1 Chapter 1 Toxins

Total Page:16

File Type:pdf, Size:1020Kb

1 Chapter 1 Toxins Taken from Slayers, Saviors, Servants, and Sex: An Exposé of Kingdom Fungi by David Moore; published by Springer-Verlag, New York: 2001, ISBN 0387950982. Chapter 1 Toxins - kill the primates, rule the world. Or: Don’t turn your back on a fungus! Like most little girls being taken to their grand-parents for a Sunday treat, Innocenta probably bounced around in the back of the car like an over-excited rabbit. Just three years old, she was the only native-born American in the family. Her parents and grandparents had immigrated to southern Illinois several years before. Now, after a recent move to the Gulf coast of Mississippi, they were having a family get-together one Sunday in 1995. Grandfather particularly liked their new home because the wooded hillsides inland from the coast reminded him of home. He had taken readily to roaming through the woods and had found many plants and mushrooms he recognized as being the same as those that he and his wife had collected back in the old country for more than thirty years. Amazingly, the locals didn’t seem to be interested in this natural harvest and he had begun to collect again for his wife’s cooking. For this special day he had found a good crop of succulent mushroom caps to collect with which his wife prepared breaded and deep fried wild mushrooms as a novelty dish for her family’s Sunday brunch. The day went well until about twelve hours after the meal when four of the five family members who had eaten the mushrooms were rushed to the local hospital’s emergency department with nausea, watery diarrhoea, and abdominal pain. Grandfather did not have any symptoms and refused medical treatment. The medical staff in the emergency department realized the possible significance of the meal of mushrooms and treated their patients so as to relieve their symptoms. Giving intravenous fluids and anti-emetics. Importantly, they also monitored liver function and when liver enzyme abnormalities were recognized the next day, all four patients were transferred to the medical centre at the University of South Alabama. Meanwhile, an expert on mushrooms from the State of Mississippi Toxicology Laboratory had been called to examine mushroom specimens collected by Grandfather. He examined them in detail and identified them as the Fool’s Mushroom, which is known scientifically by the name Amanita verna. The family members were all suffering from mushroom poisoning. At the time they were transferred to the University medical centre, all four patients had normal vital signs and were free of symptoms. But the continued medical concern was over the possibility that toxins still coursing through their blood streams were doing irreparable damage to their livers. The function of this body organ is to remove toxins from the blood, but by removing and concentrating them it is itself in great danger of toxin damage. So liver function was closely monitored in all patients and abnormalities found which reached a peak about two to three days after that unfortunate meal. The patients were treated with intravenous fluids to keep their electrolytes in proper balance, with drugs to control bowel movements, and activated charcoal to absorb and remove the remaining toxins from their guts to give some help their livers with toxin removal. The three adult patients were at their worst about two days after the meal but began to recover during the next two days. Innocenta was not so lucky. Although she was free of symptoms three days after the meal, the little girl’s liver was in rapid decline and just one day later the child was transferred to a liver transplant unit where she was listed for an emergency transplant. On day five she required ventilator support, on day seven she was removed from the transplant list when she developed pneumonia. She died from sudden liver failure and general infection on day eleven. This tragic story is likely to be repeated more frequently as time goes on. ‘Natural’ foods have 1 © David Moore 2001 Taken from Slayers, Saviors, Servants, and Sex: An Exposé of Kingdom Fungi by David Moore; published by Springer-Verlag, New York: 2001, ISBN 0387950982. become much more fashionable and their increasing popularity has already lead to an increased incidence of mushroom poisoning among the general population. An incidence which will probably continue to rise. Ironically, though, mushroom poisoning often occurs in experienced collectors. On the European mainland amateur mushroom hunting is a popular pastime which has been practiced for centuries, yet this region has the highest reported incidence of mushroom poisoning in the world. In the United States, too, mushroom poisonings have been increasing since the 1970s in step with changing fashion. Not only are natural foods generally thought to be more wholesome, with wild mushrooms being especially promoted as ‘gourmet delights’ in magazines, cook books and restaurants, but the ‘alternative’ use of mushrooms - for their hallucinogenic effects - has also tempted more people into mushroom collecting. Yet the problem is not limited to those new to mushroom hunting. A Chinese magazine reported large scale mushroom poisoning among villagers in Yunnan province in central China. Sixty-one people were engaged in making a plantation on a hillside on June 28 1997. During the day fifty of them collected mushrooms for a communal meal in the evening. These were people who have lived with and used mushrooms throughout their lives, yet the mistake was made. Poisonous mushrooms were included in the meal. The first illness occurred at 6 am the following day and the first death, of a pregnant woman, occurred on 30 June. By July 1, fifty-one of the villagers showed symptoms of food poisoning (ten people had been too busy to take part in the meal!), and a total of twenty-six of them died. Subsequently, Amanita verna and the Death Cap, Amanita phalloides, were identified as being in the collection used for the meal. By all accounts, a very similar tragedy was narrowly averted in Italy in 1984 when a mycologist spotted the Death Cap (Amanita phalloides) on sale in Potenza market. He saved the town from catastrophe by making radio and TV broadcasts and touring the town by car, warning the locals of the danger by loud-speaker. It is this close resemblance between poisonous and edible, even delicious, mushrooms that creates the problem. A little knowledge can be dangerous and even experts get it wrong. The 1991 edition of the authoritative Larousse Encyclopedie had to be recalled because the illustrations of deadly amanitas were labelled ‘indifferent’ rather than ‘poisonous’. By the time the error was noticed, 180,000 volumes had been distributed and 250 people had to be hired to visit 6,000 book stores in France, Belgium, Switzerland and Canada to overprint the correct wording on the right page. In fact, fairly few mushrooms are poisonous to humans - fewer than fifty of the more than two thousand species of mushrooms which are commonly listed as occurring in most countries can be considered poisonous, and only about six are deadly. In a sense this point is irrelevant because, unfortunately, most serious poisonings are due to the very species of Amanita which contain two of the most potent toxins known, cyclic peptides called amatoxin and phallotoxin. Amanita phalloides, is aptly named Death Cap because it accounts for more than ninety percent of fatalities in the United States and Western Europe, and the other two deadly species are Amanita verna, and Amanita virosa (the common name for which is the Destroying Angel). Both of the toxins interfere with basic aspects of normal cell biology. Amatoxins bind to the RNA polymerase enzyme and interfere with production of the messenger-RNA molecules which take the genetic information from the genes themselves to the protein manufacturing machinery in the cell. With this process stopped by amatoxin, the cell is unable to produce vital working proteins. The cell cannot function properly and so it breaks down and eventually dies. Body organs which normally have high rates of protein synthesis are particularly sensitive to this toxin. Liver cells (called hepatocytes) are in this group and are most commonly involved in mushroom poisoning, but other target organs include kidney, pancreas, testes, and white blood cells. 2 © David Moore 2001 Taken from Slayers, Saviors, Servants, and Sex: An Exposé of Kingdom Fungi by David Moore; published by Springer-Verlag, New York: 2001, ISBN 0387950982. Phallotoxin causes irreversible disruption of the cell membrane and cytoskeleton and cell death inevitably results. Phallotoxin is not absorbed from the human gut, so is not thought to be responsible for the symptoms associated with human poisonings. Amatoxins are readily absorbed from the gut and are then concentrated in the liver where they do their damage. A patient poisoned with Amanita goes through four characteristic phases. For the first six to twenty-four hour the patient is free of symptoms; then there’s a twelve to twenty-four hour period of severe abdominal cramps, nausea, vomiting, and profuse watery diarrhoea. In this stage patients are often misdiagnosed as having gastric influenza, and as in the third phase the patient’s gastrointestinal symptoms improve over a further twelve to twenty-four hour period this misdiagnosis may seem to be right and the patient appears to be on the way to recovery. But all through this time the toxin is damaging the liver; killing its cells and literally ripping it apart from within. Symptoms of liver damage only appear four to eight days after the toxin was consumed, but the liver damage can progress rapidly. Accelerating all the time. Death from catastrophic failure of the liver can occur anything from six to sixteen days after the fatal meal was consumed.
