB bulletin No. 47-61-34, dated December, 1994. Before proceeding, see SECTION 6A9 - REVISED CAMSHAFT TIMING PROCEDURE for possible updated information.

NOTE: Tools required: Cam Hold Down (J-38613-A).

1. Install intermediate drive sprocket and all camshaft sprockets with taper lock rings FINGER TIGHT.
Install timing belt in a counterclockwise direction around sprockets. Ensure timing belt teeth are fully engaged with all sprockets. Tighten tensioner pulley bolt to specification. See TORQUE SPECIFICATIONS.

2. If actuator oil has been lost, fill actuator with SAE 5w30 Mobil 1 (or equivalent) synthetic engine oil through end hole. Fill to bottom of plug hole, only when actuator is fully retracted, and pin is installed. Install rubber end plug into rear of the actuator assembly, push until flush and snapped into place. Make sure end plug has sealed against the case. Inspect bushings and appropriate holes to make sure they are clean. Install actuator bushing into side plate. DO NOT lubricate.

3. Install timing belt actuator and actuator side plate. Torque to specification. Rotate pulley assembly into belt a maximum of 132 INCH lbs. (15 Nm.) to allow engagement of actuator shaft into pulley arm socket. Pull lock pin and discard. This releases tensioner. Torque tensioner pulley assembly to 132 INCH lbs. (15 Nm.) counterclockwise to seat pulley into belt. Tighten both right hand (rear bank) camshaft sprocket bolts to 96 ft. lbs. (130 Nm). Remove Cam Hold Down from right hand (rear bank) camshaft carrier. Rotate crankshaft 360 degrees clockwise while looking at front of engine and align crankshaft reference marks. Make sure both right hand (rear bank) camshaft flats are DOWN. Tighten both left hand (front bank) camshaft sprocket bolts to 96 ft. lbs. (130 Nm).

4. Remove Cam Hold Down from left hand (front bank) camshaft carrier. Rotate crankshaft 720 degrees clockwise while looking at front of engine to seat timing belt, and VERIFY correct timing by making sure both camshaft flatspots are UP on one bank, and DOWN on the opposing bank. See Fig 14.
5. Install camshaft carrier covers and bolts. Torque bolts to specification. Install breather hose from rear camshaft cover, and crankcase vent from breather manifold. Install timing belt covers and bolts. Tighten bolts to specification. Install fuel line bracket and bolt. Tighten bolt to specification. Install wiring harness cover at right strut tower.

6. Install spark plug wires. Install PCM electrical connectors. Install power steering lines to pump. Install serpentine belt and tensioner. Tighten serpentine belt tensioner bolt to specification. Install coolant recovery tank. Install upper intake manifold, bolts, and nuts. Tighten to specification. See TORQUE SPECIFICATIONS. Install power brake vacuum hose and wiring loom bracket for rear spark plug wires.

7. Install vacuum lines to upper intake manifold tee. Connect electrical connections to canister purge solenoid and map sensor. Install EGR valve and torque bolts to specification. Connect electrical connectors to EGR. Install PCV valve and vacuum line to throttle body. Install heater hose and bracket to lower intake manifold. Install fuel mounting bracket and bolt, tighten to specification. Connect fuel lines to fuel rail and install fuel rail cover. Connect accelerator and cruise control cables to throttle body. Install air cleaner assembly. Refill cooling system and bleed. See COOLING SYSTEM BLEEDING. Fill power steering system. Install negative battery cable.

Fig 7: Removing & Installing Timing Belt

Courtesy of GENERAL MOTORS CORP.

Fig 8: Removing & Installing Timing Belt Actuator Pulley

Courtesy of GENERAL MOTORS CORP.

Fig 9: Removing Factory Timing Marks

Courtesy of GENERAL MOTORS CORP.

Fig 10: Measuring Timing Belt Tensioner Length

Courtesy of GENERAL MOTORS CORP.

