TABLE 2 This Table Classifies by Anionic Groups the New Minerals

Total Page:16

File Type:pdf, Size:1020Kb

TABLE 2 This Table Classifies by Anionic Groups the New Minerals THE AMERICAN MINERALOGIST, VOL. 51, AUGUST, 1966 TABLE 2 This table classifiesby anionic groups the new minerals listed in Table 1 that are consideredto be valid speciesplus many of doubtful validity plus some old minerals, for which new data have appreciably changed the composition accepted. Synonyms and discredited min- erals and valid speciesdescribed before 1916 are not listed. The anionic groupings used are as follows: Antirnonates and Antimonites OrganicCompounds Arsenates Oxides Arsenites Phosphates Borates Silicates Carbonates Sulfates Chromates Sulfides (including Arsenides, Elements and Alloys Selenides,Tellurides) Halides Sulfosalts Iodates Tellurites Molybdates Tungstates Nitrates Vanadates Minerals containing more than one anionic group are listed under both; for example, carboborite, Ca2Mg(COr)(BrOs).10H2O, is listed under both Borates and Carbonates. TABLE 2 Antimonates and Antimonites Bystrtimite Ordonezite Swedenborgite Katoptrite Schafarzikite Arsenates Abernathyite Duftite Manganese-hoernesite Aerugite Dussertite Mansfieldite Akrochordite Ferrisymplesite Metaheinrichite Angelellite Fornacite Metakahlerite Arsenobismite Guerinite Metakirchheimerite Arsenoclasite Hallimondite Metanovacekite Arsenuranylite Hidalgoite Meta-uranospinite Arthurite Heinrichite Metazeunerite Austinite Holdenite Novacekite Bearsite Hiigelite Paradamite Belovite (of Nefedov) Kahlerite parasymplesite Betpakdalite Lavendulan l{auenthalite Cahnite Legrandite Rooseveltite Chlorophoenicite Macgovernite beta-Roselite Chudobaite Magnesium-chlorophoeni- Sahlinite Cornubite cite Sainfeldite 1327 1328 . TABLE 2 Santafeite Shubnikovite Vladimirite Sarmientite Smolianinovite Weilite Schallerite Sodium uranosPinite Xanthiosite Schultenite Stranskiite see also Unnamed Minerals 79-82 Arsenites Armangite Fornacite Reinerite Dixenite Macgovernite Trigonite Finnemanite Magnussonite Borates Aksaite Hungchaoite Preobrazhenskite Ammonioborite Hydrochlorborite Probertite Bandylite Inderborite Roweite Behierite Inderite Sborgite Biringuccite Ivanovite Seamanite Borcarite Jimboite Sibirskite Cahnite Johachidolite Sinhalite Calciborite Kernite Strontioborite Carboborite Korzhinskite Strontioginorite Chambersite Kotoite Suanite Ericaite Kurgantaite Teepleite Ezcurrite Kurnakovite Tertschite Fabianite Macallisterite Tunellite Fluoborite Metaborite Uralborite Frolovite Nasinite Veatchite p-Veatchite Gaudefroyite Nifontovite Ginorite Nobleite Volkovite Gowerite Orthopinakiolite Vonsenite Halurgite Parahilgardite Wightmanite Heidornite Pentahydroborite Wiserite Hilgardite see also Unnamed Minerals 5J,50 Carbonates Al umohydrocalcite Burkeite Gaudefroyite Andersonite Calkinsite Harkerite Barbertonite Callaghanite Hellyerite Barringtonite Carboborite Huanghoite Bayleyite Carbocernaite Huntite Benstonite Carbonate-cyanotrichite Hydroscarbroite Beyerite Chalconatrite Hydroxyl-bastnaesite Bismutite Coalingite Ikaite Borcarite Doverite Jouravskite Bradleyite Eardleyite Kettnerite Buetschliite Eitelite Knipovichite Burbankite I alrcnllolte Loseyite ANIONIC GROUPS 1329 Mackelveyite Scarbroite Tatarskite Manasseite Scawtite Thorbastnaesite Monohydrocalcite Schuilingite Tilleyite Nahcolite Sharpite Vaterite Nasledovite Shortite Wegscheiderite Norsethite Sj<igrenite Widenmannite Rabbittite Stenonite Wyartite Rr!ntgenite Studtite Zellerite Sahamalite Swartzite Zincrosasite see