Spatial and Temporal Trends of Atmospheric Humidification in the Steppe Part of the Trans-Volga-Ural Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Quaternary Reptilian Fauna of Bashkortostan (South Urals, Russia)
©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA 19 (3/4): 99 - 110 99 Wien, 30. Jänner 2007 On the Quaternary reptilian fauna of Bashkortostan (South Urals, Russia) Zur Quartären Reptilienfauna von Baschkortostan (Südural, Rußland) VlNER KHABIBULLIN KURZFASSUNG Die Geschichte der quartären Reptilienfauna von Baschkortostan (Südural, Rußland) wird im Zusammen- hang mit einem kurzen Überblick zur Entwicklung des Klimas, der Landschaften und der Vegetation dargestellt. Fünf Reptilienarten {Lacerta agilis, Anguis fragilis, Lacerta vivipara, Natrix natrix, Vipera berus) sind für das Spätquartär des Untersuchungsgebietes anhand von Fossilbelegen nachgewiesen. Die neuzeitliche Herpetofauna des Urals begann sich im späteren Pliozän herauszubilden. Die gegenwärtige Reptilfauna entwickelte sich im mitt- leren Holozän, mit der Rückkehr der Reptilien aus den eiszeitlichen Refugialräumen. Die Gebirgsketten des Urals sowie die Tätigkeit des Menschen hatten auf die Ausbildung der gegenwärtigen Kriechtierfauna der Region keinen bedeutenden Einfluß. ABSTRACT The history of the Quaternary reptilian fauna of Bashkortostan (South Urals, Russia) is described and the development of climate, landscapes and vegetation are briefly reviewed. Five late Quaternary fossil reptile species {Lacerta agilis, Anguis fragilis, Lacerta vivipara, Natrix natrix, Vipera berus) had been identified for the region. The modern herpetofauna of the Urals started to form approximately in the Late Pliocene. In the -
Annual Report 2011
possibilities ANNUAL REPORT 2011 CONTENTS About the company ............................................................................... 2 Key financial & operational highlights ............................................. 12 Key events of 2011 & early 2012 ...................................................... 14 Bright upside potential from the reorganization ............................. 18 Strong market position ................................................................... 20 Up in the “Clouds” ........................................................................... 22 Chairman’s statement ........................................................................ 24 Letter from the President ................................................................... 26 Strategy .............................................................................................. 28 M&A activity ........................................................................................ 31 Corporate governance ........................................................................ 34 Board of Directors & committees .................................................... 34 Management Board & committees ................................................. 37 Internal Audit Commission ............................................................. 40 Remuneration of members of the Board of Directors and the Management Board ............................................................. 40 Dividend policy ................................................................................ -
Balkatach Hypothesis: a New Model for the Evolution of the Pacific, Tethyan, and Paleo-Asian Oceanic Domains
Research Paper GEOSPHERE Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains 1,2 2 GEOSPHERE, v. 13, no. 5 Andrew V. Zuza and An Yin 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095-1567, USA doi:10.1130/GES01463.1 18 figures; 2 tables; 1 supplemental file ABSTRACT suturing. (5) The closure of the Paleo-Asian Ocean in the early Permian was accompanied by a widespread magmatic flare up, which may have been CORRESPONDENCE: avz5818@gmail .com; The Phanerozoic history of the Paleo-Asian, Tethyan, and Pacific oceanic related to the avalanche of the subducted oceanic slabs of the Paleo-Asian azuza@unr .edu domains is important for unraveling the tectonic evolution of the Eurasian Ocean across the 660 km phase boundary in the mantle. (6) The closure of the and