Gibbon Journal Nr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Primates of the Southern Mentawai Islands
Primate Conservation 2018 (32): 193-203 The Status of Primates in the Southern Mentawai Islands, Indonesia Ahmad Yanuar1 and Jatna Supriatna2 1Department of Biology and Post-graduate Program in Biology Conservation, Tropical Biodiversity Conservation Center- Universitas Nasional, Jl. RM. Harsono, Jakarta, Indonesia 2Department of Biology, FMIPA and Research Center for Climate Change, University of Indonesia, Depok, Indonesia Abstract: Populations of the primates native to the Mentawai Islands—Kloss’ gibbon Hylobates klossii, the Mentawai langur Presbytis potenziani, the Mentawai pig-tailed macaque Macaca pagensis, and the snub-nosed pig-tailed monkey Simias con- color—persist in disturbed and undisturbed forests and forest patches in Sipora, North Pagai and South Pagai. We used the line-transect method to survey primates in Sipora and the Pagai Islands and estimate their population densities. We walked 157.5 km and 185.6 km of line transects on Sipora and on the Pagai Islands, respectively, and obtained 93 sightings on Sipora and 109 sightings on the Pagai Islands. On Sipora, we estimated population densities for H. klossii, P. potenziani, and S. concolor in an area of 9.5 km², and M. pagensis in an area of 12.6 km². On the Pagai Islands, we estimated the population densities of the four primates in an area of 11.1 km². Simias concolor was found to have the lowest group densities on Sipora, whilst P. potenziani had the highest group densities. On the Pagai Islands, H. klossii was the least abundant and M. pagensis had the highest group densities. Primate populations, notably of the snub-nosed pig-tailed monkey and Kloss’ gibbon, are reduced and threatened on the southern Mentawai Islands. -
Deforestation of Primate Habitat on Sumatra and Adjacent Islands, Indonesia
Primate Conservation 2017 (31): 71-82 Deforestation of Primate Habitat on Sumatra and Adjacent Islands, Indonesia Jatna Supriatna1,2, Asri A. Dwiyahreni2, Nurul Winarni2, Sri Mariati3,4 and Chris Margules2,5 ¹Department of Biology, FMIPA Universitas Indonesia, Depok, Indonesia 2Research Center for Climate Change, Universitas Indonesia, Depok, Indonesia 3Postgraduate Program, Trisakti Institute for Tourism, Pesanggrahan, Jakarta, Indonesia 4Conservation International, Indonesia 5Centre for Tropical Environmental and Sustainability Science, College of Marine and Environmental Sciences, James Cook University, Cairns, Australia Abstract: The severe declines in forest cover on Sumatra and adjacent islands have been well-documented but that has not slowed the rate of forest loss. Here we present recent data on deforestation rates and primate distribution patterns to argue, yet again, for action to avert potential extinctions of Sumatran primates in the near future. Maps of forest loss were constructed using GIS and satellite imagery. Maps of primate distributions were estimated from published studies, museum records and expert opinion, and the two were overlaid on one another. The extent of deforestation in the provinces of Sumatra between 2000 and 2012 varied from 3.74% (11,599.9 ha in Lampung) to 49.85% (1,844,804.3 ha in Riau), with the highest rates occurring in the provinces of Riau, Jambi, Bangka Belitung and South Sumatra. During that time six species lost 50% or more of their forest habitat: the Banded langur Presbytis femoralis lost 82%, the Black-and-white langur Presbytis bicolor lost 78%, the Black-crested Sumatran langur Presbytis melalophos and the Bangka slow loris Nycticebus bancanus both lost 62%, the Lar gibbon Hylobates lar lost 54%, and the Pale-thighed langur Presbytis siamensis lost 50%. -
A Radiographic Study of Human-Primate Commensalism
Developments in Primatology: Progress and Prospects Series Editor Russell H. Tuttle Department of Anthropology The University of Chicago For further volumes, go to http://www.springer.com/series/5852 Sharon Gursky-Doyen ● Jatna Supriatna Editors Indonesian Primates Editors Sharon Gursky-Doyen Jatna Supriatna Department of Anthropology Conservation International Indonesia Texas A&M University University of Indonesia College Station, TX Jakarta USA Indonesia [email protected] [email protected] ISBN 978-1-4419-1559-7 e-ISBN 978-1-4419-1560-3 DOI 10.1007/978-1-4419-1560-3 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009942275 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) S.L. Gursky-Doyen dedicates this volume to her parents, Ronnie Bender and Burt Gursky, who after all these years still do not really know what she does, but they proudly display her books on their coffee table; and to her husband Jimmie who taught her what love is. -
University of Illinois