also Unnamed Minerals 52-54 Chromates Chromatite Iranite Lopezite Fornacite Elemenls and. ALI,oys Arsenolamprite Moschellandsbergite Sinoite Aurostibite Nisgliite (?) Stannopalladinite Froodite Osbornite Stibiopalladinite Geversite Potarite Wairauite Michenerite Rosickyite see also Unnamed Minerals F[1 Hal,i.d.es Antarcticite Ericaite Malladrite Anthonyite Ferruccite Matlockite Avogadrite Finnemanite Mitscherlichite Bandylite Fluoborite Neighborite Bararite Gagarinite Norbergite Bismoclite Galeite Parahilgardite Blixite Heidornite Perite Blggildite Hilgardite Rd,ntgenite Botallackite Hsianghualite Sahlinite Buttgenbachite Huanghoite Schairerite Cadwaladerite Hydrochlorborite Shubnikovite Calclacite Hydroxyl-bastna esite Stenonite Calumetite Isokite Tataiskite Carobbiite Ivanovite Teepleite Chloroxiphite Jarlite Thorbastnaesite Chukhrovite Johachidolite Tikhonenkovite Creedite Kempite Trudellite D'Ansite Kettnerite Weberite Diaboleite Lorettoite Zavaritskite Doverite Magniotriplite Zirklerite Elpasolite see also Unnamed Minerals 48-51 1330 TABLE 2 Ioilates Bellingerite Salesite Molybd,ates Betpakdalite Iriginite Mourite Calcurmolite Lindgrenite Umohoite Cousinite Moluranite see also Unnamed Minerel 85 Nitrotes Buttgenbachite Likasite Orgoni.c ComPounils Ajkaite Idrialite Scharizerite Calclacite Julienite Simonellite Earlandite Karpatite Stepanovite Evenkite Kladnoite Telegdite Flagstaffite Kratochvilite Weddellite Graebite Minguzzite Zhemchuzhnikovite Hoelite Oxid'es Note-Tke Jorms oJ s'il'ica are listed, under Sil'icates Akaganeite Crichtonite Hydrotungstite Amakinite Cryptomelane Ianthinite Avicennite Curite Ishikawaite Barbertonite Doloresite Ixiolite Bayerite Duttonite Karelianite Becquerelite Dzhalindite Kennedyite Belyankinite Eardleyite Khlopinite Billietite Eskolaite Kobeite Birnessite Feitknechtite Latrappite Bism utotantalite Fersmite Litharge Boehmite Formanite Lodochnikovite Brannerite Fourmarierite Loparite Bromellite Freudenbergite Lueshite Brownmillerite Galaxite Maghemite Cafetite Gerasimovskite Magnetoplumbite Calzirtite Groutite Magnocolumbite Cerianite Hliggite Manasseite Cervantite Hematopharrite Manganbelyankinite Cesarolite Heterogenite Marokite Clarkeite Hibonite Masuyite Co:rlingite Hochschildite Mayenite Con-rpreignacite Htigbomite Merumite -4H, -5H, Coronadite Htigbomite Metaschoepite -15H, -15R, -18R Corvusite -6H, Metavandendriesscheite Molybdite Coulsonite Hydrocalumite ANIONIC GROUPS 1331 Monteponite Quenselite Taaffeite Montroseite Ramsdellite Tanteuxenite Murdochite Redledgeite Thoreaulite Natroniobite Rhombomagnojacobsite Thorutite Navajoite Richetite Todorokite Nigerite I{ijkeboerite Trevorite Niobo-aeschynite Russellite Ulvcispinel Nordstrandite Schafarzikite Vandenbrandeite Nsutite Scheteligite Vandendriesscheite Obruchevite Schoepite Vanoxite Painite Sillenite Varlamoffite Pandaite Sirnpsonite Westgrenite Paramontroseite Sinicite Wodginite Paraschoepite Sinoite Wrilsendorfite Paratellurite Sjogrenite Woodruffite Portlandite Stottite Zirconolite Priderite see a-lsoUnnamed N{inerals 35-47 Phosphates Abukumalite Englishite Likasite Ardealite Faheyite Lipscombite Arrojadite Farringtonite Lithiophosphate Azovskite Faustite Lomonosovite Barbosalite Ferrazite Lusungite Bassettite Ferrisicklerite Magniotriplite Belovite (of Borodin and Frondelite Merrillite Kazakova) Glucine Messelite Bergenite Gordonite Metaschoderite Bermanite Grayite Metatorbernite Bialite Gutsevichite Metavariscite B/ggildite Hagendorhte Millisite Bolivarite Hiihnerkobelite Minyulite Bradleyite Hurlbutite