Recommended publications
  • Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies
    agronomy Review Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies Sofia Agriopoulou Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; [email protected]; Tel.: +30-27210-45271 Abstract: Ergot alkaloids (EAs) are a group of mycotoxins that are mainly produced from the plant pathogen Claviceps. Claviceps purpurea is one of the most important species, being a major producer of EAs that infect more than 400 species of monocotyledonous plants. Rye, barley, wheat, millet, oats, and triticale are the main crops affected by EAs, with rye having the highest rates of fungal infection. The 12 major EAs are ergometrine (Em), ergotamine (Et), ergocristine (Ecr), ergokryptine (Ekr), ergosine (Es), and ergocornine (Eco) and their epimers ergotaminine (Etn), egometrinine (Emn), egocristinine (Ecrn), ergokryptinine (Ekrn), ergocroninine (Econ), and ergosinine (Esn). Given that many food products are based on cereals (such as bread, pasta, cookies, baby food, and confectionery), the surveillance of these toxic substances is imperative. Although acute mycotoxicosis by EAs is rare, EAs remain a source of concern for human and animal health as food contamination by EAs has recently increased. Environmental conditions, such as low temperatures and humid weather before and during flowering, influence contamination agricultural products by EAs, contributing to the Citation: Agriopoulou, S. Ergot Alkaloids Mycotoxins in Cereals and appearance of outbreak after the consumption of contaminated products. The present work aims to Cereal-Derived Food Products: present the recent advances in the occurrence of EAs in some food products with emphasis mainly Characteristics, Toxicity, Prevalence, on grains and grain-based products, as well as their toxicity and control strategies.
    [Show full text]
  • The Notification of Injuries from Hazardous Substances
    The Notification of Injuries from Hazardous Substances Draft Guidelines and Reference Material for Public Health Services To be used to assist in a pilot study from July – December 2001 April 2001 Jeff Fowles, Ph.D. Prepared by the Institute of Environmental Science and Research, Limited Under contract by the New Zealand Ministry of Health DISCLAIMER This report or document ("the Report") is given by the Institute of Environmental Science and Research Limited ("ESR") solely for the benefit of the Ministry of Health, Public Health Service Providers and other Third Party Beneficiaries as defined in the Contract between ESR and the Ministry of Health, and is strictly subject to the conditions laid out in that Contract. Neither ESR nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for use of the Report or its contents by any other person or organisation. Guidelines for the Notification of Injuries from Hazardous Substances April 2001 Acknowledgements The author wishes to thank Dr Michael Bates and Melissa Perks (ESR), Sally Gilbert and Helen Saba (Ministry of Health), Dr Donald Campbell (Midcentral Health), Dr Deborah Read (ERMANZ), and Dr Nerida Smith (National Poisons Centre) for useful contributions and helpful suggestions on the construction of these guidelines. Guidelines for the Notification of Injuries from Hazardous Substances April 2001 TABLE OF CONTENTS SUMMARY ........................................................................................................................1
    [Show full text]
  • Hallucinogens: a Cause of Convulsive Ergot Psychoses
    Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works Loma Linda University Electronic Theses, Dissertations & Projects 6-1976 Hallucinogens: a Cause of Convulsive Ergot Psychoses Sylvia Dahl Winters Follow this and additional works at: https://scholarsrepository.llu.edu/etd Part of the Psychiatry Commons Recommended Citation Winters, Sylvia Dahl, "Hallucinogens: a Cause of Convulsive Ergot Psychoses" (1976). Loma Linda University Electronic Theses, Dissertations & Projects. 976. https://scholarsrepository.llu.edu/etd/976 This Thesis is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact [email protected]. ABSTRACT HALLUCINOGENS: A CAUSE OF CONVULSIVE ERGOT PSYCHOSES By Sylvia Dahl Winters Ergotism with vasoconstriction and gangrene has been reported through the centuries. Less well publicized are the cases of psychoses associated with convulsive ergotism. Lysergic acid amide a powerful hallucinogen having one.-tenth the hallucinogenic activity of LSD-25 is produced by natural sources. This article attempts to show that convulsive ergot psychoses are mixed psychoses caused by lysergic acid amide or similar hallucinogens combined with nervous system
    [Show full text]
  • 615.9Barref.Pdf
    INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine­ Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G.