Fig 11: Installed View Of Timing Belt & Gears

Courtesy of GENERAL MOTORS CORP.

Fig 12: Reworking Paper Clip

Courtesy of GENERAL MOTORS CORP.

Fig 13: Identifying Cam Sprocket Timing Gears

Courtesy of GENERAL MOTORS CORP.

Fig 14: Camshaft Flats Face UP On Both Banks For Installation Of J-38613-A. For Final Timing Reference, Camshaft Flats Are UP On One Bank & DOWN On Other.

Courtesy of GENERAL MOTORS CORP.

TIMING CHAIN

Removal (Except Camaro & Firebird)

1. Drain cooling system. Disconnect negative battery cable. Remove coolant reservoir. Remove serpentine drive belt and tensioner. Remove power steering pump with hoses attached and lay aside. Raise and support vehicle.

2. Remove right front wheel and inner splash shield. Remove crankshaft belt pulley. Remove flexplate/flywheel cover. Prevent crankshaft from turning and remove crankshaft damper bolt. Remove crankshaft damper using puller.

3. Remove serpentine drive belt idler pulley. Remove oil pan. See OIL PAN. Disconnect radiator hose and coolant by-pass pipe from water pump. Disconnect canister purge hose. Remove front timing case cover.

4. Rotate crankshaft, aligning timing marks on camshaft and crankshaft sprockets. See Fig 15. Remove camshaft sprocket bolts. Remove camshaft sprocket and timing chain. Remove crankshaft sprocket (if necessary).

Installation (All Models)

1. Install crankshaft sprocket (if removed). Apply assembly lube to camshaft sprocket thrust face. Install timing chain over camshaft sprocket. Hold sprocket vertically with chain hanging downward. Align timing marks. See Fig 15.

2. Install timing chain and camshaft sprocket on camshaft. Ensure sprocket dowel pin hole aligns with camshaft dowel pin. Install camshaft sprocket. Ensure timing marks are aligned. Lubricate timing chain with engine oil.

3. Apply Sealant (1052917) or RTV sealant to sealing surfaces of front timing case cover. Install front timing case cover and new gasket. If crankshaft seal is removed, lubricate new seal with engine oil and install with open side of seal toward engine using Seal Installer(J 35468 A).

4. Apply sealant to crankshaft and crankshaft damper keyways. Install crankshaft damper using Damper
Installer (J 29113). Ensure damper installer threads extend at least .20" (5.1 mm) into crankshaft.

5. To install remaining components, reverse removal procedure. Tighten retaining nuts and bolts to specification. Refer to the TORQUE SPECIFICATIONS table.

Fig 15: Aligning Timing Marks

Courtesy of GENERAL MOTORS CORP.

TIMING CHAIN & SPROCKETS

Removal

1. Remove front cover. See FRONT COVER. Mark crankshaft and intermediate shaft sprockets in relation to timing chain for reassembly reference. See Fig 16. Remove timing chain tensioner bolts.

2. Raise and support vehicle. Remove timing chain and crankshaft sprocket using Universal Puller
Bridge (J-8433) and Legs/Protector (J-38611). If intermediate gear does not slide off easily with timing chain assembly, rotate crankshaft back and forth to help loosen gear. Remove timing chain tensioner.

Inspection

Inspect crankshaft alignment key for burrs or marks that could affect assembly. Repair or replace as necessary.

Installation

1. Ensure crankshaft key is installed and fully seated. Using Tensioner Retractor (J-33875), retract timing chain tensioner shoe and lock it in place with a cotter pin, rivet, or nail. See Fig 17.

2. Using upper hole as primary locator, install tensioner. Finger-tighten tensioner bolts. Tighten slotted bolt and then remaining bolts to specification. See TORQUE SPECIFICATIONS. Apply light coat of oil or lithium grease to chain contact surfaces of nylon pad and blade (if equipped).

