Lecture 12: Quantum Key Distribution. Secret Key. BB84, E91 and B92 Protocols. Continuous-Variable Protocols. 1. Secret Key. A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Security of Quantum Key Distribution with Entangled Qutrits
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Security of Quantum Key Distribution with Entangled Qutrits. Thomas Durt,1 Nicolas J. Cerf,2 Nicolas Gisin,3 and Marek Zukowski˙ 4 1 Toegepaste Natuurkunde en Fotonica, Theoeretische Natuurkunde, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 2 Ecole Polytechnique, CP 165, Universit´e Libre de Bruxelles, 1050 Brussels, Belgium 3 Group of Applied Physics - Optique, Universit´e de Gen`eve, 20 rue de l’Ecole de M´edecine, Gen`eve 4, Switzerland, 4Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet, Gda´nski, PL-80-952 Gda´nsk, Poland July 2002 Abstract The study of quantum cryptography and quantum non-locality have traditionnally been based on two-level quantum systems (qubits). In this paper we consider a general- isation of Ekert's cryptographic protocol[20] where qubits are replaced by qutrits. The security of this protocol is related to non-locality, in analogy with Ekert's protocol. In order to study its robustness against the optimal individual attacks, we derive the infor- mation gained by a potential eavesdropper applying a cloning-based attack. Introduction Quantum cryptography aims at transmitting a random key in such a way that the presence of an eavesdropper that monitors the communication is revealed by disturbances in the transmission of the key (for a review, see e.g. [21]). Practically, it is enough in order to realize a crypto- graphic protocol that the key signal is encoded into quantum states that belong to incompatible bases, as in the original protocol of Bennett and Brassard[4]. -
Front Matter of the Book Contains a Detailed Table of Contents, Which We Encourage You to Browse
Cambridge University Press 978-1-107-00217-3 - Quantum Computation and Quantum Information: 10th Anniversary Edition Michael A. Nielsen & Isaac L. Chuang Frontmatter More information Quantum Computation and Quantum Information 10th Anniversary Edition One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th Anniversary Edition includes a new Introduction and Afterword from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography, and quantum error-correction. Quantum mechanics and computer science are introduced, before moving on to describe what a quantum computer is, how it can be used to solve problems faster than “classical” computers, and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering. MICHAEL NIELSEN was educated at the University of Queensland, and as a Fulbright Scholar at the University of New Mexico. He worked at Los Alamos National Laboratory, as the Richard Chace Tolman Fellow at Caltech, was Foundation Professor of Quantum Information Science and a Federation Fellow at the University of Queensland, and a Senior Faculty Member at the Perimeter Institute for Theoretical Physics. He left Perimeter Institute to write a book about open science and now lives in Toronto. ISAAC CHUANG is a Professor at the Massachusetts Institute of Technology, jointly appointed in Electrical Engineering & Computer Science, and in Physics. -
RSA: Encryption, Decryption
Data Communications & Networks Session 11 – Main Theme Network Security Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted from course textbook resources Computer Networking: A Top-Down Approach, 5/E Copyright 1996-2009 J.F. Kurose and K.W. Ross, All Rights Reserved 1 Agenda 1 Session Overview 2 Network Security 3 Summary and Conclusion 2 What is the class about? .Course description and syllabus: »http://www.nyu.edu/classes/jcf/CSCI-GA.2262-001/ »http://www.cs.nyu.edu/courses/spring15/CSCI- GA.2262-001/index.html .Textbooks: » Computer Networking: A Top-Down Approach (5th Edition) James F. Kurose, Keith W. Ross Addison Wesley ISBN-10: 0136079679, ISBN-13: 978-0136079675, 5th Edition (03/09) 3 Course Overview . Computer Networks and the Internet . Application Layer . Fundamental Data Structures: queues, ring buffers, finite state machines . Data Encoding and Transmission . Local Area Networks and Data Link Control . Wireless Communications . Packet Switching . OSI and Internet Protocol Architecture . Congestion Control and Flow Control Methods . Internet Protocols (IP, ARP, UDP, TCP) . Network (packet) Routing Algorithms (OSPF, Distance Vector) . IP Multicast . Sockets 4 Course Approach . Introduction to Basic Networking Concepts (Network Stack) . Origins of Naming, Addressing, and Routing (TCP, IP, DNS) . Physical Communication Layer . MAC Layer (Ethernet, Bridging) . Routing Protocols (Link State, Distance Vector) . Internet Routing (BGP, OSPF, Programmable Routers) . TCP Basics (Reliable/Unreliable) . Congestion Control . QoS, Fair Queuing, and Queuing Theory . Network Services – Multicast and Unicast . Extensions to Internet Architecture (NATs, IPv6, Proxies) . Network Hardware and Software (How to Build Networks, Routers) . Overlay Networks and Services (How to Implement Network Services) . -
