Nickel Deposits of North America

Total Page:16

File Type:pdf, Size:1020Kb

Nickel Deposits of North America Nickel Deposits of North America By H. R. CORNWALL GEOLOGICAL SURVEY BULLETIN 1223 Geology, resources, and reserves of nickel sulfide and nickeliferous laterite deposits in 7 Provinces of Canada and 15 States of the United States UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director l!'irst printing 1966 Second printing 1967 For sale by the Superintendent of Documents, U.S. Government Printint Office Washintton, D.C. 20402- Price 25 cents (paper cover) CONTENTS Page Abstract---------------------------------------------------------- 1 Introduction __________________________ --.- _____________________ ---- 1 Types of deposits __________________________________________ ---- 2 Sulfide deposits------------------------------------------- 3 Nickeliferous laterite deposits _______ ------------------------ 4 Nickel minerals _____________________________ -----___ ---------- 4 Native nickel-iron _____________________________________ ---- 6 Sulfides-------------------------------------------------- 7 PenUandue___________________________________________ 7 Bravoite and violarite ______________________________ ---- 7 Vaesite----------------------------------------------- 8 8 Heazlewoodite_~illerite---------------------------------------------- __ __ _ _ __ __ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ __ __ _ _ _____ 8 Linnaeite, polydymite, siegenite, and violarite_____________ 8 Other minerals ___ ------___________________________________ 8 Nickel arsenide, sulfarsenide, antimonide, and other minerals_ 8 Hydrated nickel arsenate, sulfate, and carbonate__________ 9 Garnierite ___ ._______ ___ __ __ ___ __ ___ __ __ ___ __ _ __ __ _ _ _ __ 9 Nickel resources_______________________________________________ 9 Nickel deposits of Canada__________________________________________ 15 British Columbia ____ ----________________________________ ---___ 16 Hope---------------------------------------------------- 16 ~anitoba----------------------------------------------------- 17 Lynn Lake district----------------------------------------- 17 Thompson-~oak Lake district_ _________ -------------------- 20 NewBrunswick----------------------------------------------- 23 St. Stephen----------------------------------------------- 23 Northwest Territories ______ ----_____________________ ----------- 24 Rankin Inlet____________ -------______________________ ----- 24 OntariO------------------------------------------------------ 25 Alexo Nickel mine ____________________________________ - ___ - 25 Kenora district ______ -----___________________________ ------ 25 GordonLake------------------------------------------ 25 PopulusLake----------------------------------------- 25 Limerick township ___ ---------_---------------------------- 26 Raglan township ____ --------________ ---------------------- 26 ShebandowanLake---------------------------------------- 26 Sudbury district______ ------_________________ -------------- 26 Timmins-------------------------------------------------- 32 TroutLake----------------------------------------------- 33 Quebec------------------------------------------------------- 33 Belleterre ________________________________________ -----_--- 33 La ~otte township ___ ------------------------------------- 34 U nga va district ______________________________ - _- ---------- 34 UI IV CONTENTS Nickel deposits of Canada-Continued Page 1rukon------------------------------------------------------- 35 Canala.sk (White River)------------------------------------ 35 Quill Creek (Kluane Lake)---------------------------------- 35 Nickel deposits of the United States--------------------------------- 36 Alaska------------------------------------------------------- 36 Bohemia Basin, 1rakobi Island______________________________ 36 Brady Glacier ___________________________ -----________ ----_ 37 Funter Bay, Admiralty Island______________________________ 37 Mirror Harbor, Fleming Island------------------------------ 38 Snipe Bay, Baranof Island---------------------------------- 39 Spirit Mountain, Copper River area_________________________ 39 Arkansas----------------------------------------------------- 39 Saline CountY--------------------------------------------- 39 California---------------------------------------------------- 40 Julian---------------------------------------------------- 40 Oldlronsides_____________________________________________ 41 ColoradO----------------------------------------------------- 41 Boulder CountY------------------------------------------- 41 Connecticut--------------------------------------------------- 42 MountProspect------------------------------------------- 42 Hodges--------------------------------------------------- 42 Idaho-------------------------------------------------------- 42 Montgomery---------------------------------------------- 42 Maine------------------------------------------------------- 43 JGnox CountY--------------------------------------------- 43 Minnesota---------------------------------------------------- 43 ElY------------------------------------------------------ 43 Missouri______________________________________________________ 44 