3. Install chain and sprocket assembly, aligning marks made during removal. During installation, keep assembly aligned (parallel). See Fig 18. Intermediate shaft may move against rear cover. Ensure rubber and tension blade of tensioner do not become caught, misaligned or dislodged.

4. Large chamfer and counterbore on crankshaft sprocket must face engine. See Fig 16. Spline sockets on intermediate shaft sprocket must face engine.

5. Crankshaft sprocket must be pressed onto crankshaft for the last .31" (8 mm) using Sprocket Installer
(J-38612). Ensure timing is correct. Pull pin from tensioner. To complete installation, reverse removal procedure.
Fig 16: Identifying Timing Chain & Components

Courtesy of GENERAL MOTORS CORP.

Fig 17: Retracting Timing Chain Tensioner Shoe

Courtesy of GENERAL MOTORS CORP.

Fig 18: Aligning Timing Chain Assembly

Courtesy of GENERAL MOTORS CORP.

CAMSHAFT TIMING BELT (3.4L V6)

The 3.4L V6 engine is equipped with a camshaft timing belt that should be inspected for cracks, wear or oiliness at 60,000 miles and every 15,000 miles thereafter. Check tensioner for proper operation. Replace belt or parts, as necessary.

CAUTION: Failure to replace a faulty camshaft timing belt may result in serious engine damage.

The condition of camshaft drive belts should always be checked on vehicles which have more than 50,000 miles. Although some manufacturers do not recommend belt replacement at a specified mileage, others require it at 60,000-100,000 miles. A camshaft drive belt failure may cause extensive damage to internal engine components on most engines, although some designs do not allow piston-to-valve contact. These designs are often called "Free Wheeling". Many manufacturers changed their maintenance and warranty schedules in the mid-1980's to reflect timing belt inspection and/or replacement at 50,000-60,000 miles. Most service interval schedules in this manual reflect these changes. Belts or components should be inspected and replaced if any of the following conditions exist:

Cracks Or Tears In Belt Surface Missing, Damaged, Cracked Or Rounded Teeth Oil Contamination Damaged Or Faulty Tensioners Incorrect Tension Adjustment

SERVICE INTERVALS & SPECIFICATIONS [ ENGINE CONTROLS - SPECIFICATIONS - 4-CYL : QUICK-SERVICE ]

Recommended publications
  • Engine Components and Filters: Damage Profiles, Probable Causes and Prevention

    Engine Components and Filters: Damage Profiles, Probable Causes and Prevention

    ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer
  • Timing Belt Installation

    Timing Belt Installation

    1996 Toyota Camry Sedan 4-Door L4-132 2164cc 2.2L DOHC (5S-FE) Vehicle > Engine, Cooling and Exhaust > Engine > Timing Components > Timing Belt > Service and Repair > Procedures > Timing Belt Replace TIMING BELT INSTALLATION 1. INSTALL OIL PUMP PULLEY (a)Align the cutouts of the pulley and shaft, and slide on the pulley. (b)Using SST, install the nut. SST 09960-10010 (09962-01000, 09963-00500) Torque: 24 Nm (245 kgf-cm, 18 ft-lb) 2. INSTALL CRANKSHAFT TIMING PULLEY (a)Align the timing pulley set key with the key groove of the pulley. (b)Install the timing pulley. facing the sensor side inward. NOTICE: Do not scratch the sensor part of the crankshaft timing pulley. 3. INSTALL NO.2 IDLER PULLEY (a)Install the pulley with the bolt. Torque: 42 Nm (425 kgf-cm. 31 ft-lb) HINT: Use a bolt 42 mm (1.65 in.) in length. (b)Check that the idler pulley moves smoothly. 4. TEMPORARILY INSTALL NO.1 IDLER PULLEY AND TENSION SPRING (a)Align the bracket pin hole the pivot pin. (b)Install the pulley with the bolt. Do not tighten the bolt yet. HINT: Use a bolt 42 mm (1.65 in.) in length. (c)Install the tension spring. (d)Pry the pulley toward the left as far as it will go and tighten the bolt. (e)Check that the idler pulley moves smoothly. 5. TEMPORARILY INSTALL TIMING BELT NOTICE: The engine should be cold. (a)Using the crankshaft pulley bolt. turn the crankshaft and position the key groove of the crankshaft timing pulley upward.
  • Belt Drive Systems: Potential for CO2 Reductions and How to Achieve Them