Montgomeryite Brazilianite Huttonite Moraesite Brockite Hydroxylapatite Ningyoite Calcium ferri-phosphate Isokite Overite Chavesite Karnasurtite Palermoite Cheralite Kehoeite Paravauxite Coeruleolactite Kingite Parsonsite Collinsite Kolbeckite Phosphoferrite Cornetite Kribergite Phosphophyllite Crandallite Kryzhanovskite Phosphorrcisslerite Cyrilovite Landesite Przhevalskite Davisonite Laueite Pseudo-autunite Dehrnite Lehiite Pseudolaueite Dewindtite Lermontovite Renardite Dumontite Leucophosphite Rockbridgeite Ellestadite Lewistonite Rusakovite 1332 TABLE 2 Sabugalite Smirnovskite Varulite Saleeite Sodium autunite Vauxite Salmoite Souzalite Viiyrynenite Sampleite Spencerite Viseite Saryarkite Strontium-apatite Waylandite Schoderite Strunzite Weinschenkite Scholzite Tavorite Whitlockite Scorzalite Tinticite Wolfeite Seamanite Trolleite Woodhouseite Sigloite Uralolite Xanthoxenite Sincosite Uramphite Yoshimuraite see also Unnarned Minerals 68-78 Selenates anil Selenites Ahlfeldite Molybdomenite Schmeiderite Guilleminite Silicates Abukumalite Clinoptilolite Fraipontite Afwitlite Coesite Fresnoite Ajoite Cof6nite Garrelsite Alleghanyite Combeite Garronite Aminoffite Corrensite Genthelvite Arandisite Cronstedtite-1H, -2H, Gillespite Armenite -3R, -6H, -9R Goldmanite Ashcroftine Cuprorivaite Gonyerite Bafertisite Cuprosklodowskite Gotzenite Banalsite Curite Greenalite Baotite Cymrite Grovesite Barium uranophane Dalyite Haiweeite Batisite Deerite Harkerite Beidellite Delhayelite Hectorite Beryllite Dellaite Howieite Bikitaite Dickite Hsianghualite Bismutoferrite Dixenite Huttonite Boltwoodite Ekanite Hydrogrossular Brammallite Ellestadite Hydrougrandite Bredigite Endellite Illite group Buddingtonite Ephesite Indialite Bultfonteinite Erionite Innelite Calciotalc E,sperite Iron cordierite Calciurn catapleite Falkenstenite Jagoite Canasite Fenaksite Joaquinite Caryopilite Ferrierite Johannsenite Chapmanite Ferrocarpholite Jua nite Chinglusuite F'ersmanite Jusite Chkalovite Foshagite Kalsilite Clinoferrosil ite Foshallassite Karnasurtite ANIONIC GROUPS IJJJ Karpinskite Nenadkevichite Stishovite Karpinskyite Niobophyllite Sudoite Kasolite Niocalite Sursassite Katoptrite Norbergite Tacharanite Keldyshite Nordite Taramellite Kilchoanite Offretite Tetrakalsilite Kimzeyite Orientite Thorosteenstrupine Kirschsteinite Orlite Thortveitite Krauskopfite Ortho-antigorite Tilleyite Kupletskite Orthochamosite Tinaksite Kurumsakite Orthochrysotile Tobermorite Labuntsovite Osumilite Tcirnebohmite Larnite Pabstite Tosudite Larsenite Papagoite Traskite Latiumite Parachrysotile Trikalsilite Liberite Parsettensite Tugtupite
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Uraninite Alteration in an Oxidizing Environment and Its Relevance to the Disposal of Spent Nuclear Fuel
    TECHNICAL REPORT 91-15 Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19 original contains color illustrations URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author (s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB. URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch Rodney Ewing Department of Geology University of New Mexico Submitted to Svensk Kämbränslehantering AB (SKB) December 21,1990 ABSTRACT Uraninite is a natural analogue for spent nuclear fuel because of similarities in structure (both are fluorite structure types) and chemistry (both are nominally UOJ. Effective assessment of the long-term behavior of spent fuel in a geologic repository requires a knowledge of the corrosion products produced in that environment.