UNIVERSITY OF ILLINOIS 3 MAY THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Leahanne M, Sarlo Functional Anatomy and Allometry in the Shoulder of ENTITLED........................................................ Suspensory Primates IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF. BACHELOR OF ARTS LIBERAL ARTS AND SCIENCES 0-1M4 t « w or c o w n w Introduction.....................................................................................................................................1 Dafinibon*..................................................................................................................................... 2 fFunctional m ivw w iiw irwbaola am foriwi irviiiiHbimanual iw 9 jrvafwooaitiona! Vf aai irwbahavlort iiHviw i# in thaahoukter joint complex......................................................................................3 nyvootiua pooioonaiaA^^AlttAAMAl oanainor................................................................................... i4 *4 -TnoOV a awmang.a Ia M AM JI* nwoo—U^AtkA^AA i (snDBDfllluu)/AuMyAlftAlAnAH |At AkJA^AAtlA•wwacwai* |A .............. 4ia i -Tho lar gibbon: KM obate* ]|£.................................................................................15 ANomatry.......................................................................................................................................16 Material* and matooda.....................................................................................................19 -
Why Trot When You Can Walk? an Investigation of the Walk-Trot Transition in the Horse
Why trot when you can walk? An Investigation of the Walk-Trot Transition in the Horse A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment of the Requirements for the Degree Master of Science In Biological Sciences By Devin A. J. Johnsen 2003 SIGNATURE PAGE THESIS: Why trot when you can walk? An investigation of the Walk-Trot Transition in the Horse AUTHOR: Devin A. J. Johnsen DATE SUBMITTED: __________________________________________ Department of Biological Sciences Dr. Donald F. Hoyt __________________________________________ Thesis Committee Chair Biological Sciences Dr. Steven J. Wickler __________________________________________ Animal & Veterinary Sciences Dr. Edward A. Cogger __________________________________________ Animal & Veterinary Sciences Dr. Sepehr Eskandari __________________________________________ Biological Sciences ii Abstract Parameters ranging from energetics to kinematics, from muscle function to ground reaction force, have been theorized as triggers for a variety of terrestrial gait transitions. The walk-trot transition represents a change between gaits governed by very different mechanics, as the walk is modeled by the inverted pendulum, while the trot is modeled by the spring-mass model. A set of five criteria was established in order to determine a parameter as a trigger of the walk-trot transition in the horse. In addition, these mechanical models can provide specific predictions about the change in leg length during the stride. Six horses walked and trotted over a range of speeds on a high-speed treadmill. Stride parameters were measured using accelerometers, while sonomicrometry and electromyography measured muscle function of the vastus lateralis. Kinematics of the coxofemoral, femorotibial, tarsal, and metatarsophalangeal joints as well as leg length were determined using a high-speed (125 Hz) camera. -
Linking Gait Dynamics to Mechanical Cost of Legged Locomotion
REVIEW published: 17 October 2018 doi: 10.3389/frobt.2018.00111 Linking Gait Dynamics to Mechanical Cost of Legged Locomotion David V. Lee 1* and Sarah L. Harris 2 1 School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States, 2 Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States For millenia, legged locomotion has been of central importance to humans for hunting, agriculture, transportation, sport, and warfare. Today, the same principal considerations of locomotor performance and economy apply to legged systems designed to serve, assist, or be worn by humans in urban and natural environments. Energy comes at a premium not only for animals, wherein suitably fast and economical gaits are selected through organic evolution, but also for legged robots that must carry sufficient energy in their batteries. Although a robot’s energy is spent at many levels, from control systems to actuators, we suggest that the mechanical cost of transport is an integral energy expenditure for any legged system—and measuring this cost permits the most direct comparison between gaits of legged animals and robots. Although legged robots have matched or even improved upon total cost of transport of animals, this is typically achieved by choosing extremely slow speeds or by using regenerative mechanisms. Legged robots have not yet reached the low mechanical cost of transport achieved at speeds used by bipedal and quadrupedal animals. Here we consider approaches Edited by: used to analyze gaits and discuss a framework, termed mechanical cost analysis, that Monica A. Daley, can be used to evaluate the economy of legged systems. -
