Quantum Computing and Cryptography: Analysis, Risks, and Recommendations for Decisionmakers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Security of Quantum Key Distribution with Entangled Qutrits
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Security of Quantum Key Distribution with Entangled Qutrits. Thomas Durt,1 Nicolas J. Cerf,2 Nicolas Gisin,3 and Marek Zukowski˙ 4 1 Toegepaste Natuurkunde en Fotonica, Theoeretische Natuurkunde, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 2 Ecole Polytechnique, CP 165, Universit´e Libre de Bruxelles, 1050 Brussels, Belgium 3 Group of Applied Physics - Optique, Universit´e de Gen`eve, 20 rue de l’Ecole de M´edecine, Gen`eve 4, Switzerland, 4Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet, Gda´nski, PL-80-952 Gda´nsk, Poland July 2002 Abstract The study of quantum cryptography and quantum non-locality have traditionnally been based on two-level quantum systems (qubits). In this paper we consider a general- isation of Ekert's cryptographic protocol[20] where qubits are replaced by qutrits. The security of this protocol is related to non-locality, in analogy with Ekert's protocol. In order to study its robustness against the optimal individual attacks, we derive the infor- mation gained by a potential eavesdropper applying a cloning-based attack. Introduction Quantum cryptography aims at transmitting a random key in such a way that the presence of an eavesdropper that monitors the communication is revealed by disturbances in the transmission of the key (for a review, see e.g. [21]). Practically, it is enough in order to realize a crypto- graphic protocol that the key signal is encoded into quantum states that belong to incompatible bases, as in the original protocol of Bennett and Brassard[4]. -
Key Concepts for Future QIS Learners Workshop Output Published Online May 13, 2020
Key Concepts for Future QIS Learners Workshop output published online May 13, 2020 Background and Overview On behalf of the Interagency Working Group on Workforce, Industry and Infrastructure, under the NSTC Subcommittee on Quantum Information Science (QIS), the National Science Foundation invited 25 researchers and educators to come together to deliberate on defining a core set of key concepts for future QIS learners that could provide a starting point for further curricular and educator development activities. The deliberative group included university and industry researchers, secondary school and college educators, and representatives from educational and professional organizations. The workshop participants focused on identifying concepts that could, with additional supporting resources, help prepare secondary school students to engage with QIS and provide possible pathways for broader public engagement. This workshop report identifies a set of nine Key Concepts. Each Concept is introduced with a concise overall statement, followed by a few important fundamentals. Connections to current and future technologies are included, providing relevance and context. The first Key Concept defines the field as a whole. Concepts 2-6 introduce ideas that are necessary for building an understanding of quantum information science and its applications. Concepts 7-9 provide short explanations of critical areas of study within QIS: quantum computing, quantum communication and quantum sensing. The Key Concepts are not intended to be an introductory guide to quantum information science, but rather provide a framework for future expansion and adaptation for students at different levels in computer science, mathematics, physics, and chemistry courses. As such, it is expected that educators and other community stakeholders may not yet have a working knowledge of content covered in the Key Concepts. -
What Is Counterintelligence? and How Lessons on Counterintelligence Might Enrich Their Courses
Association of Former Intelligence Officers From AFIO's The Intelligencer 7700 Leesburg Pike, Suite 324 Journal of U.S. Intelligence Studies Falls Church, Virginia 22043 Web: www.afio.com , E-mail: [email protected] Volume 20 • Number 2 • $15 single copy price Fall/Winter 2013 ©2013, AFIO measure what an adversary knows about us? How do we determine whether or not we are successful in keeping our secrets and projecting the image we wish Guide to the Study of Intelligence to project? How do we know what and whom to trust?3 This article is a short cut to some basic concepts about counterintelligence: what it is and is not. Educa- tors in history, government, political science, ethics, law and cognitive psychology should consider whether What is Counterintelligence? and how lessons on counterintelligence might enrich their courses. Recommended additional readings are suggested in the footnotes. A Guide to Thinking A general introductory course on U.S. counter- and Teaching about CI intelligence should have five key learning objectives: Understanding the meaning of counterintelli- gence, its place within intelligence studies, and by Michelle K. Van Cleave its role in international relations as an instrument of statecraft.4 Understanding the difference between tactical WHY STUDY COUNTERINTELLIGENCE? and strategic CI,5 the difference between CI and security,6 and the range of foreign intelligence he study of “counterintelligence” is rare in aca- 3. Consider for example the deception paradox: “Alertness to demia. While modern courses on international deception presumably prompts a more careful and systematic relations often include intelligence, they usually review of the evidence. -