    [Show full text]
  • Inis: Terminology Charts
    IAEA-INIS-13A(Rev.0) XA0400071 INIS: TERMINOLOGY CHARTS agree INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, AUGUST 1970 INISs TERMINOLOGY CHARTS TABLE OF CONTENTS FOREWORD ... ......... *.* 1 PREFACE 2 INTRODUCTION ... .... *a ... oo 3 LIST OF SUBJECT FIELDS REPRESENTED BY THE CHARTS ........ 5 GENERAL DESCRIPTOR INDEX ................ 9*999.9o.ooo .... 7 FOREWORD This document is one in a series of publications known as the INIS Reference Series. It is to be used in conjunction with the indexing manual 1) and the thesaurus 2) for the preparation of INIS input by national and regional centrea. The thesaurus and terminology charts in their first edition (Rev.0) were produced as the result of an agreement between the International Atomic Energy Agency (IAEA) and the European Atomic Energy Community (Euratom). Except for minor changesq the terminology and the interrela- tionships btween rms are those of the December 1969 edition of the Euratom Thesaurus 3) In all matters of subject indexing and ontrol, the IAEA followed the recommendations of Euratom for these charts. Credit and responsibility for the present version of these charts must go to Euratom. Suggestions for improvement from all interested parties. particularly those that are contributing to or utilizing the INIS magnetic-tape services are welcomed. These should be addressed to: The Thesaurus Speoialist/INIS Section Division of Scientific and Tohnioal Information International Atomic Energy Agency P.O. Box 590 A-1011 Vienna, Austria International Atomic Energy Agency Division of Sientific and Technical Information INIS Section June 1970 1) IAEA-INIS-12 (INIS: Manual for Indexing) 2) IAEA-INIS-13 (INIS: Thesaurus) 3) EURATOM Thesaurusq, Euratom Nuclear Documentation System.
    [Show full text]
  • Gaspéite-Magnesite Solid Solutions and Their Significance
    78 Advances in Regolith GASPÉITE-MAGNESITE SOLID SOLUTIONS AND THEIR SIGNIFICANCE Meagan E. Clissold, Peter Leverett & Peter A. Williams School of Science, Food and Horticulture, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797 It is a surprising fact that, despite the increasing number of secondary minerals of Ni(II) recognized from oxidized base metal deposits (Anthony et al. 2003), the supergene chemistry responsible for their formation remains poorly understood. An understanding of this chemistry would be desirable in view of its importance with respect to geochemical exploration for the element, its behaviour in the regolith and the potential development of commercially exploitable secondary nickel resources. Of the secondary nickel minerals known, gaspéite, NiCO3, is perhaps the most common and has been observed in a number of Western Australian deposits. Notable among these is the 132 pit at Widgiemooltha, near Kambalda, WA (Nickel et al.1994). The supergene profile of the 132 pit consists of 5 zones: oxide, carbonate, violarite-pyrite, transition and primary zone. The carbonate zone is 3-12 m below surface and is characterized by the occurrence of a number of flat-lying to sub-horizontal veins of gaspéite that cut across altered wall rock comprising tremolite and goethite. These veins extend from what was a large sulfide body across the matrix layer. Single gaspéite veins have a size of 5 x 5 x 0.05 m on average and may occur in masses of up to 10 x 10 x 1 m; they are typically massive to either granular or fibrous. From the lower part of the carbonate zone upwards there is a progressive decrease in the amount of gaspéite and other carbonate minerals, and their respective nickel contents.
