Download the Scanned

Total Page:16

File Type:pdf, Size:1020Kb

Download the Scanned THE AMERICAN MINERAIOGIST, VOL.51 AUGUST' 1966 TABLE 3 These concentrationranges were arbitrarily selected' Ag Antimonpearceite Empressite Novakite Aramayoite Fizelyite Owyheeite Argentojarosite Jalpaite Pavonite Arsenopolybasite Marrite Ramdohrite Benjaminite Moschellandsbergite see also Unnamed Minerals 30-32 AI Abukumalite Calcium ferri-phosphate Ferrocarpholite Ajoite Carbonate-cyanotrichite Fersmite Akaganeite Chalcoalumite Fraipontite Aluminocopiapite Chukhrovite Galarite Alumohydrocalcite Clinoptilolite Garronite Alvanite Coeruleolactite Glaucokerinite Aminoffite Cofrnite Goldmanite Anthoinite Combeite Gordonite Arandisite Corrensite Giitzenite Armenite Crandallite Grovesite Ashcroftine Creedite Guildite Ba:ralsite Cryptomelane Gutsevichite Barbertonite Cymrite Harkerite Basaluminite Cyrilovite Ilibonite Bayerite Davisonite Hidalgoite Bearsite Deerite H6gbomite Beidellite Delhayelite Hydrobasaluminite Beryllite Dickite Hydrocalumite Bialite Doloresite flydrogrossular Bikitaite Eardleyite Hydroscarbroite Boehmite Elpasolite Hydrougrandite Blggildite Endellite Indialite Bolivarite Englishite Iron cordierite Brammallite Ephesite Jarlite Brazilianire Erionite Johachidolite Brownmillerite Falkenstenite Juanite Buddingtonite Faustite Jusite Cadwaladerite Ferrazite Kalsilite Cafetite Ferrierite Karnasurtite 1336 GROUPSBY E.LEM\:,NTS 1337 Karpinskyite Orlite Stenonite Katoptrite Orthochamosite Sudoite Kehoeite Osarizawaite Sursassite Kennedyite Osumilite Swedenborgite Kimzeyite Overite Taaffeite Kingite Painite Tacharanite Knipovichite Palermoite Tetrakalsilite Kribergite Papagoite Thorbastnaesite Kupletskite Paravarxite Tikhonenkovite Kurumsakite Parsettensite Tiirnebohmite Labuntsovite Paulingite Tosudite Lapparentite Pennantite Trikalsilite Larnite Priderite Trolleite Latiumite Pumpellyite Trudellite Lehiite Ransomite Tugtupite Leucophosphite Rhombomagnojacobsite Tundrite Lewistonite Rilandite Vanalite Lombaardite Rusakovite Vanuralite Magnocolumbite Sabugalite Varlamoffite Manasseite Saryarkite Vauxite Mansfieldite Satpaevite Vinogradovite Mayenite Scarbroite Viseite Mboziite Schoderite Wadeite Medmontite Scorzalite Wairakite Merumite Seidozerite Waylandite Meta-alunogen Sherwoodite 'Weberite Metaschoderite Sigloite Wenkite Metavariscite Simpsonite Wightmanite Millisite Sinhalite Woodhouseite Minyulite Sinicite Yoderite Montgomeryite Smirnoiskite Yugarawalite Mullite Smolianinovite Zhemchuzhnikovite Nasledovite Sonolite Zinalsite Naujakasite Souzalite Zirconolite Nigerite Spencite Zkklerite Nordstrandite Steigerite Zussmanite seealso Unnamed Minerals 35, 49, 57, 6g, 90_94,103, 104 As (All the mineralslisted under Arsenates,Table 2, belonghere, but are not listed, to savespace) Antimonpearceite Dienerite Marrite Arsenolamprite Gerstleyite Novakite Arsenosulvanite Getchellite Orcelite Arsenpolybasite Gratonite Oregonite Chapmanite Hatchite Pararammelsbergite Coffinite Hollingworthite Paxite Colusite Jeromite Santafeite Cooperite Koutekite Sinnerite seealso Unnamed Minerals 22,25, 33, 34 1338 TABLE 3 Au Aurostibite Montbrayite