The Bold Ones in the Land of Strange
PHYSICS OF THE IMPOSSIBLE: The Bold Ones in the Land of Strange By Karol Jałochowski. Translation by Kamila Slawinska. Originally published in POLITYKA 41, 85 (2010) in Polish. A new scientific center has just opened at Singapore’s Science Drive 2: its efforts are focused on revealing nature’s uttermost secrets. The place attracts many young, talented and eccentric physicists, among them some Poles. This summer night is as hot as any other night in the equatorial Singapore (December ones included). Five men, seated at a table in one of the city’s countless bars, are about to finish another pitcher of local beer. They are Artur Ekert, a Polish-born cryptologist and a Research Fellow at Merton College at the University of Oxford (profiled in issue 27 of POLITYKA); Leong Chuan Kwek, a Singapore native; Briton Hugo Cable; Brazilian Marcelo Franca Santos; and Björn Hessmo of Sweden. While enjoying their drinks, they are also trying to find a trace of comprehensive tactics in the chaotic mess of ball-kicking they are watching on a plasma screen above: a soccer game played somewhere halfway across the world. “My father always wanted me to become a soccer player. And I have failed him so miserably,” says Hessmo. His words are met with a nod of understanding. So far, the game has provided the men with no excitement. Their faces finally light up with joy only when the score table is displayed with the results of Round One of the ongoing tournament. Zeros and ones – that’s exciting! All of them are quantum information physicists: zeroes and ones is what they do. -
Status of Quantum Computer Development Entwicklungsstand Quantencomputer Document History
Status of quantum computer development Entwicklungsstand Quantencomputer Document history Version Date Editor Description 1.0 May 2018 Document status after main phase of project 1.1 July 2019 First update containing both new material and improved readability, details summarized in chapters 1.6 and 2.11 Federal Office for Information Security Post Box 20 03 63 D-53133 Bonn Phone: +49 22899 9582-0 E-Mail: [email protected] Internet: https://www.bsi.bund.de © Federal Office for Information Security 2017 Introduction Introduction This study discusses the current (Fall 2017, update early 2019) state of affairs in the physical implementation of quantum computing as well as algorithms to be run on them, focused on application in cryptanalysis. It is supposed to be an orientation to scientists with a connection to one of the fields involved—mathematicians, computer scientists. These will find the treatment of their own field slightly superficial but benefit from the discussion in the other sections. The executive summary as well as the introduction and conclusions to each chapter provide actionable information to decision makers. The text is separated into multiple parts that are related (but not identical) to previous work packages of this project. Authors Frank K. Wilhelm, Saarland University Rainer Steinwandt, Florida Atlantic University, USA Brandon Langenberg, Florida Atlantic University, USA Per J. Liebermann, Saarland University Anette Messinger, Saarland University Peter K. Schuhmacher, Saarland University Copyright The study including all its parts are copyrighted by the BSI–Federal Office for Information Security. Any use outside the limits defined by the copyright law without approval by the BSI is not permitted and punishable. -
Large Scale Quantum Key Distribution: Challenges and Solutions
Large scale quantum key distribution: challenges and solutions QIANG ZHANG,1,2 FEIHU XU,1,2 YU-AO CHEN,1,2 CHENG-ZHI PENG1,2 AND JIAN-WEI PAN1,2,* 1Shanghai Branch, Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai, 201315, China 2CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, P. R. China *[email protected], [email protected] Abstract: Quantum key distribution (QKD) together with one time pad encoding can provide information-theoretical security for communication. Currently, though QKD has been widely deployed in many metropolitan fiber networks, its implementation in a large scale remains experimentally challenging. This letter provides a brief review on the experimental efforts towards the goal of global QKD, including the security of practical QKD with imperfect devices, QKD metropolitan and backbone networks over optical fiber and satellite-based QKD over free space. 1. Introduction Quantum key distribution (QKD) [1,2], together with one time pad (OTP) [3] method, provides a secure means of communication with information-theoretical security based on the basic principle of quantum mechanics. Light is a natural and optimal candidate for the realization of QKD due to its flying nature and its compatibility with today’s fiber-based telecom network. The ultimate goal of the field is to realize a global QKD network for worldwide applications. Tremendous efforts have been put towards this goal [4–6]. Despite significant progresses over the past decades, there are still two major challenges for large-scale QKD network. -