    Belt Drive Systems: Potential for CO2 Reductions and How to Achieve Them

    19 Belt drive 19 Belt drive Belt drive 19 Belt drive systems Potenti al for CO2 reducti ons and how to achieve them Hermann Sti ef Rainer Pfl ug Timo Schmidt Christi an Fechler 19 264 Schaeffl er SYMPOSIUM 2010 Schaeffl er SYMPOSIUM 2010 265 19 Belt drive Belt drive 19 If required, double-row Introducti on Tension pulleys and angular contact ball Single and double eccentric tensioners bearings (Figure 3) are Schaeffl er has volume produced components for idler pulleys used that also have an belt drive systems since 1977. For the past 15 years, opti mized grease sup- Schaeffl er has worked on the development of com- One use of INA idler pulleys is to reduce noise in ply volume. These plete belt drive systems in ti ming drives (Figure 1) criti cal belt spans, to prevent collision problems bearings are equipped as well as in accessory drives (Figure 2). with the surrounding structure, to guide the belt with high-temperature or to increase the angle of belt wrap on neighbor- rolling bearing greases ing pulleys. These pulleys have the same rati ng and appropriate seals. life and noise development requirements as belt Standard catalog bear- tensioning systems. For this applicati on, high-pre- ings are not as suitable Pulleys Variable camsha ming cision single-row ball bearings with an enlarged for this applicati on. grease supply volume have proven suffi cient. The tension pulleys in- stalled consist of single or double-row ball bearings specially de- veloped, opti mized and manufactured by INA for use in belt drive ap- Idler pulleys plicati ons.
  • SKF Timing Belt Kits Technical Overview

    SKF Timing Belt Kits Technical Overview

    Catalog 457702 2010 SKF Timing Belt Kits Technical overview In today’s modern automotive engines, there has been a quiet revolution. The need to run more auxiliary equipment such as water pumps or injection pumps, combined with efficiency demands and noise reduction, has caused new timing belt and tensioner systems to be developed. At first, tensioners were of a fixed nature, usually of metal design. They were simple to install: just set tension and tighten. Today, tensioners more likely include an internal spring or external damper, and non-metallic components are becoming more common. This illustration provides an overview of a modern timing belt and tensioner system. Engine-front wheel drive Belt Camshaft pulley tensioner unit Timing belt Injection pump pulley Water pump pulley Idler pulley Crankshaft The crankshaft drives the camshaft(s) and actuates the valves via a belt or a chain. Due to its advantages compared with those of a chain, namely reduced space, as well as lighter and quieter running, the timing belt is widely used by many car manufacturers. Belt tensioner unit (TBT) Idler pulley The belt tensioner unit sets the right tension and provides guidance for the belt. The idler pulley is fixed and allows the belt to be correctly wound around the driven component. The adjustment of tension during mounting is achieved by means of an eccentric Main designs currently used are shown here: or by means of a spring acting against a rear plate. The automatic belt tensioner unit, with its built-in spring and friction system, maintains a constant tension of the belt while the engine is running.
  • Decoupled Pulley Fax +49 6201 25964-11 Fax +39 0121 369299