Point-Mass Model of Brachiation
The Journal of Experimental Biology 202, 2609–2617 (1999) 2609 Printed in Great Britain © The Company of Biologists Limited 1999 JEB1788 A POINT-MASS MODEL OF GIBBON LOCOMOTION JOHN E. A. BERTRAM1,*, ANDY RUINA2, C. E. CANNON3, YOUNG HUI CHANG4 AND MICHAEL J. COLEMAN5 1College of Veterinary Medicine, Cornell University, USA, 2Theoretical and Applied Mechanics, Cornell University, USA, 3Sibley School of Mechanical and Aerospace Engineering, Cornell University, USA, 4Department of Integrative Biology, University of California-Berkeley, USA and 5Sibley School of Mechanical and Aerospace Engineering, Cornell University, USA *Author for correspondence at Department of Nutrition, Food and Exercise Sciences, 436 Sandels Building, Florida State University, Tallahassee, FL 32306, USA (e-mail: [email protected]) Accepted 10 June; published on WWW 13 September 1999 Summary In brachiation, an animal uses alternating bimanual losses due to inelastic collisions of the animal with the support to move beneath an overhead support. Past support are avoided, either because the collisions occur at brachiation models have been based on the oscillations of zero velocity (continuous-contact brachiation) or by a a simple pendulum over half of a full cycle of oscillation. smooth matching of the circular and parabolic trajectories These models have been unsatisfying because the natural at the point of contact (ricochetal brachiation). This model behavior of gibbons and siamangs appears to be far less predicts that brachiation is possible over a large range restricted than so predicted. Cursorial mammals use an of speeds, handhold spacings and gait frequencies with inverted pendulum-like energy exchange in walking, but (theoretically) no mechanical energy cost. -
An Assessment of Trade in Gibbons and Orang-Utans in Sumatra, Indoesia
AN ASSESSMENT OF TRADE IN GIBBONS AND ORANG-UTANS IN SUMATRA, INDONESIA VINCENT NIJMAN A TRAFFIC SOUTHEAST ASIA REPORT Published by TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia © 2009 TRAFFIC Southeast Asia All rights reserved. All material appearing in this publication is copyrighted and may be reproduced with permission. Any reproduction in full or in part of this publication must credit TRAFFIC Southeast Asia as the copyright owner. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Layout by Noorainie Awang Anak, TRAFFIC Southeast Asia Suggested citation: Vincent Nijman (2009). An assessment of trade in gibbons and orang-utans in Sumatra, Indonesia TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia ISBN 9789833393244 Cover: A Sumatran Orang-utan, confiscated in Aceh, stares through the bars of its cage Photograph credit: Chris R. Shepherd/TRAFFIC Southeast Asia An assessment of trade in gibbons and orang-utans in Sumatra, Indonesia Vincent Nijman Cho-fui Yang Martinez -
Fleagle and Lieberman 2015F.Pdf
15 Major Transformations in the Evolution of Primate Locomotion John G. Fleagle* and Daniel E. Lieberman† Introduction Compared to other mammalian orders, Primates use an extraordinary diversity of locomotor behaviors, which are made possible by a complementary diversity of musculoskeletal adaptations. Primate locomotor repertoires include various kinds of suspension, bipedalism, leaping, and quadrupedalism using multiple pronograde and orthograde postures and employing numerous gaits such as walking, trotting, galloping, and brachiation. In addition to using different locomotor modes, pri- mates regularly climb, leap, run, swing, and more in extremely diverse ways. As one might expect, the expansion of the field of primatology in the 1960s stimulated efforts to make sense of this diversity by classifying the locomotor behavior of living primates and identifying major evolutionary trends in primate locomotion. The most notable and enduring of these efforts were by the British physician and comparative anatomist John Napier (e.g., Napier 1963, 1967b; Napier and Napier 1967; Napier and Walker 1967). Napier’s seminal 1967 paper, “Evolutionary Aspects of Primate Locomotion,” drew on the work of earlier comparative anatomists such as LeGros Clark, Wood Jones, Straus, and Washburn. By synthesizing the anatomy and behavior of extant primates with the primate fossil record, Napier argued that * Department of Anatomical Sciences, Health Sciences Center, Stony Brook University † Department of Human Evolutionary Biology, Harvard University 257 You are reading copyrighted material published by University of Chicago Press. Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal and injures the author and publisher. fig. 15.1 Trends in the evolution of primate locomotion. -