Laurentian continents. The validity of existing models that account for Paleo-Tethys against the southern margin of Balkatach proceeded diachro- CITATION: Zuza, A.V., and Yin, A., 2017, Balkatach hypothesis: A new model for the evolution of the the development and closure of the Paleo-Asian and Tethyan Oceans criti- nously, from west to east, in the Triassic–Jurassic. Pacific, Tethyan, and Paleo-Asian oceanic domains: cally depends on the assumed initial configuration and relative positions of Geosphere, v. 13, no. 5, p. 1664–1712, doi:10.1130 the Precambrian cratons that separate the two oceanic domains, including /GES01463.1. the North China, Tarim, Karakum, Turan, and southern Baltica cratons. -
A Review of the Gnaphosidae Fauna of the Urals (Aranei), 3. New Species and New Records, Chiefly from the South Urals
Arthropoda Selecta 11 (3): 223234 © ARTHROPODA SELECTA, 2002 A review of the Gnaphosidae fauna of the Urals (Aranei), 3. New species and new records, chiefly from the South Urals Îáçîð ñåìåéñòâà Gnaphosidae ôàóíû Óðàëà (Aranei), 3. Íîâûå âèäû è íîâûå íàõîäêè ïðåèìóùåñòâåííî ñ Þæíîãî Óðàëà T.K. Tuneva, S.L. Esyunin Ò.Ê. Òóíåâà, Ñ.Ë. Åñþíèí Department of Zoology, Perm State University, Bukireva Str. 15, Perm 614600 Russia. Êàôåäðà çîîëîãèè áåñïîçâîíî÷íûõ æèâîòíûõ, Ïåðìñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, óë. Áóêèðåâà 15, Ïåðìü 614600 Ðîññèÿ. KEY WORDS: Gnaphosidae, fauna, new species, the South Urals. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Gnaphosidae, ôàóíà, íîâûå âèäû, Þæíûé Óðàë. ABSTRACT. Five new species are described: Dras- 57 in the steppe zone of the Urals contained numerous syllus sur sp.n. (#$), Micaria gulliae sp.n. (#$), poorly known, and some new species. The main aim of Zelotes fallax sp.n. (#), Zelotes occultus sp.n. (#), this paper is to (re)describe some rare and some new Z. orenburgensis sp.n. (#$). Haplodrassus minor (O. species based on the Urals material. We also present new Pickard-Cambridge, 1879) is redescribed from the Urals locality data, and thus refine our knowledge of the material. Three species: Gnaphosa betpaki Ovtsharen- distribution of some gnaphosid species in the Urals. ko, Platnick et Song, 1992, G. moesta Thorell, 1875 This work is based on material collected by the authors and Zelotes mikhailovi Marusik in Eskov et Marusik, (ESL S.L. Esyunin, TTK T.K. Tuneva) and our col- 1995, are new records for Russia. Three species: Micar- leagues N.S. Mazura (MNS) and G.Sh. Farzalieva (FGS). -
Contribution to the Knowledge of the Fauna of Bombyces, Sphinges And
driemaandelijks tijdschrift van de VLAAMSE VERENIGING VOOR ENTOMOLOGIE Afgiftekantoor 2170 Merksem 1 ISSN 0771-5277 Periode: oktober – november – december 2002 Erkenningsnr. P209674 Redactie: Dr. J–P. Borie (Compiègne, France), Dr. L. De Bruyn (Antwerpen), T. C. Garrevoet (Antwerpen), B. Goater (Chandlers Ford, England), Dr. K. Maes (Gent), Dr. K. Martens (Brussel), H. van Oorschot (Amsterdam), D. van der Poorten (Antwerpen), W. O. De Prins (Antwerpen). Redactie-adres: W. O. De Prins, Nieuwe Donk 50, B-2100 Antwerpen (Belgium). e-mail: [email protected]. Jaargang 30, nummer 4 1 december 2002 Contribution to the knowledge of the fauna of Bombyces, Sphinges and Noctuidae of the Southern Ural Mountains, with description of a new Dichagyris (Lepidoptera: Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae, Arctiidae) Kari Nupponen & Michael Fibiger [In co-operation with Vladimir Olschwang, Timo Nupponen, Jari Junnilainen, Matti Ahola and Jari- Pekka Kaitila] Abstract. The list, comprising 624 species in the families Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae and Arctiidae from the Southern Ural Mountains is presented. The material was collected during 1996–2001 in 10 different expeditions. Dichagyris lux Fibiger & K. Nupponen sp. n. is described. 17 species are reported for the first time from Europe: Clostera albosigma (Fitch, 1855), Xylomoia retinax Mikkola, 1998, Ecbolemia misella (Püngeler, 1907), Pseudohadena stenoptera Boursin, 1970, Hadula nupponenorum Hacker & Fibiger, 2002, Saragossa uralica Hacker & Fibiger, 2002, Conisania arida (Lederer, 1855), Polia malchani (Draudt, 1934), Polia vespertilio (Draudt, 1934), Polia altaica (Lederer, 1853), Mythimna opaca (Staudinger, 1899), Chersotis stridula (Hampson, 1903), Xestia wockei (Möschler, 1862), Euxoa dsheiron Brandt, 1938, Agrotis murinoides Poole, 1989, Agrotis sp. -