B not (All the mineralslisted under Borates,Table 2, belonghere, but are listed, to savesPace) Avogadrite flarkerite Reedmergnerite Ferruccite Ilellandite Spencite Garrelsite Painite Stillwellite see also Unnamed Minerals 55' 56' 99 Ba Armenite Garrelsite Paulingite Bafertisite Gillespite Priderite Banalsite Guilleminite Rijkeboerite Baotite Gutsevichite Sanbornite Barium uranophane Heinrichite Shcherbakovite Batisite Huanghoite Stenonite Benstonite Innelite Strontium-aPatite Bergenite Joaquinite Todorokite Billietite Krauskopfite Traskite Brockite Labuntsovite Verplanckite Calkinsite Macdonaldite Vesignieite Carbocernaite Mackelveyite Walstromite Cymrite Metaheinrichite Weeksite Dussertite Muirite Wenkite Ferrazite Nenadkevichite Woodhouseite Francevillite Norsethite Yoshimuraite Fresnoite Pabstite Zinalsite Gamagarite Pandaite see also Unuamed Minerals 84 Be Aminoffite Glucine Roscherite Bearsite Hurlbutite Taaffeite Beryllite Hsianghualite Trimerite Bromellite KarpinskYite Tugtupite Chkalovite Liberite Uralolite Faheyite Milarite V?iYrl'nenite Genthelvite Moraesite seealso UnnamedMinerals36, 99, 100 b1, Aramayoite Bismutof errite Castaingite Arsenobismite Bismutotantalite Csiklovaite Benjaminite Bonchevite Cupr.obismutite Beyerite Bursaite Froodite Bismoclite Carrrrizzatile Geversite GROUPS BY DLEMENTS 1339 Giessenite Michenerite Russellite Gladite Microlite Sakharovaite Hammarite Moncheite Scheteligite Hedleyite Paraguanajuatite Sillenite Ikunolite Parkerite Ustarasite Kettnerite Pavonite Waylandite Kotulskite Perite 'Westgrenite Laitakarite Ramdohrite Wittite Lindstromite Rooseveltite Zavaritsklte seealso Unnamed Minerals8,30,31,69,79 Ca Abukumalite Cafetite Dellaite Afwillite Cahnite Delrioite Alumohydrocalcite Calciborite Denningite Aminoffite Calciocopiapite Doverite Andersonite Calciotalc Earlandite Antarcticite Calcium catapleite Ekanite Ardealite Calcium ferri-phosphate Ellestadite Armangite Calclacite Englishite Armenite Calcurmolite Erionite Arrojadite Calkinsite Esperite Arsenuranylite Callaghanite Fabianite Ashcroftine Calzirtlte Fairchildite Austinite Canasite Ferrisicklerite Azovskite Carboborite Ferrifungstite Becquerelite Carbocernaite Fersmanite Beidellite Chavesite Fersmite Belovite (of Borodin and Cheralite Foshagite Kazakova) Chinglusuite Foshallasite Belovite (of Nefedov) Chlorophoenicite Fraipontite Belyankinite Chromatite Frolovite Benstonite Chudobaite Gagarinite Betpakdalite Clarkeite Garrelsite Beyerite Clinoptilolite Garronite Bialite Coeruleolactite Gaudefroyite Birnessite Collinsite Gerasimovskite Borcarite Combeite Ginorite Brannerite Corrensite Glucine Bredigite Corvusite Goldmanite Brockite Crandallite Gtirgeyite Bromellite Creedite Gtitzenite Brownmillerite Cuprorivaite Gowerite Buetschliite Davisonite Grantsite Bultfonteinite Dehrnite Guerinite Burbankite Delhayelite Gutsevichite 1340 TABLE 3 Hagendorfite Loparite Pseudo-autunite Haiweeite Lovozerite Pumpellyite flarkerite Macdonaldite Rabbittite Heidornite Mackelveyite Rankinite flendersonite Malayaite Ranquilite Hibonite Manganbelyankinite Rauenthalite Hilgardite M anganosteenstruPine Rauvite Holdenite Margarosanite