    [Show full text]
  • A Case of Mushroom Poisoning with Russula Subnigricans: Development of Rhabdomyolysis, Acute Kidney Injury, Cardiogenic Shock, and Death
    CASE REPORT Nephrology http://dx.doi.org/10.3346/jkms.2016.31.7.1164 • J Korean Med Sci 2016; 31: 1164-1167 A Case of Mushroom Poisoning with Russula subnigricans: Development of Rhabdomyolysis, Acute Kidney Injury, Cardiogenic Shock, and Death Jong Tae Cho and Jin Hyung Han Mushroom exposures are increasing worldwide. The incidence and fatality of mushroom poisoning are reported to be increasing. Several new syndromes in mushroom poisoning Department of Internal Medicine, College of have been described. Rhabdomyolytic mushroom poisoning is one of new syndromes. Medicine, Dankook University, Cheonan, Korea Russula subnigricans mushroom can cause delayed-onset rhabdomyolysis with acute Received: 17 April 2015 kidney injury in the severely poisoned patient. There are few reports on the toxicity of R. Accepted: 6 June 2015 subnigricans. This report represents the first record of R. subnigricans poisoning with rhabdomyolysis in Korea, describing a 51-year-old man who suffered from rhabdomyolysis, Address for Correspondence: Jong Tae Cho, MD acute kidney injury, severe hypocalcemia, respiratory failure, ventricular tachycardia, Department of Internal Medicine, College of Medicine, cardiogenic shock, and death. Mushroom poisoning should be considered in the evaluation Dankook University, 201 Manghyang-ro, Dongnam-gu, Cheonan 31116, Korea of rhabdomyolysis of unknown cause. Furthermore, R. subnigricans should be considered E-mail: [email protected] in the mushroom poisoning with rhabdomyolysis. Keywords: Mushroom Poisoning; Rhabdomyolysis; Acute Kidney Injury; Respiratory Failure; Cardiogenic Shock INTRODUCTION in August, 2010 at the Jujak mountain located on the province of Jeollanam­do, the southern area of Korea. He was a bus driv­ More leisure time for hobbies, hiking, and trekking has led to er.
    [Show full text]
  • Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
    Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves.
    [Show full text]
  • Pattern and Epidemiology of Poisoning in the East African Region: a Literature Review
    Hindawi Publishing Corporation Journal of Toxicology Volume 2016, Article ID 8789624, 26 pages http://dx.doi.org/10.1155/2016/8789624 Review Article Pattern and Epidemiology of Poisoning in the East African Region: A Literature Review Dexter Tagwireyi,1 Patience Chingombe,1 Star Khoza,2 and Mandy Maredza3 1 Drug and Toxicology Information Service (DaTIS), School of Pharmacy, College of Health Sciences, University of Zimbabwe, P.O. Box A178, Avondale, Harare, Zimbabwe 2Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe, P.O. Box A178, Avondale, Harare, Zimbabwe 3School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa Correspondence should be addressed to Dexter Tagwireyi; [email protected] Received 19 July 2016; Accepted 19 September 2016 Academic Editor: Steven J. Bursian Copyright © 2016 Dexter Tagwireyi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The establishment and strengthening of poisons centres was identified as a regional priority at the first African regional meeting on the Strategic Approach to International Chemicals Management (SAICM) in June 2006. At this meeting, the possibility of a subregional poisons centre, that is, a centre in one country serving multiple countries, was suggested. The WHO Headquarters following consultation with counterparts at the WHO Regional Office for Africa (AFRO) and the SAICM Africa Regional Focal Point successfully submitted a proposal to the SAICM Quick Start Programme (QSP) Trust Fund Committee for a feasibility study into a subregional poisons centre in the Eastern Africa subregion.