    [Show full text]
  • Violarite Fe2+Ni S4
    2+ 3+ Violarite Fe Ni2 S4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. As nodules up to 0.5 cm and massive. Physical Properties: Cleavage: Perfect on {001}. Tenacity: Brittle. Hardness = 4.5–5.5 VHN = 455–493 (100 g load). D(meas.) = n.d. D(calc.) = 4.79 Optical Properties: Opaque. Color: Violet-gray; distinctly violet in reflected light. Luster: Metallic. R: (400) 39.0, (420) 39.6, (440) 40.2, (460) 40.6, (480) 41.0, (500) 41.4, (520) 41.9, (540) 42.5, (560) 43.1, (580) 43.8, (600) 44.3, (620) 44.8, (640) 45.4, (660) 45.8, (680) 46.2, (700) 46.6 Cell Data: Space Group: Fd3m. a = 9.51 Z = 8 X-ray Powder Pattern: Vermilion mine, Sudbury, Canada. 2.85 (100), 1.674 (80), 1.820 (60), 2.36 (50), 1.059 (50), 1.183 (40), 1.115 (40) Chemistry: (1) (2) (3) Fe 17.01 19.33 18.52 Ni 38.68 33.94 38.94 Co 1.05 2.50 Cu 1.12 1.05 S 41.68 42.17 42.54 insol. 0.40 1.31 Total 99.94 100.30 100.00 (1) Vermilion mine, Sudbury, Canada; contains trace chalcopyrite. (2) Friday mine, Julian, California, USA; contains trace chalcopyrite. (3) FeNi2S4. Mineral Group: Linnaeite group. Occurrence: Of hydrothermal origin, with other sulfides. Association: Pyrrhotite, millerite, chalcopyrite, pentlandite. Distribution: In the USA, from the Friday mine, Julian, San Diego Co., California; the Key West mine, Clark Co., Nevada; the Copper King mine, Gold Hill district, Boulder Co., Colorado; the Lick Fork deposit, Floyd Co., Virginia; and the Gap Nickel mine, Lancaster Co., Pennsylvania.
    [Show full text]
  • QUT Digital Repository
    QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Keeffe, Eloise C. (2009) Raman spectroscopic study of the tellurite minerals: graemite CuTeO3.H2O and teineite CuTeO3.2H2O. Journal of Raman Spectroscopy, 40(2). pp. 128-132. © Copyright 2009 John Wiley and Sons . 1 Raman spectroscopic study of the tellurite minerals: graemite CuTeO3 H2O and . 2 teineite CuTeO3 2H2O 3 4 Ray L. Frost • and Eloise C. Keeffe 5 6 Inorganic Materials Research Program, School of Physical and Chemical Sciences, 7 Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, 8 Australia. 9 10 11 Tellurites may be subdivided according to formula and structure. 12 There are five groups based upon the formulae (a) A(XO3), (b) . 13 A(XO3) xH2O, (c) A2(XO3)3 xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman 14 spectroscopy has been used to study the tellurite minerals teineite and 15 graemite; both contain water as an essential element of their stability. 16 The tellurite ion should show a maximum of six bands. The free 17 tellurite ion will have C3v symmetry and four modes, 2A1 and 2E. 18 Raman bands for teineite at 739 and 778 cm-1 and for graemite at 768 -1 2- 19 and 793 cm are assigned to the ν1 (TeO3) symmetric stretching mode 20 whilst bands at 667 and 701 cm-1 for teineite and 676 and 708 cm-1 for 2- 21 graemite are attributed to the the ν3 (TeO3) antisymmetric stretching 22 mode. The intense Raman band at 509 cm-1 for both teineite and 23 graemite is assigned to the water librational mode.