Quantum Computing: Principles and Applications
Journal of International Technology and Information Management Volume 29 Issue 2 Article 3 2020 Quantum Computing: Principles and Applications Yoshito Kanamori University of Alaska Anchorage, [email protected] Seong-Moo Yoo University of Alabama in Huntsville, [email protected] Follow this and additional works at: https://scholarworks.lib.csusb.edu/jitim Part of the Communication Technology and New Media Commons, Computer and Systems Architecture Commons, Information Security Commons, Management Information Systems Commons, Science and Technology Studies Commons, Technology and Innovation Commons, and the Theory and Algorithms Commons Recommended Citation Kanamori, Yoshito and Yoo, Seong-Moo (2020) "Quantum Computing: Principles and Applications," Journal of International Technology and Information Management: Vol. 29 : Iss. 2 , Article 3. Available at: https://scholarworks.lib.csusb.edu/jitim/vol29/iss2/3 This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International Technology and Information Management by an authorized editor of CSUSB ScholarWorks. For more information, please contact [email protected]. Journal of International Technology and Information Management Volume 29, Number 2 2020 Quantum Computing: Principles and Applications Yoshito Kanamori (University of Alaska Anchorage) Seong-Moo Yoo (University of Alabama in Huntsville) ABSTRACT The development of quantum computers over the past few years is one of the most significant advancements in the history of quantum computing. D-Wave quantum computer has been available for more than eight years. IBM has made its quantum computer accessible via its cloud service. Also, Microsoft, Google, Intel, and NASA have been heavily investing in the development of quantum computers and their applications. -
On the NIST Lightweight Cryptography Standardization
On the NIST Lightweight Cryptography Standardization Meltem S¨onmez Turan NIST Lightweight Cryptography Team ECC 2019: 23rd Workshop on Elliptic Curve Cryptography December 2, 2019 Outline • NIST's Cryptography Standards • Overview - Lightweight Cryptography • NIST Lightweight Cryptography Standardization Process • Announcements 1 NIST's Cryptography Standards National Institute of Standards and Technology • Non-regulatory federal agency within U.S. Department of Commerce. • Founded in 1901, known as the National Bureau of Standards (NBS) prior to 1988. • Headquarters in Gaithersburg, Maryland, and laboratories in Boulder, Colorado. • Employs around 6,000 employees and associates. NIST's Mission to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life. 2 NIST Organization Chart Laboratory Programs Computer Security Division • Center for Nanoscale Science and • Cryptographic Technology Technology • Secure Systems and Applications • Communications Technology Lab. • Security Outreach and Integration • Engineering Lab. • Security Components and Mechanisms • Information Technology Lab. • Security Test, Validation and • Material Measurement Lab. Measurements • NIST Center for Neutron Research • Physical Measurement Lab. Information Technology Lab. • Advanced Network Technologies • Applied and Computational Mathematics • Applied Cybersecurity • Computer Security • Information Access • Software and Systems • Statistical -
Large Scale Quantum Key Distribution: Challenges and Solutions
Large scale quantum key distribution: challenges and solutions QIANG ZHANG,1,2 FEIHU XU,1,2 YU-AO CHEN,1,2 CHENG-ZHI PENG1,2 AND JIAN-WEI PAN1,2,* 1Shanghai Branch, Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai, 201315, China 2CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, P. R. China *[email protected], [email protected] Abstract: Quantum key distribution (QKD) together with one time pad encoding can provide information-theoretical security for communication. Currently, though QKD has been widely deployed in many metropolitan fiber networks, its implementation in a large scale remains experimentally challenging. This letter provides a brief review on the experimental efforts towards the goal of global QKD, including the security of practical QKD with imperfect devices, QKD metropolitan and backbone networks over optical fiber and satellite-based QKD over free space. 1. Introduction Quantum key distribution (QKD) [1,2], together with one time pad (OTP) [3] method, provides a secure means of communication with information-theoretical security based on the basic principle of quantum mechanics. Light is a natural and optimal candidate for the realization of QKD due to its flying nature and its compatibility with today’s fiber-based telecom network. The ultimate goal of the field is to realize a global QKD network for worldwide applications. Tremendous efforts have been put towards this goal [4–6]. Despite significant progresses over the past decades, there are still two major challenges for large-scale QKD network. -
Is Quantum Search Practical?