Rhodesite Hsianghualite Marokite Rhombomagnojacobsite Iliihnerkobelite Mayenite Rilandite Huntite Mboziite Riversideite Hurlbutite Medmontite Riintgenite Hydrocalumite Melanovanadite beta-Roselite Ilydrochlorborite Merrillite Rossite Hydrogrossular Merwinite Roweite Hydrougrandite Messelite Rustumite Hydroxyl-apatite Meta-haiweeife Sainfelclite Ikaite Metarossite Sampleite Inderborite Metatyuyamunite Sanmartinite Isokite Meta-uranospinite Santafeite Ivanovite Millisite Saryarkite Satpaevite Johachidolite Miserite Scawtite Johannsenite Monohydrocalcite Scheteligite Jouravskite Montgomeryite Scholzite Juanite Mountainite Schuilingite Jusite Mourite Kalsilite Muirite Seidozerite Karnasurtite Natroniobite Serandite Kehoeite Nekoite Sharpite Kettnerite Nenadkevichite Sherwoodite Kilchoanite Nifontovite Shortite Kimzeyite Ningyoite Shubnikovite Kirschsteinite N iobo-aeschynite Sibirskite Knipovichite Niocalite Simplotite Kobeite Nobleite Sincosite Koktaite Nordite Sinicite Korzhinskite Obruchevite Smirnovskite Kryzhanovskite Orientite Smolianinovite Kupletskite Overite Sodium uranospinite Kurgantaite Painite Spencite Labuntsovite Palermoite Stillwellite Landesite Pandaite Strontioborite Larnite Papagoite Strontioginorite Latiumite Parahilgardite Strontium-aPatite Latrappite Paulingite Suanite Lavendulan Pentahydroborite Sursassite Lehiite Perrierite Swartzite Leightonite Phosphoferrite Tacharanite Lermontovite Phosphuranylite Tangeite Lewistonite Portlandite Tanteuxenite Lombaardite Probertite Tatarskite GROUPS BY ELEMENTS 1341 Tertschite Ursilite Whitlockite Thorbastnaesite Varulite Wightmanite Thorosteenstrupine Vaterite Wiserite Thorutite Veatchite Wdlsendorfrte Tilleyite Viseite Woodhouseite Tinaksite Vladimirite Wyartite Tobermorite 'Wadeite 'fodorokite Xanthoxenite Wairakite Yugarawalite Trudellite Walstromite yuksporite Tundrite Waylandite yoderite Uklonskovite Weddellite Zellerite Uralborite Weeksite Zinalsite Uralolite Weilite 'Wenkite Zirconolite beta-Uranotile Zirklerite Ureyite Westgrenite seealso Unnamed Minerals 18, 37, 3g, +9, 59,75,76,g3, g4,90_101, 103, 104 Cd Cadmoselite Gunningite Hawleyite Ce, La group Abukumalite Iluttonite Perrierite Belovite (of Borodin and Hydroryl-bastnaesite Riintgenite Kazakova) Karnasurtite Sahamalite Brockite Latrappite Saryarkite Burbankite Lermontovite Sinicite Calkinsite Lombaardite Smirnovskite Carbocernaite Loparite Spencite Cerianite Mackelveyite Stillwellite Cheralite Manganosteenstrupine Strontium-apatite Chinglusuite Natroniobite Tanteuxenite Chukhrovite Ningyoite Thorbastnaesite Fersmite Niobo-aeschynite Thorosteenstrupine Gagarinite Niobophyllite Ttirnebohmite Hibonite Nordite Tundrite Huanghoite Pandaite Zirconolite see also Unnamed Minerals 99, 100 CI Antarcticite Chambersite Galeite Anthonyite Chloroxiphite Harkerite Bandylite D'Ansite Heidornite Baotite Dashkesanite Hematophanite Blixite Delhayelite Hilgardite Botallackite Diaboleite Hydrocblorborite Buttgenbachite Ellestadite Ivanovite Cadwaladerite Ericaite Jagoite Calclacite Finnemanite Kempite Calumetite Gagarinite Lavendulan 1342 TABLE Lorettoite Sahlinite Traskite Manganpyrosmalite Sampleite Trudellite Mendipite Schairerite Tugtupite Mitscherlichite Shubnikovite Verplanckite Muirite Tatarskite Wiserite Parahilgardite Teepleite Ziu"klerite Perite see also Unrnmed Minerals 48' 50 Co Ahlfeldite