River Runoff Variability at Watercourses of the Ural River Basin
E3S Web of Conferences 163, 05002 (2020) https://doi.org/10.1051/e3sconf/202016305002 IV Vinogradov Conference River runoff variability at watercourses of the Ural river basin Regina Fatkhutdinova*, Diana Gareeva Bashkir State University, Zaki Validi 32, 450076, Ufa, Russia Abstract. The article is devoted to spatial and temporal variabilities of the river runoff on the example of the river Ural within the territory of the Russian Federation. The author points out the necessity of investigating fluctuations in the water resources of a transboundary river for the purposes of long-term water management planning. Using the coefficient of variation and asymmetry, the annual runoff variability is analyzed. 1 Introduction The rational use of water resources requires reliable data on the long-term variability of the quantitative characteristics of the river runoff. In this respect, it becomes necessary to conduct research on studying the multiannual runoff dynamics of individual river systems. Given the increasing volumes of water consumption, special relevance is attributed to identifying the trends in river runoff variations. While determining long-term changes in the water content, special attention is paid to the annual and maximum discharges [1]. The annual average throughflow values are used for identifying the river runoff rate, which serves as the basis of long-term water management planning. The data related to the absolute values of the maximum throughflow is needed primarily for preventing negative implications – the formation of floods, the water-logging of settlements, and the damaging of hydrotechnic facilities. The subject of research comprises the selected segments of the upper and middle reaches of the river Ural, including the meridional section within the Republic of Bashkortostan and the Chelyabinsk Region (the upper reaches of the river Ural) and the latitudinal section of the river in the Orenburg Region (the middle reaches). -
Early Devonian Suprasubduction Ophiolites of the Southern Urals A
ISSN 00168521, Geotectonics, 2010, Vol. 44, No. 4, pp. 321–343. © Pleiades Publishing, Inc., 2010. Original Russian Text © A.A. Belova, A.V. Ryazantsev, A.A. Razumovsky, K.E. Degtyarev, 2010, published in Geotektonika, 2010, Vol. 44, No. 4, pp. 39–64. Early Devonian Suprasubduction Ophiolites of the Southern Urals A. A. Belovaa, b, A. V. Ryazantseva, A. A. Razumovskya, and K. E. Degtyareva a Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia b Faculty of Geology, Moscow State University, Moscow, 119991 Russia email: [email protected] Received January 25, 2010 Abstract—The composition of ophiolites widespread in the southern Urals shows that they were formed in a suprasubduction setting. LowTi and highMg sheeted dikes and volcanic rocks vary from basalt to andesite, and many varieties belong to boninite series. The rocks of this type extend as a 600km tract. The volcanic rocks contain chert interbeds with Emsian conodonts. Plagiogranites localized at the level of the sheeted dike complex and related to this complex genetically are dated at 400 Ma. The ophiolites make up a base of thick island arc volcanic sequence. The composition of the igneous rocks and the parameters of their metamorphism indicate that subduction and ascent of a mantle plume participated in their formation. The nonstationary subduction at the intraoceanic convergent plate boundary developed, at least, from the Middle Ordovician. DOI: 10.1134/S0016852110040035 INTRODUCTION differ from the Devonian counterpart in geochemistry. Subductionrelated ophiolites are widesperad in In some places, ophiolites differing in age and compo the Paleozoides of the southern Urals. Sheeted dikes sition converge and intercalate. -
T H E T I M E W O