Progress in Satellite Quantum Key Distribution
www.nature.com/npjqi REVIEW ARTICLE OPEN Progress in satellite quantum key distribution Robert Bedington 1, Juan Miguel Arrazola1 and Alexander Ling1,2 Quantum key distribution (QKD) is a family of protocols for growing a private encryption key between two parties. Despite much progress, all ground-based QKD approaches have a distance limit due to atmospheric losses or in-fibre attenuation. These limitations make purely ground-based systems impractical for a global distribution network. However, the range of communication may be extended by employing satellites equipped with high-quality optical links. This manuscript summarizes research and development which is beginning to enable QKD with satellites. It includes a discussion of protocols, infrastructure, and the technical challenges involved with implementing such systems, as well as a top level summary of on-going satellite QKD initiatives around the world. npj Quantum Information (2017) 3:30 ; doi:10.1038/s41534-017-0031-5 INTRODUCTION losses that increase exponentially with distance, greatly limiting Quantum key distribution (QKD) is a relatively new cryptographic the secure key rates that can be achieved over long ranges. primitive for establishing a private encryption key between two For any pure-loss channel with transmittance η, it has been parties. The concept has rapidly matured into a commercial shown that the secure key rate per mode of any QKD protocol 5, 6, 7 technology since the first proposal emerged in 1984,1 largely scales linearly with η for small η. This places a fundamental because of a very attractive proposition: the security of QKD is not limit to the maximum distance attainable by QKD protocols based on the computational hardness of solving mathematical relying on direct transmission. -
Semi-Quantum Communication: Protocols for Key Agreement, Controlled Secure Direct Communication and Dialogue Arxiv:1702.07861V1
Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue Chitra Shuklaa;,∗ Kishore Thapliyalb;,y Anirban Pathakb;z aGraduate School of Information Science, Nagoya University, Furo-cho 1, Chikusa-ku, Nagoya, 464-8601, Japan bJaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307, India February 28, 2017 Abstract Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specif- ically, first time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e- commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Further, it addresses a funda- mental question in context of a large number problems- how much quantumness is (how many quan- tum parties are) required to perform a specific secure communication task? Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate-coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance. arXiv:1702.07861v1 [quant-ph] 25 Feb 2017 Keywords: Semi-quantum protocol, quantum communication, key agreement, quantum dialogue, deter- ministic secure quantum communication, secure direct quantum communication. -
Practical Quantum Key Distribution Based on the BB84 Protocol
Practical Quantum Key Distribution based on the BB84 protocol A. Ruiz-Alba, D. Calvo, V. Garcia-Muñoz, A. Martinez, W. Amaya, J.G. Rozo, J. Mora, J. Capmany Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politècnica de València, 8G Building-access D-Camino de Vera s/n-46022 Valencia (Spain) Corresponding author: [email protected] Abstract relies on photon sources and the so-called pho- ton guns are far from ready. An alternative and This paper provides a review of the most impor- also a complementary approach to increase the tant and widely used Quantum Key Distribution bit rate is to make QKD systems work in paral- systems and then describes our recently pro- lel. This simple engineering approach becomes a posed scheme based on Subcarrier Multiplexing challenge when working with quantum systems: that opens the possibility of parallel Quantum The system should work in parallel but still rely Key Distribution. We report the first-ever ex- on just one source and its security should still be perimental implementation of parallel quantum guaranteed by the principles of quantum me- key distribution using this technique showing a chanics both when Alice prepares the photons maximum multiplexing gain. and when Bob “measures” the incoming states. At the same time the multiplexing technique Keywords: Optical fiber communications, quan- should be safe to Eve gaining any information. tum information, quantum key distribution, sub- carrier multiplexing. In this context, recent progress in the literature [4] remarks that photonics is a key enabling technology for implementing commercial QKD 1. Introduction systems to become a competitive technology in Information Security. -
A Recent Encryption Technique for Images Using AES and Quantum Key Distribution