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Study of the Modifications of Manganese Dioxide by Howard F
    U. S. Department of Commerce Research Paper RP1941 National Bureau of Standards Volume 41, December 1948 Part of the Journal of -Research of the National Bureau of Standards Study of the Modifications of Manganese Dioxide By Howard F. McMurdie and Esther Golovato Past work on the modifications of manganese dioxide of interest in dry-cell manufacture is reviewed. New X-ray data, at both room and elevated temperatures, combined with differential heating curves lead to the conclusion that five types of manganese dioxide exist: (1) well-crystallized pyrolusite; (2) gamma manganese dioxide, a poorly crystallized pyrolu- site; (3) ramsdellite; (4) cryptomelane, a form containing essential potassium or sodium; and (5) delta manganese dioxide, believed to be a poorly crystallized cryptomelane. The high-temperature X-ray diffraction data indicated the phase changes that cause the heating- curve effects. A new crystal form of manganosic oxide (M113O4), stable above 1,170° C, w^s found to be cubic of spinel structure. Fineness determinations by both the nitrogen adsorp- tion and the X-ray line broadening methods were made on selected samples. I. Introduction this equipment a flat specimen is used, and no During the years 1940-46 there was increased special techniques were employed to prevent pre- research on (Jry cells. This was stimulated by ferred orientation. It is realized that in a few increased demand for the cells as well as new uses cases this may have resulted in relative intensities for them, combined with certain shortages of raw that differ from those in other reports. This materials. This work disclosed among other equipment in its commercial form is not capable things that manganese dioxide is not a simple of recording the diffraction effects at angles greater compound with constant properties, and that its than 45° 0; thus; the back reflection lines are value as a depolarizer depends on properties other missed.
    [Show full text]
  • Uraninite Alteration in an Oxidizing Environment and Its Relevance to the Disposal of Spent Nuclear Fuel
    TECHNICAL REPORT 91-15 Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19 original contains color illustrations URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author (s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB. URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch Rodney Ewing Department of Geology University of New Mexico Submitted to Svensk Kämbränslehantering AB (SKB) December 21,1990 ABSTRACT Uraninite is a natural analogue for spent nuclear fuel because of similarities in structure (both are fluorite structure types) and chemistry (both are nominally UOJ. Effective assessment of the long-term behavior of spent fuel in a geologic repository requires a knowledge of the corrosion products produced in that environment.