    The typical crankshaft vibrations are compensated by employing high quality decoupled belt pulleys. This minimizes the transmission of vibrations to other vehicle components and the associated effects on the entire vehicle. So you can enjoy undisturbed ride comfort. CORTECO GmbH CORTECO S.r.l.u. SEALING VIBRATION CONTROL CABIN AIR FILTER Badener Straße 4 Corso Torino 420/D 69493 Hirschberg 10064 Pinerolo (TO) Germanny Italy Corteco original quality Tel. +49 6201 25964-0 Tel. +39 0121 369269 Decoupled PULLEY Fax +49 6201 25964-11 Fax +39 0121 369299 CORTECO S.A.S. CORTECO Ltd. Z.A. La Couture Unit 6, Wycliffe Industrial 87140 Nantiat Park Complex inner workings: France Lutterworth The decoupled belt pulley Tel. +33 5 55536800 Leicestershire is joined to the torsional Fax +33 5 55536888 LE17 4HG vibration damper by a United Kingdom highly elastic elastomer Tel. +44 1455 550000 part, thereby offering opti- www.corteco.com Fax +44 1455 550066 mum damping properties. 19036674 SIG-08/2012 THE belt DRIVE MOVES A EXPENSIVE economic Satisfied customers NUMBER OF THINGS MEASURES ARE GOOD customers No matter whether a drive belt is too loud or ancillary units are damaged by vibration – belt drive decoupling deficiencies are always associated with dissatisfaction. Anyone not using original parts for a decoupled belt pul- ley is making a false saving. Cheap counterfeit products generally lead to complaints after a short running time and loss of customer confidence. On the other hand, ori- ginal parts from CORTECO still work reliably, often after 100,000 kilometers. Transmission of crankshaft vibrations to ancillary units can produce an increased noise level, severe wear of adjoi- Original: after 100,000 km in the vehicle The decoupled belt pulley should be checked after about ning components and undesirable vehicle vibration.
  • 1.4L/1.6L Dohc Engine Mechanical

    1.4L/1.6L Dohc Engine Mechanical

    SECTION : 1C1 1.4L/1.6L DOHC ENGINE MECHANICAL CAUTION : Disconnect the negative battery cable before removing or installing any electrical unit or when a tool or equipment could easily come in contact with exposed electrical terminals. Disconnecting this cable will help prevent personal injury and damage to the vehicle. The ignition must also be in LOCK unless otherwise noted. TABLE OF CONTENTS SPECIFICATIONS . 1C1–2 Oil Pan. 1C1–38 Engine Specifications . 1C1–2 Oil Pump. 1C1–40 Fastener Tightening Specifcations. 1C1–5 Engine Mount. 1C1–43 SPECIAL TOOLS . 1C1–7 Camshaft Gears. 1C1–45 Special Tools Table . 1C1–7 Rear Timing Belt Cover. 1C1–46 Engine. 1C1–48 COMPONENT LOCATOR . 1C1–9 Pistons and Rods. 1C1–53 Cylinder Head. 1C1–9 UNIT REPAIR. 1C1–58 Cylinder Block. 1C1–10 Cylinder Head and Valve Train Components. 1C1–58 Intake & Exhaust Manifold. 1C1–12 Crankshaft. 1C1–65 Timing Belt. 1C1–13 Crankshaft Bearing and Connecting Rod Engine Mounting. 1C1–14 Beadings – Gauging Plastics. 1C1–74 MAINTENANCE AND REPAIR . 1C1–15 GENERAL DESCRIPTION AND SYSTEM ON–VEHICLE SERVICE. 1C1–15 OPERATION . 1C1–77 Engine Cover. 1C1–15 Cylinder Head and Gasket. 1C1–77 Camshaft Cover. 1C1–15 Crankshaft. 1C1–77 Intake Manifold. 1C1–16 Timing Belt. 1C1–77 Exhaust Manifold. 1C1–20 Oil Pump. 1C1–77 Cylinder Head and Gasket. 1C1–21 Oil Pan. 1C1–77 Camshaft. 1C1–29 Exhaust Manifold. 1C1–77 Timing Belt Check and Adjust. 1C1–30 Intake Manifold. 1C1–77 Timing Belt. 1C1–34 Camshaft. 1C1–77 1C1 – 2I1.4L/1.6L DOHC ENGINE MECHANICAL SPECIFICATIONS ENGINE SPECIFICATIONS Application Description (Manual and Automatic) 1.4L DOHC 1.6L DOHC General Data: Engine Type F14D F16D Displacement 1399 cm3 1598 cm3 (97.51 in3) Bore Stroke 77.9 x 73.4 mm (3.01 in.
  • C6 Corvette Supercharger Kit Instructions ECS SC 600 Instructions (C6)