GEOGRAPHY OF THE WORLD UralsTHE TIMEWORN GEOGRAPHY OF THE WORLD UralsTHE TIMEWORN By Barbara A. Somervill THE CHILD’S WORLD® CHANHASSEN, MINNESOTA Published in the United States of America by The Child’s World® PO Box 326, Chanhassen, MN 55317-0326 800-599-READ www.childsworld.com Content Adviser: Photo Credits: Cover/frontispiece: TASS/Sovfoto. Interior: Bryan & Cherry Alexander: 18; Animals Animals/Earth Scenes: 9 (OSF/O. Mark Williams, Newman), 14 (Bradley W. Stahl), 17 (Darek Kapp); Corbis: 11 (Steve Raymer), 26 Associate Professor, (Dave G. Houser); Wolfgang Kaehler: 6; Wolfgang Kaehler/Corbis: 8, 16, 21; Jacques University of Colorado, Langevin/Corbis Sygma: 22; Novosti/Sovfoto: 4, 24; TASS/Sovfoto: 5, 12, 13. Boulder, Colorado The Child’s World®: Mary Berendes, Publishing Director Editorial Directions, Inc.: E. Russell Primm, Editorial Director; Melissa McDaniel, Line Editor; Katie Marsico, Associate Editor; Judi Shiffer, Associate Editor and Library Media Specialist; Matthew Messbarger, Editorial Assistant; Susan Hindman, Copy Editor; Sarah E. De Capua and Lucia Raatma, Proofreaders; Marsha Bonnoit, Peter Garnham, Terry Johnson, Olivia Nellums, Chris Simms, Katherine Trickle, and Stephen Carl Wender, Fact Checkers; Tim Griffin/IndexServ, Indexer; Cian Loughlin O’Day, Photo Researcher; Linda S. Koutris, Photo Selector; XNR Productions, Inc., Cartographer The Design Lab: Kathleen Petelinsek, Design and Page Production Copyright © 2005 by The Child’s World® All rights reserved. No part of this book may be reproduced or utilized in any form or by any means without written permission from the publisher. Library of Congress Cataloging-in-Publication Data Somervill, Barbara A. The timeworn Urals / by Barbara A. Somervill. p. -
Nota Lepidopterologica, 25.04.2012, ISSN 0342-7536 ©Societas Europaea Lepidopterologica; Download Unter Und
©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Nota lepi. 35(1): 33-50 33 Additions to the checklist of Bombycoidea and Noctuoidea of the Volgo-Ural region. Part II. (Lepidoptera: Lasiocampidae, Erebidae, Nolidae, Noctuidae) Kari Nupponen ' & Michael Fibiger"^ Merenneidontie 19 D, FI-02320 Espoo, Finland; [email protected] ^ Deceased. 1 1 Received May 20 1 1 ; reviews returned September 20 1 ; accepted 3 December 2011. Subject Editor: Lauri Kaila. Abstract. Faunistic records additional to the recently published lists of Bombycoidea and Noctuoidea of the South Ural Mountains (Nupponen & Fibiger 2002, 2006) are presented, as well as some interesting records from the North Urals and the Lower Volga region. The material in the southern Urals was collected during 2006-2010 in six different expeditions, in North Ural in 2003 and 2007, and in the Lower Volga region in 2001, 2002, 2005, and 2006 in four expeditions. Four species are reported for the first time from Europe: Dichagyris latipennis (Piingeler, 1909), Pseudohermonassa melancholica (Lederer, 1853), Spae- lotis deplorata (Staudinger, 1897), and Xestia albonigra (Kononenko, 1981). Fourteen species are reported for the first time from the southern Urals. Altogether, records of 68 species are reported, including a few corrections to the previous articles. Further illustrations and notes on some poorly known taxa are given. Introduction The fauna of Bombycoidea and Noctuoidea of the southern Ural Mountains has been studied intensely since 1996, and the results of the research during 1996-2005 were published by Nupponen & Fibiger (2002, 2006). Since 2005, several further expedi- tions were made to the Urals by the first author. -
Permophiles Issue #28 1996 1
Permophiles Issue #28 1996 1. SECRETARY’S NOTE I should like to thank all those who contributed to this issue of I have discussed the matter of financial support for Permophiles @Permophiles@. The next issue will be in November 1996 and with many of the members of the Permian Subcommission; the will be prepared by the new secretary, CIaude Spinosa. Please consensus is that we should request voluntary donations to offset send your contributions to him (see note below from Forthcoming processing, mailing and paper costs. We are asking for contribu- Secretary). tions of $10 to $25. However, Permophiles will be mailed to ev- I should like to express my gratitude to those of you who have eryone on the mailing list regardless of whether a contribution is submitted contributions