Q UANTUM C OMPUTING IS QUANTUM SEARCH PRACTICAL? Gauging a quantum algorithm’s practical significance requires weighing it against the best conventional techniques applied to useful instances of the same problem. The authors show that several commonly suggested applications of Grover’s quantum search algorithm fail to offer computational improvements over the best conventional algorithms. ome researchers suggest achieving mas- polynomial-time algorithm for number factoring sive speedups in computing by exploiting is known, and the security of the RSA code used quantum-mechanical effects such as su- on the Internet relies on this problem’s difficulty. perposition (quantum parallelism) and If a large and error-tolerant quantum computer Sentanglement.1 A quantum algorithm typically were available today, running Shor’s algorithm on consists of applying quantum gates to quantum it could compromise e-commerce. states, but because the input to the algorithm Lov Grover’s quantum search algorithm is also might be normal classical bits (or nonquantum), widely studied. It must compete with advanced it only affects the selection of quantum gates. Af- classical search techniques in applications that use ter all the gates are applied, quantum measure- parallel processing3 or exploit problem structure, ment is performed, producing the algorithm’s often implicitly. Despite its promise, though, it is nonquantum output. Deutsch’s algorithm, for in- by no means clear whether, or how soon, quantum stance, solves a certain artificial problem in fewer computing methods will offer better performance steps than any classical (nonquantum) algorithm, in useful applications.4 Traditional complexity and its relative speedup grows with the problem analysis of Grover’s algorithm doesn’t consider the size. -
Quantum Information Science and the Technology Frontier Jake Taylor February 5Th, 2020
Quantum Information Science and the Technology Frontier Jake Taylor February 5th, 2020 Office of Science and Technology Policy www.whitehouse.gov/ostp www.ostp.gov @WHOSTP Photo credit: Lloyd Whitman The National Quantum Initiative Signed Dec 21, 2018 11 years of sustained effort DOE: new centers working with the labs, new programs NSF: new academic centers NIST: industrial consortium, expand core programs Coordination: NSTC combined with a National Coordination Office and an external Advisory committee 2 National Science and Technology Council • Subcommittee on Quantum Information Science (SCQIS) • DoE, NSF, NIST co-chairs • Coordinates NQI, other research activities • Subcommittee on Economic and Security Implications of Quantum Science (ESIX) • DoD, DoE, NSA co-chairs • Civilian, IC, Defense conversation space 3 Policy Recommendations • Focus on a science-first approach that aims to identify and solve Grand Challenges: problems whose solutions enable transformative scientific and industrial progress; • Build a quantum-smart and diverse workforce to meet the needs of a growing field; • Encourage industry engagement, providing appropriate mechanisms for public-private partnerships; • Provide the key infrastructure and support needed to realize the scientific and technological opportunities; • Drive economic growth; • Maintain national security; and • Continue to develop international collaboration and cooperation. 4 Quantum Sensing Accuracy via physical law New modalities of measurement Concept: atoms are indistinguishable. Use Challenge: measuring inside the body. Use this to create time standards, enables quantum behavior of individual nuclei to global navigation. image magnetic resonances (MRI) Concept: speed of light is constant. Use this Challenge: estimating length limited by ‘shot to measure distance using a time standard. noise’ (individual photons!). -
TS 102 176-1 V2.1.1 (2011-07) Technical Specification
ETSI TS 102 176-1 V2.1.1 (2011-07) Technical Specification Electronic Signatures and Infrastructures (ESI); Algorithms and Parameters for Secure Electronic Signatures; Part 1: Hash functions and asymmetric algorithms 2 ETSI TS 102 176-1 V2.1.1 (2011-07) Reference RTS/ESI-000080-1 Keywords e-commerce, electronic signature, security ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