International Journal of Research in Advent Technology, Vol.7, No.5S, May 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org A Recent Encryption Technique for Images Using AES and Quantum Key Distribution Jeba Nega Cheltha C Assistant Professor, Department of CSE, Jaipur Engineering College & Research Centre Jaipur, India [email protected] Abstract— Data security acts an imperative task while transferring information through internet, whereas, security is awfully vital in the contemporary world. Art of Cryptography endows with an original level of fortification that protects private facts from disclosure to harass. But still, day to day, it’s very arduous to safe the data from intruders. This paper presents regarding thetransferring encrypted images over internet using AES and Quantum Key Distribution method,where Advanced Encryption Standard (AES) algorithm is used for encryption as well as decryption of the picture. AES employs Symmetric key that means both the dispatcher and recipient use the identical key. So the key should be transmitted securely to both the dispatcher and recipient using Quantum key Distribution, whereas, using AES and Quantum Key Distribution the Data would be more secure. Keywords— Encryption, Decryption,AES, Quantum key Distribution 1. INTRODUCTION which is lesser than the size of AES . Also AES is against The most secured just as widely utilized approach to watch Brute Force attack. Hence the proposed work is much the protection and dependability of data communicate secured. depend on symmetric cryptography. Key distribution is the way toward sharing cryptographic keys between at least two 3. PROPOSED WORK gatherings to enable them to safely share data. -
Quantum Key Distribution Protocols and Applications
Quantum Key Distribution Protocols and Applications Sheila Cobourne Technical Report RHUL{MA{2011{05 8th March 2011 Department of Mathematics Royal Holloway, University of London Egham, Surrey TW20 0EX, England http://www.rhul.ac.uk/mathematics/techreports Title: Quantum Key Distribution – Protocols and Applications Name: Sheila Cobourne Student Number: 100627811 Supervisor: Carlos Cid Submitted as part of the requirements for the award of the MSc in Information Security at Royal Holloway, University of London. I declare that this assignment is all my own work and that I have acknowledged all quotations from the published or unpublished works of other people. I declare that I have also read the statements on plagiarism in Section 1 of the Regulations Governing Examination and Assessment Offences and in accordance with it I submit this project report as my own work. Signature: Date: Acknowledgements I would like to thank Carlos Cid for his helpful suggestions and guidance during this project. Also, I would like to express my appreciation to the lecturers at Royal Holloway who have increased my understanding of Information Security immensely over the course of the MSc, without which this project would not have been possible. Contents Table of Figures ................................................................................................... 6 Executive Summary ............................................................................................. 7 Chapter 1 Introduction ................................................................................... -
Machine Learning Aided Carrier Recovery in Continuous-Variable Quantum Key Distribution
Machine Learning Aided Carrier Recovery in Continuous-Variable Quantum Key Distribution T Gehring1, H-M Chin1,2, N Jain1, D Zibar2, and U L Andersen1 1Department of Physics, Technical University of Denmark, Lyngby, Denmark 2Department of Photonics, Technical University of Denmark, Lyngby, Denmark Contact Email: [email protected] Continuous-variable quantum key distribution (CV-QKD) makes use of in-phase and quadrature mod- ulation and coherent detection to distribute secret keys between two parties for data encryption with future proof security. The secret key rate of such CV-QKD systems is limited by excess noise, which is attributed to an eavesdropper. A key issue typical to all modern CV-QKD systems implemented with a reference or pilot signal and an independent local oscillator is controlling the excess noise generated from the fre- quency and phase noise accrued by the transmitter and receiver. Therefore accurate phase estimation and compensation, so-called carrier recovery, is a critical subsystem of CV-QKD. Here, we present the implementation of a machine learning framework based on Bayesian inference, namely an unscented Kalman filter (UKF), for estimation of phase noise and compare it to a standard reference method. Experimental results obtained over a 20 km fiber-optic link indicate that the UKF can ensure very low excess noise even at low pilot powers. The measurements exhibited low variance and high stability in excess noise over a wide range of pilot signal to noise ratios. The machine learning framework may enable CV-QKD systems with low implementation complexity, which can seamlessly work on diverse transmission lines, and it may have applications in the implemen- tation of other cryptographic protocols, cloud-based photonic quantum computing, as well as in quantum sensing..