    C6 Corvette Supercharger Kit Instructions ECS SC 600 Instructions (C6)

    C6 Corvette Supercharger Kit Instructions ECS SC 600 Instructions (C6) These instructions are meant to serve as a guide to the installation of the ECS SC600 Supercharging kit. Please be sure to use all safety equipment including gloves, and eye protection. Please use proper techniques to capture and dispose of, or reuse factory fluids. Utilization of the proper tools will make the install smoother and faster. If you are having ECS provide you with a start up tune, your first step should be to remove your PCM, and ship immediately so that you can have it back ready for start up. Our shipping address is 562 Rt. 539, Cream Ridge, NJ, 08514. Installation should take between 1012 andto 15 20 hours hours for a qualified mechanic. Do not rush the install. If need technical support please call the shop at 609-752-0321. ECS SC600 Kit Installation: • Remove fuel Rail covers, and disconnect battery terminals with 10 MM wrench. • Remove cap from coolant reservoir and proceed to drain coolant by turning radiator drain cock one ¼ turn to the left. • Remove stock serpentine beltbet by placing 15mm wrench on tensioner bolt and press towards intake and pulling bet forward off tensioner • Remove stock tensioner by removing the 2 15mm bolts with socket. Save bolts for later use. • Remove hard plastic vacuum line from passenger side valve cover (Fig.1) 1 • Remove 15 mm bolt and bracket holding Evap solenoid to passenger side head and discard. Evap solenoid stays in place. (Fig.2) • DisconnectOn the drivers MAF side and of thenthe car, remove remove stock alternator air bridge wiring and filterharness assembly from top from of alternator car by loosening and positive clamps alternator and pulling wire forwardby removing and up 13mm off throttle retaining body.
  • Diesel Engine Starting Systems Are As Follows: a Diesel Engine Needs to Rotate Between 150 and 250 Rpm

    Diesel Engine Starting Systems Are As Follows: a Diesel Engine Needs to Rotate Between 150 and 250 Rpm

    chapter 7 DIESEL ENGINE STARTING SYSTEMS LEARNING OBJECTIVES KEY TERMS After reading this chapter, the student should Armature 220 Hold in 240 be able to: Field coil 220 Starter interlock 234 1. Identify all main components of a diesel engine Brushes 220 Starter relay 225 starting system Commutator 223 Disconnect switch 237 2. Describe the similarities and differences Pull in 240 between air, hydraulic, and electric starting systems 3. Identify all main components of an electric starter motor assembly 4. Describe how electrical current flows through an electric starter motor 5. Explain the purpose of starting systems interlocks 6. Identify the main components of a pneumatic starting system 7. Identify the main components of a hydraulic starting system 8. Describe a step-by-step diagnostic procedure for a slow cranking problem 9. Describe a step-by-step diagnostic procedure for a no crank problem 10. Explain how to test for excessive voltage drop in a starter circuit 216 M07_HEAR3623_01_SE_C07.indd 216 07/01/15 8:26 PM INTRODUCTION able to get the job done. Many large diesel engines will use a 24V starting system for even greater cranking power. ● SEE FIGURE 7–2 for a typical arrangement of a heavy-duty electric SAFETY FIRST Some specific safety concerns related to starter on a diesel engine. diesel engine starting systems are as follows: A diesel engine needs to rotate between 150 and 250 rpm ■ Battery explosion risk to start. The purpose of the starting system is to provide the torque needed to achieve the necessary minimum cranking ■ Burns from high current flow through battery cables speed.
  • Timing Belt Timing Belt Em0ac-02 Components