Countering FIE Threats: Best Practices
i Countering FIE Threats: Best Practices Effective programs to counter foreign intelligence entity (FIE) threats are focused on three overarching outcomes: Promote CI and Identify and 1. Identification of foreign intelligence threats security training assess risks to and sharing of threat information and awareness sensitive assets 2. Safeguarding of sensitive information, assets, and activities Establish Share threat programs Develop and 3. Prevention and detection of insider threats information countering implement and warnings FIE threats mitigation internally and strategies The best practices detailed in this Guide, from identifying externally and assessing risks to promoting training and awareness, are complementary program components that, when employed together, can effectively shield your organization Integrate counter-FIE efforts across the from FIE threats. organization The National Counterintelligence and Security Center (NCSC) is charged with leading and supporting the counterintelligence (CI) and security activities of the U.S. government, the U.S. Intelligence Community, and U.S. private sector entities that are at risk of intelligence collection, penetration, or attack by foreign adversaries and malicious insiders. The capabilities and activities described in this Guide are exemplars of program components delineated as requirements in numerous strategies, policies, and guidelines. This Guide is a living document and will be updated to reflect improved and innovative ways to achieve the above outcomes. In addition, organization-specific capabilities and activities may be defined and implemented to ensure unique needs are met. Finally, nothing in this document shall be construed as authorization for any organization to conduct activities not otherwise authorized under statute, executive order, or other applicable law, policy, or regulation, nor does this document obviate an organization’s responsibility to conduct activities that are otherwise mandated, directed, or recommended for execution under the same. -
American Leadership in Quantum Technology Joint Hearing
AMERICAN LEADERSHIP IN QUANTUM TECHNOLOGY JOINT HEARING BEFORE THE SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY & SUBCOMMITTEE ON ENERGY COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION OCTOBER 24, 2017 Serial No. 115–32 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–671PDF WASHINGTON : 2018 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY HON. BARBARA COMSTOCK, Virginia, Chair FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois ELIZABETH H. -
Marching Towards Quantum Supremacy
Princeton Center for Theoretical Science The Princeton Center for Theoretical Science is dedicated to exploring the frontiers of theory in the natural sciences. Its purpose is to promote interaction among theorists and seed new directions in research, especially in areas cutting across traditional disciplinary boundaries. The Center is home to a corps of Center Postdoctoral Fellows, chosen from nominations made by senior theoretical scientists around the world. A group of senior Faculty Fellows, chosen from science and engineering departments across the campus, are responsible for guiding the Center. Center activities include focused topical programs chosen from proposals by Princeton faculty across the natural sciences. The Center is located on the fourth floor of Jadwin Hall, in the heart of the campus “science neighborhood”. The Center hopes to become the focus for innovation and cross-fertilization in theoretical natural science at Princeton. Faculty Fellows Igor Klebanov, Director Ned Wingreen, Associate Director Marching Towards Quantum Andrei Bernevig Jeremy Goodman Duncan Haldane Supremacy Andrew Houck Mariangela Lisanti Thanos Panagiotopoulos Frans Pretorius November 13-15, 2019 Center Postdoctoral Fellows Ricard Alert-Zenon 2018-2021 PCTS Seminar Room Nathan Benjamin 2018-2021 Andrew Chael 2019-2022 Jadwin Hall, Fourth Floor, Room 407 Amos Chan 2019-2022 Fani Dosopoulou 2018-2021 Biao Lian 2017-2020 Program Organizers Vladimir Narovlansky 2019-2022 Sergey Frolov Sabrina Pasterski 2019-2022 Abhinav Prem 2018-2021 Michael Gullans