    [Show full text]
  • Utilization of Bone Scan and Single Photon Emission Computed Tomography on Amputation Planning in Acute Microvascular Injury: Two Cases T
    The Foot 40 (2019) 109–115 Contents lists available at ScienceDirect The Foot journal homepage: www.elsevier.com/locate/foot Case Report Utilization of bone scan and single photon emission computed tomography on amputation planning in acute microvascular injury: Two cases T Michael Huchitala,c,*, Andrew Aub,Jeffrey V. Lucidoc,d a North Jersey Reconstructive Foot and Ankle Fellowship, United States b California School of Podiatric Medicine, United States c NYU Langone Medical Center, United States d NYU Langone Brooklyn-Chief of Podiatry, United States ABSTRACT The use of single photon emission computer tomography (SPECT/CT) in acute vascular injury is not well documented. SPECT/CT combines the anatomic detail of computer tomography with the functional vascular perfusion of photon emission to determine the viability of osseous structures and surrounding soft tissue. The superimposed imaging provides the practitioner with a reliable anatomic image of viability of a specific anatomic area following insult or injury. We present two cases, bilateral lower extremity frostbite, and symmetric peripheral gangrene in which this imaging modality provided guidance for surgical intervention with adequate predictability and results. 1. Introduction damage [2]. Classically, there are four phases of cold induced thermal injury [2]. Single photon emission computed tomography (SPECT/CT) com- The first phase is hallmarked by local vasoconstriction with resultant bines the use of a radiotracer to visualize functional blood flow to tis- paresthesia leading to a superficial skin desquamation. The second sues and organs with the anatomically detailed cross sectional images of phase involves intracellular and extracellular ice crystal formation that a computerized tomography scan.
    [Show full text]
  • New Zealand Data Sheet
    New Zealand Data Sheet 1 CAFERGOT (ERGOTAMINE TARTRATE 1 MG AND CAFFEINE 100 MG TABLET) CAFERGOT ergotamine tartrate 1 mg and caffeine 100 mg tablet 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Ergotamine tartrate 1 mg and Caffeine 100 mg For the full list of excipients, see section 6.1. 3 PHARMACEUTICAL FORM Cafergot tablets are round, flat with bevelled edge, 9 mm diameter, speckled yellow/white, inscribed with a breakline and XL on one side and plain on the other side. 4 CLINICAL PARTICULARS 4.1 Therapeutic indications Treatment of acute attacks of migraine with or without aura in adults. 4.2 Dose and method of administration Cafergot should be given at the first signs of a migraine attack. Dose Adults First attack: The first time Cafergot is taken, an initial dose of 2 Cafergot tablets orally, is recommended. If relief is not obtained within half an hour, a further tablet should be administered; this may be repeated at half-hourly intervals, but the maximum daily dose of 6 tablets should not be exceeded. Subsequent attacks: If the pain persists, take 1 tablet every half an hour up to the maximum daily dose of 6 tablets. The maximum weekly dose is 10 tablets. Children under 18 years Not recommended. Maximum dose per attack or per day Adults: 6 mg ergotamine tartrate = 6 tablets. Maximum weekly dose Adults: 10 mg ergotamine tartrate = 10 tablets. Special populations Renal impairment Cafergot is contraindicated in patients with severe renal impairment (see Contraindications). Hepatic impairment Cafergot is contraindicated in patients with severe hepatic impairment (see Contraindications).