during my eight year term of office. You made. have helped make =Permophiles@ a useful, informative, and timely We have established access to Permophiles via the Internet; the Newsletter of the Subcommission on Permian Stratigraphy. address will be: J. Utting http://earth.idbsu.edu/permian/permophiles Geological Survey of Canada (Calgary) 3303 - 33rd Street N.W. Our intention is to provide a version of Permophiles that is readily Calgary, Alberta, Canada T2L 2A7 available through the Internet. The Internet version of Permophiles Phone (404) 292-7093 FAX (403) 292-6014 will have multiple formats. Initially the format of the Internet ver- E-mail INTERNET address: [email protected] sion will be different from the official paper version. Because new taxonomic names can not be published in Permophiles, a hard copy, downloaded from the interned will suffice for many of us. -
Peasants “On the Run”: State Control, Fugitives, Social and Geographic Mobility in Imperial Russia, 1649-1796
PEASANTS “ON THE RUN”: STATE CONTROL, FUGITIVES, SOCIAL AND GEOGRAPHIC MOBILITY IN IMPERIAL RUSSIA, 1649-1796 A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in History By Andrey Gornostaev, M.A. Washington, DC May 7, 2020 Copyright 2020 by Andrey Gornostaev All Rights Reserved ii PEASANTS “ON THE RUN”: STATE CONTROL, FUGITIVES, SOCIAL AND GEOGRAPHIC MOBILITY IN IMPERIAL RUSSIA, 1649-1796 Andrey Gornostaev, M.A. Thesis Advisers: James Collins, Ph.D. and Catherine Evtuhov, Ph.D. ABSTRACT This dissertation explores the issue of fugitive peasants by focusing primarily on the Volga-Urals region of Russia and situating it within the broader imperial population policy between 1649 and 1796. In the Law Code of 1649, Russia definitively bound peasants of all ranks to their official places of residence to facilitate tax collection and provide a workforce for the nobility serving in the army. In the ensuing century and a half, the government introduced new censuses, internal passports, and monetary fines; dispatched investigative commissions; and coerced provincial authorities and residents into surveilling and policing outsiders. Despite these legislative measures and enforcement mechanisms, many thousands of peasants left their localities in search of jobs, opportunities, and places to settle. While many fugitives toiled as barge haulers, factory workers, and agriculturalists, some turned to brigandage and river piracy. Others employed deception or forged passports to concoct fictitious identities, register themselves in villages and towns, and negotiate their status within the existing social structure. -
SGGEE Russia Gazetteer 201908.Xlsx
SGGEE Russia gazetteer © 2019 Dr. Frank Stewner Page 1 of 25 27.08.2021 Menno Location according to the SGGEE guideline of October 2013 North East Village name old Village name today Abdulino (Abdulino), Abdulino, Orenburg, Russia 534125 533900 Абдулино Абдулино Abramfeld (NE in Malchevsko-Polnenskaya), Millerovo, Rostov, Russia 485951 401259 Абрамфельд Мальчевско-Полненская m Abrampolski II (lost), Davlekanovo, Bashkortostan, Russia 541256 545650 Aehrenfeld (Chakalovo), Krasny Kut, Saratov, Russia 504336 470306 Крацкое/Эренфельд Чкалово Aidarowa (Aidrowo), Pskov, Pskov, Russia 563510 300411 Айдарово Айдарово Akimowka (Akimovka), Krasnoshchyokovo, Altai Krai, Russia 513511 823519 Акимовка Акимовка Aksenowo (Aksenovo), Ust-Ishim, Omsk, Russia 574137 713030 Аксеново Аксеново Aktjubinski (Aktyubinski), Aznakayevo, Tatarstan, Russia 544855 524805 Актюбинский Актюбинский Aldan/Nesametny (Aldan), Aldan, Sakha, Russia 583637 1252250 Алдан/Незаметный Алдан Aleksanderhoeh/Aleksandrowka (Nalivnaya), Sovetsky, Saratov, Russia 511611 465220 Александерге/АлександровкаНаливная Aleksanderhoeh/Uralsk (Aleksanrovka), Sovetsky, Saratov, Russia 511558 465112 Александерге Александровка Aleksandertal (lost), Kamyshin, Volgograd, Russia 501952 452332 Александрталь Александровка m Aleksandrofeld/Masajewka (lost), Matveyev-Kurgan, Rostov, Russia 473408 390954 Александрофельд/Мазаевка - Aleksandro-Newskij (Aleksandro-Nevskiy), Andreyevsk, Omsk, Russia 540118 772405 Александро-Невский Александро-Невский Aleksandrotal (Nadezhdino), Koshki, Samara, Russia 540702