    [Show full text]
  • Inis: Terminology Charts
    IAEA-INIS-13A(Rev.0) XA0400071 INIS: TERMINOLOGY CHARTS agree INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, AUGUST 1970 INISs TERMINOLOGY CHARTS TABLE OF CONTENTS FOREWORD ... ......... *.* 1 PREFACE 2 INTRODUCTION ... .... *a ... oo 3 LIST OF SUBJECT FIELDS REPRESENTED BY THE CHARTS ........ 5 GENERAL DESCRIPTOR INDEX ................ 9*999.9o.ooo .... 7 FOREWORD This document is one in a series of publications known as the INIS Reference Series. It is to be used in conjunction with the indexing manual 1) and the thesaurus 2) for the preparation of INIS input by national and regional centrea. The thesaurus and terminology charts in their first edition (Rev.0) were produced as the result of an agreement between the International Atomic Energy Agency (IAEA) and the European Atomic Energy Community (Euratom). Except for minor changesq the terminology and the interrela- tionships btween rms are those of the December 1969 edition of the Euratom Thesaurus 3) In all matters of subject indexing and ontrol, the IAEA followed the recommendations of Euratom for these charts. Credit and responsibility for the present version of these charts must go to Euratom. Suggestions for improvement from all interested parties. particularly those that are contributing to or utilizing the INIS magnetic-tape services are welcomed. These should be addressed to: The Thesaurus Speoialist/INIS Section Division of Scientific and Tohnioal Information International Atomic Energy Agency P.O. Box 590 A-1011 Vienna, Austria International Atomic Energy Agency Division of Sientific and Technical Information INIS Section June 1970 1) IAEA-INIS-12 (INIS: Manual for Indexing) 2) IAEA-INIS-13 (INIS: Thesaurus) 3) EURATOM Thesaurusq, Euratom Nuclear Documentation System.
    [Show full text]
  • Gaspéite-Magnesite Solid Solutions and Their Significance
    78 Advances in Regolith GASPÉITE-MAGNESITE SOLID SOLUTIONS AND THEIR SIGNIFICANCE Meagan E. Clissold, Peter Leverett & Peter A. Williams School of Science, Food and Horticulture, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797 It is a surprising fact that, despite the increasing number of secondary minerals of Ni(II) recognized from oxidized base metal deposits (Anthony et al. 2003), the supergene chemistry responsible for their formation remains poorly understood. An understanding of this chemistry would be desirable in view of its importance with respect to geochemical exploration for the element, its behaviour in the regolith and the potential development of commercially exploitable secondary nickel resources. Of the secondary nickel minerals known, gaspéite, NiCO3, is perhaps the most common and has been observed in a number of Western Australian deposits. Notable among these is the 132 pit at Widgiemooltha, near Kambalda, WA (Nickel et al.1994). The supergene profile of the 132 pit consists of 5 zones: oxide, carbonate, violarite-pyrite, transition and primary zone. The carbonate zone is 3-12 m below surface and is characterized by the occurrence of a number of flat-lying to sub-horizontal veins of gaspéite that cut across altered wall rock comprising tremolite and goethite. These veins extend from what was a large sulfide body across the matrix layer. Single gaspéite veins have a size of 5 x 5 x 0.05 m on average and may occur in masses of up to 10 x 10 x 1 m; they are typically massive to either granular or fibrous. From the lower part of the carbonate zone upwards there is a progressive decrease in the amount of gaspéite and other carbonate minerals, and their respective nickel contents.