    [Show full text]
  • Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
    Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINERAIOGIST, VOL.51 AUGUST' 1966 TABLE 3 These concentrationranges were arbitrarily selected' Ag Antimonpearceite Empressite Novakite Aramayoite Fizelyite Owyheeite Argentojarosite Jalpaite Pavonite Arsenopolybasite Marrite Ramdohrite Benjaminite Moschellandsbergite see also Unnamed Minerals 30-32 AI Abukumalite Calcium ferri-phosphate Ferrocarpholite Ajoite Carbonate-cyanotrichite Fersmite Akaganeite Chalcoalumite Fraipontite Aluminocopiapite Chukhrovite Galarite Alumohydrocalcite Clinoptilolite Garronite Alvanite Coeruleolactite Glaucokerinite Aminoffite Cofrnite Goldmanite Anthoinite Combeite Gordonite Arandisite Corrensite Giitzenite Armenite Crandallite Grovesite Ashcroftine Creedite Guildite Ba:ralsite Cryptomelane Gutsevichite Barbertonite Cymrite Harkerite Basaluminite Cyrilovite Ilibonite Bayerite Davisonite Hidalgoite Bearsite Deerite H6gbomite Beidellite Delhayelite Hydrobasaluminite Beryllite Dickite Hydrocalumite Bialite Doloresite flydrogrossular Bikitaite Eardleyite Hydroscarbroite Boehmite Elpasolite Hydrougrandite Blggildite Endellite Indialite Bolivarite Englishite Iron cordierite Brammallite Ephesite Jarlite Brazilianire Erionite Johachidolite Brownmillerite Falkenstenite Juanite Buddingtonite Faustite Jusite Cadwaladerite Ferrazite Kalsilite Cafetite Ferrierite Karnasurtite 1336 GROUPSBY E.LEM\:,NTS 1337 Karpinskyite Orlite Stenonite Katoptrite Orthochamosite Sudoite Kehoeite Osarizawaite Sursassite Kennedyite Osumilite Swedenborgite Kimzeyite Overite Taaffeite Kingite Painite Tacharanite Knipovichite
    [Show full text]
  • Primary Minerals of the Jáchymov Ore District
    Journal of the Czech Geological Society 48/34(2003) 19 Primary minerals of the Jáchymov ore district Primární minerály jáchymovského rudního revíru (237 figs, 160 tabs) PETR ONDRU1 FRANTIEK VESELOVSKÝ1 ANANDA GABAOVÁ1 JAN HLOUEK2 VLADIMÍR REIN3 IVAN VAVØÍN1 ROMAN SKÁLA1 JIØÍ SEJKORA4 MILAN DRÁBEK1 1 Czech Geological Survey, Klárov 3, CZ-118 21 Prague 1 2 U Roháèových kasáren 24, CZ-100 00 Prague 10 3 Institute of Rock Structure and Mechanics, V Holeovièkách 41, CZ-182 09, Prague 8 4 National Museum, Václavské námìstí 68, CZ-115 79, Prague 1 One hundred and seventeen primary mineral species are described and/or referenced. Approximately seventy primary minerals were known from the district before the present study. All known reliable data on the individual minerals from Jáchymov are presented. New and more complete X-ray powder diffraction data for argentopyrite, sternbergite, and an unusual (Co,Fe)-rammelsbergite are presented. The follow- ing chapters describe some unknown minerals, erroneously quoted minerals and imperfectly identified minerals. The present work increases the number of all identified, described and/or referenced minerals in the Jáchymov ore district to 384. Key words: primary minerals, XRD, microprobe, unit-cell parameters, Jáchymov. History of mineralogical research of the Jáchymov Chemical analyses ore district Polished sections were first studied under the micro- A systematic study of Jáchymov minerals commenced scope for the identification of minerals and definition early after World War II, during the period of 19471950. of their relations. Suitable sections were selected for This work was aimed at supporting uranium exploitation. electron microprobe (EMP) study and analyses, and in- However, due to the general political situation and the teresting domains were marked.