    [Show full text]
  • Role of the Intensive Care Unit in the Management of the Poisoned Patient Per Kulling and Hans Persson Swedish Poison Information Centre, Stockholm
    Concepts in Toxicology Review Medical Toxicology I: 375·386 (1986) 0112·5966/0090·0375/$06.00/0 © ADIS Press Limited All rights reserved. Role of the Intensive Care Unit in the Management of the Poisoned Patient Per Kulling and Hans Persson Swedish Poison Information Centre, Stockholm Summary By applying a sensible toxicological approach to the general principles ofintensive care, an optimum setting for the treatment ofpoisoning is created. The intensive care unit (ICU) can perform the necessary close observation and monitoring, and thus facilitate rapid detection ofsymptoms, and the institution of early appropriate treatment. Diagnosis may be complex in poisoning and require continuous qualified interpretation of clinical and analytical data. Antidote therapy and treatment to enhance elimination ofthe poison must often be dealt with under careful supervision. The capacity ofthe ICU to counteract various toxic effects in a nonspecific way and to provide optimum symptomatic and supportive care is crucial. However, the ongoing toxic effects on the body must always be considered and allowed to guide symptomatic treatment. Thus, clinical toxicology appears to be a specialised branch of intensive care medicine. Many patients exposed to a poison may, after is of utmost importance for a proper interpretation initial measures like clinical assessment, gastric of clinical and analytical data and an immediate lavage and administration of activated charcoal, be start for necessary therapy. In some cases the ICU managed in general wards. However, to be able to may have a laboratory of its own, offering rapid adequately treat a severely poisoned patient the fa­ and frequent analysis. Another important aspect of cilities of an intensive care unit (ICU) are often the ICU is that there is generally a low threshold required and the capacity of such units to provide for accepting and utilising new and advanced ther­ optimum conditions for diagnosis and treatment apeutic methods.
    [Show full text]
  • Phalloidin, Amanita Phalloides
    Phalloidin, Amanita phalloides sc-202763 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Phalloidin, Amanita phalloides STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY1 HEALTH4 HAZARD INSTABILITY0 SUPPLIER Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE Toxic bicyclic heptapeptide (a member of the family of phallotoxins) isolated from the green mushroom, Amanitra phalloides Agaricaceae (the green death cap or deadly agaric). Binds to polymeric actin, stabilising it and interfering with the function of endoplasmic reticulum and other actin-rich structures. NOTE: Advice physician prior to working with phallotoxins. Prepare Emergency procedures. SYNONYMS C35-H48-N8-O11-S, phalloidine, "Amanita phalloides Group I toxin", "Amanita phalloides Group I toxin", "mushroom (green death cap/ deadly agaric) phallotoxin/ peptide", "cyclopeptide/ bicyclic bioactive heptapeptide" Section 2 - HAZARDS IDENTIFICATION CANADIAN WHMIS SYMBOLS EMERGENCY OVERVIEW RISK Very toxic by inhalation, in contact with skin and if swallowed. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ Severely toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 5 gram may be fatal or may produce serious damage to the health of the individual. ■ At sufficiently high doses the material may be hepatotoxic(i.e.
    [Show full text]
  • Ergotism and Other Mycotoxicoses in Ancient Mesopotamia?
    Ergotism and Other Mycotoxicoses in Ancient Mesopotamia? Robert D. Biggs The Oriental Institute, University of Chicago It is well known that the synthetic hallucinogen LSD (d-lysergic acid diethylamide) is derived from ergot, a fungus that grows on a variety of grasses. While the synthetic form is a relatively recent formula- tion and has inspired a scholarly literature of its own, the effect of ergot in human health has also been studied extensi vely in recent years I. When ingested in sufficient quantities, ergot produces a disease called ergotism which, in serious cases, has two variants, gangrenous and convulsive'. The designation "convul- sive" does not refer to true convulsions when consciousness is lost. The symptoms of convulsive ergotism include tingling in the fingers, crawling sensations on the skin, headaches, vertigo, muscle spasms leading to epileptic type convulsions, confusion, delusions, hallucinations, vomiting, and diarrhea", In connection with some of these manifestations, it is worth mentioning that there has been a serious suggestion that 4 ergotism was a major factor in the infamous Salem witchcraft affair of 1691 and 1692 • It has also been implicated in fa grande peur in France in 17895• We are all familiar with a number of fungi, which include mushrooms, molds, and mildews. We are also aware of the toxicity of some, especially mushrooms, but nevertheless a number of people each year are poisoned because they make a bad choice of which mushrooms to eat. Mushrooms, of course, are very visible fungi about which a great deal is published and about which many people consider themselves knowledgeable.
    [Show full text]