    [Show full text]
  • Violarite Fe2+Ni S4
    2+ 3+ Violarite Fe Ni2 S4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. As nodules up to 0.5 cm and massive. Physical Properties: Cleavage: Perfect on {001}. Tenacity: Brittle. Hardness = 4.5–5.5 VHN = 455–493 (100 g load). D(meas.) = n.d. D(calc.) = 4.79 Optical Properties: Opaque. Color: Violet-gray; distinctly violet in reflected light. Luster: Metallic. R: (400) 39.0, (420) 39.6, (440) 40.2, (460) 40.6, (480) 41.0, (500) 41.4, (520) 41.9, (540) 42.5, (560) 43.1, (580) 43.8, (600) 44.3, (620) 44.8, (640) 45.4, (660) 45.8, (680) 46.2, (700) 46.6 Cell Data: Space Group: Fd3m. a = 9.51 Z = 8 X-ray Powder Pattern: Vermilion mine, Sudbury, Canada. 2.85 (100), 1.674 (80), 1.820 (60), 2.36 (50), 1.059 (50), 1.183 (40), 1.115 (40) Chemistry: (1) (2) (3) Fe 17.01 19.33 18.52 Ni 38.68 33.94 38.94 Co 1.05 2.50 Cu 1.12 1.05 S 41.68 42.17 42.54 insol. 0.40 1.31 Total 99.94 100.30 100.00 (1) Vermilion mine, Sudbury, Canada; contains trace chalcopyrite. (2) Friday mine, Julian, California, USA; contains trace chalcopyrite. (3) FeNi2S4. Mineral Group: Linnaeite group. Occurrence: Of hydrothermal origin, with other sulfides. Association: Pyrrhotite, millerite, chalcopyrite, pentlandite. Distribution: In the USA, from the Friday mine, Julian, San Diego Co., California; the Key West mine, Clark Co., Nevada; the Copper King mine, Gold Hill district, Boulder Co., Colorado; the Lick Fork deposit, Floyd Co., Virginia; and the Gap Nickel mine, Lancaster Co., Pennsylvania.
    [Show full text]
  • QUT Digital Repository
    QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Keeffe, Eloise C. (2009) Raman spectroscopic study of the tellurite minerals: graemite CuTeO3.H2O and teineite CuTeO3.2H2O. Journal of Raman Spectroscopy, 40(2). pp. 128-132. © Copyright 2009 John Wiley and Sons . 1 Raman spectroscopic study of the tellurite minerals: graemite CuTeO3 H2O and . 2 teineite CuTeO3 2H2O 3 4 Ray L. Frost • and Eloise C. Keeffe 5 6 Inorganic Materials Research Program, School of Physical and Chemical Sciences, 7 Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, 8 Australia. 9 10 11 Tellurites may be subdivided according to formula and structure. 12 There are five groups based upon the formulae (a) A(XO3), (b) . 13 A(XO3) xH2O, (c) A2(XO3)3 xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman 14 spectroscopy has been used to study the tellurite minerals teineite and 15 graemite; both contain water as an essential element of their stability. 16 The tellurite ion should show a maximum of six bands. The free 17 tellurite ion will have C3v symmetry and four modes, 2A1 and 2E. 18 Raman bands for teineite at 739 and 778 cm-1 and for graemite at 768 -1 2- 19 and 793 cm are assigned to the ν1 (TeO3) symmetric stretching mode 20 whilst bands at 667 and 701 cm-1 for teineite and 676 and 708 cm-1 for 2- 21 graemite are attributed to the the ν3 (TeO3) antisymmetric stretching 22 mode. The intense Raman band at 509 cm-1 for both teineite and 23 graemite is assigned to the water librational mode.
    [Show full text]
  • Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
    Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Download the Scanned
    NEW MINERAL NAMES 85 and also by the great quantity of rolled quartz pebbles found in the Cretaceous sedimentary beds. The relation of the quartz veins to the veins of lead, copper, zinc, and mercury in the Ouachita and Ozark Mountains was described, and a Pennsylvanian age was shown for these, and a similar age was suggested for the lead-zinc deposits of the Tri-State area and similar deposits in the Mississippi Valley. A remarkable group of milky quartz crystals from Berkeley Springs, West Virginia, and weighing several hundred pounds, had been presented to the Academy by Mr. George D. Cope, and was exhibited. Dr. Joseph D. H. Donnay suggested that a committee be appointed to help replace the collection of minerals destroyed at the University oI Li6ge by the retreating Germans. J. S. Fn,rrrrNrrELD, Secretary ABSTRACTS OF TIIE MINUTES OF THE NEW YORK MINERAIOGICAI, CLUB I[eeting oJ October 19, 1944 The president, Mr. Taylor, announced the appointment of the curators' committee and committees in charge of excursions, membership, auditing, programs, education and publications. The meeting was open for accounts cf summer collecting by the members. A five-inch scalenohedral calcite crystal from the Prospect Park quarry at Faterson, N. J., was exhibited by Mr. Leonard Morgan who had collected it. Other exhibits included agates from the north shore of Long Island and from streams near Summit, N. J., and corundum sent by a member of the armed forces on duty in South AJrica. Meeting oJ Noaember 15, 1911 The Vice-president, Dr. R. B. Sosman,reviewed the first volumeof the neweditionof Dana's System oJ Mineralogy and the president called attention to Bulleti.ns 50 and 57 of the New Jersey State Department of Conservation.