    Timing Belt Timing Belt Em0ac-02 Components

    EM-14 ENGINE MECHANICAL (2JZ-GTE) - TIMING BELT TIMING BELT EM0AC-02 COMPONENTS M/T Drive Belt Tensioner Air Cleaner Duct Oil Filler Cap x 10 No.3 Timing Belt Cover Drive Belt Tensioner Damper Gasket Fan and Fluid Coupling Assembly No.2 Timing Belt Cover No.5 Air Hose Hold-Down Camshaft Timing Pulley Clamp Water Pump Pulley Battery Drive Belt Tensioner Insulator Drive Belt Idler Pulley Battery Timing Belt Gasket S No.1 Timing Belt Cover Battery Tray Crankshaft Pulley x 5 Upper Radiator Support Timing Belt Guide PS Pump Pulley Timing Belt Plate Crankshaft Timing Pulley Lower Radiator Hose Reservoir Inlet Hose Timing Belt Tensioner Radiator Assembly Lower Electric Cooling No.2 Air Tube Radiator Fan Connector Support ECT Switch A/T Connector Engine Under Cover Hose Clamp No.2 Fan Shroud Oil Cooler Tube x 16 z Non - reusable part S precoated part S00586 1997 SUPRA (RM502U) Author: Date: 1119 EM-25 ENGINE MECHANICAL (2JZ-GTE) - CYLINDER HEAD CYLINDER HEAD EM0AG-02 COMPONENTS No.1 Air Hose Air Cleaner and MAF Meter Assembly Engine Wire Protector Air Cleaner Duct Theft Deterrent Horn Drive Belt EVAP Hose Brake Booster Vacuum Hose No.5 Air Hose Hose Clamp Heat Insulator Oil Cooler Tube (A/T) No.2 Front Exhaust Pipe S Gasket Tube Clamp S Gasket Hose Clamp Front Lower Arm Bracket Stay Upper Crossmember S Extension S Pipe Support Bracket x 16 Engine Under Cover S Non-reusable part Z13597 1997 SUPRA (RM502U) Author: Date: 1130 EM-26 ENGINE MECHANICAL (2JZ-GTE) - CYLINDER HEAD Cable Bracket No.1 Vacuum Pipe Air Inlet Duct Air Hose Heated Oxygen Sensor
  • Engine Timing Tools BMW N12 PSA 1.4 / 1.6 Chain

    Engine Timing Tools BMW N12 PSA 1.4 / 1.6 Chain

    BMW N12 Engine PSA timing tools 1.4 / 1.6 Chain K 10558 www.kamasatools.com Plan Layout C A D A B Component Identification Ref OEM Ref BMW OEM Ref PSA Description Inlet Camshaft Locking Tool (Supplied in A 11 9 540 0197-A3 2 parts) (Marked IN) Exhaust Camshaft Locking Tool (Marked B 11 9 540 0197-A1 EX) C Fixing Bolts (3) D 11 9 590 0197-B Crankshaft Setting Pin Applications The application list for this product has been compiled cross referencing the OEM Tool Code with the Component Code. In most cases the tools are specific to this type of engine and are necessary for Cam belt or chain maintenance. If the engine has been identified as an interference engine valve to piston damage will occur if the engine is run with a broken Cam belt. A compression check of all cylinders should be performed before removing the cylinder head. Always consult a suitable work shop manual before attempting to change the Cam belt or Chain. The use of these engine timing tools is purely down to the user’s discretion and Tool Connection cannot be held responsible for any damage caused what so ever. ALWAYS USE A REPUTABLE WORKSHOP MANUAL Manufacturer Mode Type Engine Code Year BMW Mini One N12B14AB 2007-2010 Mini Cooper N12B16A 2006-2010 Peugeot 207 | 308 1.4 EP3 (8FS) 2007-2010 207 | 308 1.6 EP6(5FW) 2007-2010 Citroën C3 | DS3 Vti 1.4 8FR(EP3) 2008-2010 C3 | C3 1.4 5FS(EP6) 2008-2010 Picasso DS3 | C4 VTi 1.4 C4 Picasso 1.6 BMW Mini and Peugeot have developed a pair of new engines; the N12 and N14 ranges incorporate the latest technologies to give the best performance, economy and emissions possible.
  • Software Controlled Stepping Valve System for a Modern Car Engine