SOCIAL BEHAVIOURS of CAPTIVE Hylobates Moloch (PRIMATES: HYLOBATIDAE) in the JAVAN GIBBON RESCUE and REHABILITATION CENTER, GEDE-PANGRANGO NATIONAL PARK, INDONESIA
TAPROBANICA , ISSN 1800-427X. October, 2010. Vol. 02, No. 02: pp. 97-103. © Taprobanica Nature Conservation Society, 146, Kendalanda, Homagama, Sri Lanka. SOCIAL BEHAVIOURS OF CAPTIVE Hylobates moloch (PRIMATES: HYLOBATIDAE) IN THE JAVAN GIBBON RESCUE AND REHABILITATION CENTER, GEDE-PANGRANGO NATIONAL PARK, INDONESIA Sectional Editor: Colin Groves Submitted: 14 February 2011, Accepted: 08 March 2011 Niki K. Amarasinghe1,2 and A. A. Thasun Amarasinghe1,3 1 Taprobanica Nature Conservation Society, 146, Kendalanda, Homagama, Sri Lanka E-mails: 2 [email protected], 3 [email protected] Abstract Hylobates moloch, Silvery Gibbon occure on the Java island (in the western half of Java), Indonesia. This study presents preliminary data on social behaviours for Silvery Gibbon in captivity. All the individuals had an average active period from 6:30 hr to 16:00 hr (total 9.5 hours). Resting behaviour had the highest percentage (57.05% ± 0.45), followed by movement (21.99% ± 0.14), feeding ( 15.73% ± 0.34), courtship (5.16% ± 0.03), calling (2.35% ± 0.02), social behaviours (1.6% ± 0.09), agonistic behaviours (0.37 % ± 0.01), and copulation (0.05% ± 0.01). Gibbons showed two peaks of feeding, from 06:35 to 07:30 and from 14:35 to 15:30. Gibbons in the JGC made two types of calls: male solo and female solo calls. Males had a lower time budget for calling behaviour than females. All the gibbons showed four types of locomotor behaviours: brachiating, climbing, jumping (including ricocheting) and bipedal. The most frequent locomotor behaviour was brachiation type. All individuals in the study groups showed autogrooming. -
A Brachiating Robot Controller
University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering 4-1-2000 A Brachiating Robot Controller Jun Nakanishi University of Michigan Toshio Fukuda Nagoya University Daniel E. Koditschek University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/ese_papers Part of the Electrical and Computer Engineering Commons, and the Systems Engineering Commons Recommended Citation Jun Nakanishi, Toshio Fukuda, and Daniel E. Koditschek, "A Brachiating Robot Controller", . April 2000. Copyright 2000 IEEE. Reprinted from IEEE Transactions on Robotics and Automation, Volume 16, Issue 2, April 2000, pages 109-123. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. NOTE: At the time of public, Daniel Koditschek was affiliated with the University of Michigan. Currently, he is a faculty member of the School of Engineering at the University of Pennsylvania. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ese_papers/327 For more information, please contact [email protected]. A Brachiating Robot Controller Abstract We report on our empirical studies of a new controller for a two-link brachiating robot. -
In Mentawai Islands, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 5, May 2020 E-ISSN: 2085-4722 Pages: 2224-2232 DOI: 10.13057/biodiv/d210551 Distribution survey of Kloss’s Gibbons (Hylobates klosii) in Mentawai Islands, Indonesia ARIF SETIAWAN1,♥, CHRISTIAN SIMANJUNTAK2, ISMAEL SAUMANUK3, DAMIANUS TATEBURUK3, YOAN DINATA2, DARMAWAN LISWANTO2, ANJAR RAFIASTANTO2 1Swaraowa. Kalipenthung, Kalitirto, Berbah, Sleman 55573, Yogyakarta, Indonesia. email: [email protected] 2Fauna and Flora International Indonesia. Jl. Margasatwa Raya, Komplek Margasatwa Baru No. A7, Pondok Labu, Cilandak, Jakarta Selatan 12450, Jakarta, Indonesia 3Malinggai Uma Tradisional Mentawai. Dusun Puro 2, Desa Mailepet, Kecamatan Siberut Selatan, Kepulauan Mentawai 25393, West Sumatra, Indonesia Manuscript received: 6 February 2020. Revision accepted: 26 April 2020. Abstract. Setiawan A, Simanjuntak C, Saumanuk I, Tateburuk D, Dinata Y, Liswanto D, Rafiastanto A. 2020. Distribution survey of Kloss’s Gibbons (Hylobates klosii) in Mentawai Islands, Indonesia. Biodiversitas 21: 2224-2232. The aim of this study was to assess the population density, distribution, habitats, and threats of Kloss’s gibbon (Hylobates klossii) in the Mentawai Islands, Indonesia. In 2011- 2012 we conducted a survey on Siberut Island, outside of the National Park, as well as a short visit to Sipora, North Pagai, and South Pagai. From March to September 2017, we surveyed once again some previous localities on the Siberut and Sipora islands to keep up to date with recent developments on the ground. On Siberut we used an auditory sampling method through fixed point counts, combined with line transects, to estimate the gibbon densities. In total, 113-morning calls were recorded from 13 Listening Points; 75 of these were used for density calculations.