    [Show full text]
  • Guidebook 2019 Small.Pdf
    1 2 TABLE OF CONTENTS Introduction.......................................................................................................................... 3 Geology of the Khibiny massif............................................................................................ 5 Mineralogical excursions in the Khibiny massif…………………………………………. 8 Day 1: Pegmatites within rischorrite at the Marchenko Peak........................................ 8 Stop 1-1A. Sodalite-aegirine-microcline vein in rischorrite...................................... 8 Stop 1-1B. Aegirine-microcline vein in rischorrite................................................... 9 Stop 1-2. Microcline vein in rischorrite..................................................................... 9 Stop 1-3. Microcline-aegirine-natrolite vein in rischorrite........................................ 10 Stop 1-4. Aegirine-nepheline-natrolite-microcline vein in rischorrite...................... 11 Stop 1-5. Apatite-titanite veinlets in rischorrite........................................................ 12 Day 2: Pegmatites within rischorrite and foyaite at the Eveslogchorr Mountain.......... 12 Stop 2-1. The Koashva Deposit................................................................................ 13 Stop 2-2. Natrolite-microcline vein in gneissose rischorrite.................................... 13 Stop 2-3. Astrophyllite deposit.................................................................................. 14 Stop 2-4. Eudialyte-nepheline-aegirine-microcline vein in gneissose
    [Show full text]
  • Cryptomelane K1−1.5(Mn , Mn )8O16 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Monoclinic
    4+ 3+ Cryptomelane K1−1.5(Mn , Mn )8O16 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Rarely in subhedral crystals, to 2 mm; commonly as compact fine-grained masses, banded colloform, botryoidal, or radial fibrous aggregates, all in the same specimen; massive cleavable. Twinning: Typically on (010) and (101), producing a pseudotetragonal unit cell. Physical Properties: Fracture: Conchoidal. Tenacity: Brittle. Hardness = 6–6.5, compact. D(meas.) = 4.17–4.41 D(calc.) = [4.44] Optical Properties: Opaque. Color: Steel-gray to bluish gray when fresh; tarnishes to dull grayish black; light tan or gray in reflected light. Streak: Brownish black. Luster: Metallic to dull. Optical Class: Isotropic, nearly. R: n.d. Cell Data: Space Group: I2/m. a = 9.956(3) b = 2.8705(9) c = 9.706(4) β =90.95(3)◦ Z = [1] X-ray Powder Pattern: Philipsburg, Montana, USA. 2.39 (10), 6.90 (9), 4.90 (8), 3.10 (8), 2.15 (6), 1.83 (6), 1.54 (6) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 0.58 0.18 MgO 0.05 0.07 0.15 TiO2 0.01 0.00 CaO 0.27 0.00 MnO2 83.13 87.09 84.41 SrO 0.00 0.00 1.75 Al2O3 0.37 0.39 0.99 BaO 0.13 0.00 1.97 Fe2O3 0.46 0.19 3.03 Na2O 0.44 0.48 1.02 MnO 2.08 2.49 K2O 3.50 3.10 5.78 + CoO 0.00 0.08 H2O 2.58 3.58 − NiO 0.00 0.00 H2O 0.81 0.60 CuO 0.12 0.00 P2O5 0.07 0.00 ZnO 5.23 1.69 Total 99.83 99.94 [99.10] (1) Tombstone, Arizona, USA; Mn4+ from “available O”.
    [Show full text]