    Software Controlled Stepping Valve System for a Modern Car Engine

    Available online at www.sciencedirect.com ScienceDirect Procedia Manufacturing 8 ( 2017 ) 525 – 532 14th Global Conference on Sustainable Manufacturing, GCSM 3-5 October 2016, Stellenbosch, South Africa Software Controlled Stepping Valve System for a Modern Car Engine I. Zibania, R. Marumob, J. Chumac and I. Ngebanid.* a,b,dUniversity of Botswana, P/Bag 0022, Gaborone, Botswana cBotswana International University of Science and Technology, P/Bag 16, Palapye, Botswana Abstract To address the problem of a piston-valve collision associated with poppet valve engines, we replaced the conventional poppet valve with a solenoid operated stepping valve whose motion is perpendicular to that of the piston. The valve events are software controlled, giving rise to precise intake/exhaust cycles and improved engine efficiency. Other rotary engine models like the Coates engine suffer from sealing problems and possible valve seizure resulting from excessive frictional forces between valve and seat. The proposed valve on the other hand, is located within the combustion chamber so that the cylinder pressure help seal the valve. To minimize friction, the valve clears its seat before stepping into its next position. The proposed system was successfully simulated using ALTERA’s QUARTUS II Development System. A successful prototype was built using a single piston engine. This is an ongoing project to eventually produce a 4-cylinder engine. ©© 2017 201 6Published The Authors. by Elsevier Published B.V. Thisby Elsevier is an open B.V. access article under the CC BY-NC-ND license (Peerhttp://creativecommons.org/licenses/by-nc-nd/4.0/-review under responsibility of the organizing). committee of the 14th Global Conference on Sustainable Manufacturing.
  • ENGINES: an Engine Failure Is Always Bad News. Besides Taking Away

    ENGINES: an Engine Failure Is Always Bad News. Besides Taking Away

    ENGINES: An engine failure is always bad news. Besides taking away your wheels, it forces you to make a painful financial decision. If the cost to repair, overhaul or replace the engine is more than the resale value of your car or truck, the investment may not be worth it. But if your vehicle is in good condition otherwise, repairing or replacing the engine may be less expense than trading for another used vehicle (always a gamble), or taking on payments for a new car or truck. Assuming you have gotten past the initial trauma and has decided in favor of fixing the engine, you have to figure out why the engine failed so the repaired engine (or replacement engine) won't suffer the same fate. A good place to start your postmortem is to review the circumstances that preceded the failure. Sometimes failures occur unexpectedly. One minute the engine is running fine and you're keeping up with traffic, and the next you're sitting along side the road with the hood up wondering what happened. In most instances, though, there is ample warning that something is amiss long before the engine actually fails. Unusual engine noises, low oil pressure, engine overheating, loss of power, misfiring, hard starting and similar drivability and performance complaints can all be indications of problems that need attention. The underlying cause may be something minor or major. There is no way to know unless somebody checks it out. If a motorist ignores such warnings long enough, it can be a very costly mistake because eventually the engine may succumb to whatever is causing the problem, which is a classic example of the famous preventive maintenance line, "You can pay me now or you can pay me later." ENGINE OVERHEATING Overheating can be caused by any number of things.