    [Show full text]
  • In Situ FTIR Study of CO2 Reduction on Inorganic Analogues of Carbon Monoxide Dehydrogenase† Cite This: Chem
    ChemComm View Article Online COMMUNICATION View Journal | View Issue In situ FTIR study of CO2 reduction on inorganic analogues of carbon monoxide dehydrogenase† Cite this: Chem. Commun., 2021, 57, 3267 Ji-Eun Lee, a Akira Yamaguchi, ab Hideshi Ooka, a Tomohiro Kazami,b Received 6th November 2020, Masahiro Miyauchi, b Norio Kitadai cd and Ryuhei Nakamura *ac Accepted 4th January 2021 DOI: 10.1039/d0cc07318k rsc.li/chemcomm The CO2-to-CO reduction by carbon monoxide dehydrogenase capture and utilization compared to more complex pathways, (CODH) with a [NiFe4S4] cluster is considered to be the oldest such as the Calvin cycle, which is the most widespread carbon pathway of biological carbon fixation and therefore may have been fixation pathway in the biosphere today. involved in the origin of life. Although previous studies have Under anaerobic conditions, carbon fixation in the W–L Creative Commons Attribution-NonCommercial 3.0 Unported Licence. investigated CO2 reduction by Fe and Ni sulfides to identify the pathway is initiated by the reduction of CO2 to CO by carbon prebiotic origin of the [NiFe4S4] cluster, the reaction mechanism monoxide dehydrogenase (CODH), which utilizes a highly conserved 3 remains largely elusive. Herein, we applied in situ electrochemical [NiFe4S4] cluster as the catalytic site (Scheme 1a). The generated CO ATR-FTIR spectroscopy to probe the reaction intermediates of can be combined with a methyl group (–CH3)toformathioester, greigite (Fe3S4) and violarite (FeNi2S4). Intermediate species assign- acetyl-CoA, which is a central metabolite of biological carbon 2,4 able to surface-bound CO2 and formyl groups were found to be metabolism (Scheme 1b).
    [Show full text]
  • MAGMATIC SULFIDE DEPOSITS (MODELS 1, 2B, 5A, 5B, 6A, 6B, and 7A; Page, 1986A-G)
    MAGMATIC SULFIDE DEPOSITS (MODELS 1, 2b, 5a, 5b, 6a, 6b, and 7a; Page, 1986a-g) by Michael P. Foose, Michael L. Zientek, and Douglas P. Klein SUMMARY OF RELEVANT GEOLOGIC, GEOENVIRONMENTAL, AND GEOPHYSICAL INFORMATION Deposit geology Magmatic sulfide deposits are sulfide mineral concentrations in mafic and ultramafic rocks derived from immiscible sulfide liquids. A number of schemes exist for subdividing these deposits. Most are based on the tectonic setting and petrologic characteristics of the mafic and ultramafic rocks (Page and others, 1982; Naldrett, 1989), or on the spatial association of mineralized rock with enclosing ultramafic and mafic host rocks (stratabound, discordant, marginal, and other; Hulbert and others, 1988). Page (1986a-g) presented discussions of several different subtypes based, in part, on both these approaches (Models 1, 2b, 5a, 5b, 6a, 6b, and 7a). However, these deposits are similar enough that they can be treated as a group with regard to their geoenvironmental manifestations. The similarity of these deposits result, in part, from similar genesis. Exsolution of immiscible sulfide liquids from mafic-to-ultramafic magmas is the fundamental process that forms magmatic sulfide deposits. Once formed, droplets of immiscible sulfide liquid settle through less dense silicate magma. The sulfide liquid acts as a "collector" for cobalt, copper, nickel, and platinum-group elements (PGE) because these elements are preferentially concentrated in sulfide liquids at levels 10 to 100,000 times those in silicate liquids. To a lesser degree, iron is also preferentially partitioned into the sulfide liquid and, because of its greater abundance, most immiscible sulfide liquid is iron-rich. The combination of physically concentrating dense sulfide liquid and chemically concentrating elements in the sulfide liquid is responsible for forming most economically minable, magmatic-sulfide deposits.
    [Show full text]