FredericktoVfn-------------------------------------------- 44 Montana----------------------------------------------------- 45 Mouat--------------------------------------------------- 45 Nevada------------------------------------------------------ 46 Bunkerville district________________________________________ 46 CottonlVood Canyon--------------------------------------- 47 Gibellini deposit___________________________________________ 48 North Carolina________________________________________________ 48 Webster-------------------------------------------------- 48 Oregon and California------------------------------------------ 49 Nickeliferous laterites______________________________________ 49 Nickel Mountain ____ -------------------------------------- 51 Pennsylvania-------------------------------------------------- 52 Gap Nickel mine_----------------------------------------- 52 Washington--------------------------------------------------- 53 BlelVett deposit _______________________________ ---------___ 53 CleElum------------------------------------------------- 54 JumboMountain------------------------------------------ 55 MackinalV------------------------------------------------ 56 ReferencesWinesaP-----------------------------------------------·-- cited ______________________________________________ ----- 5857 CONTENTS v ILLUSTRATION Page FIGURE 1. Nickel deposits of North America__________________________ 11 TABLES TABLE 1. Nickel minerals ____ ------------------- ____ -------- __ ----- 5 2. Nickel deposits of North America___________________________ 10 3. Total nickel resources of North America____________________ 10 4. Nickel reserves of North America___________________________ 12 5. Marginal and submarginal nickel resources of North America__ 13 6. Nickel-copper reserves of Lynn Lake, 195L_________________ 18 7. Ore reserves in the Sudbury district_________________________ 33 8. Nickel-iron resources at Cle Elum, Wash____________________ 35 NICKEL DEPOSITS OF NORTH: AMERICA By H. R. CoRNWALL ABSTRACT Nickel is estimated to be the fifth most abundant element of the earth, having an average bulk percentage of 2.7. The average nickel content of the earth's crust, however, is estimated to be only 0.008 percent. The minimum concentra­ tion of nickel in deposits that can be economically mined is about 1.2 percent, or 150 times the content of the crustal rocks in which the deposits occur. There are two principal types of nickel deposits : ( 1) sulfide deposits consist­ ing mainly of pyrrhotite and pentlandite, with or without accompanying chalcopyrite, and closely associated with norite and peridotite, and (2) nick­ eliferous laterite deposits, occurring as weathering mantles that overlie per­ idotite (the nickel silicate variety) and serpentinite (the nickeliferous iron variety). The largest nickel sulfide deposits in the world are in Canada-in the Sudbury district, Ontario, and the Thompson district, Manitoba. Smaller deposits of this type are scattered throughout Canada and the United States. Small nickel­ cobalt deposits, characterized by sulfides, sulfosalts, and arsenides and related to intermediate or salle igneous intrusives, also occur in Canada and the United States. Nickeliferous laterite deposits have been explored in parts of the Northwestern and Southeastern United States. Mining of one deposit in Oregon was begun in 1954. Nickeliferous laterite clearly appears to be the result of weathering under tropical to subtropical conditions, probably mostly in Tertiary time. The sulfide deposits are generally believed to have resulted, in part, from magmatic segre­ gation of immiscible sulfides and concentration by gravity sorting of the lighter and heavier fractions. This theory is contested by some geologists, however, particularly for deposits in several of the larger districts. The most popular alternate theory is that the deposits formed by deposition from hydrothermal solutions that migrated upward from igneous sources at depth along permeable zones of fracturing and faulting. One large recently discovered deposit possibly formed by the leaching effect of sulfur-bearing solutions on peridotite during regional metamorphism. Resources and reserves in individual deposits are given if the information is available. INTRODUCTION Nickel is widespread, in fact,
Recommended publications
  • The Pennsylvania State University Center for Critical Minerals Final
    The Pennsylvania State University Center for Critical Minerals Final Report on Cobalt Production in Pennsylvania: Context and Opportunities PREPARED FOR LEONARDO TECHNOLOGIES LLC., PREPARED BY Peter L. Rozelle Feifei Shi Mohammad Rezaee Sarma V. Pisupati Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ii Executive Summary Cobalt is a critical mineral as defined by the U.S. Department of the Interior in response to Executive Order 13817 (2017). Cobalt metal is used in superalloys required in the hot gas path of stationary gas turbines and jet engines, as well as in samarium cobalt magnets, the domestic production capability of which was found to be essential to the National Defense under Presidential Determination 2019-20. Cobalt compounds are used in lithium-ion batteries, as are manganese compounds. The Defense Industrial Base Report, in response to Executive Order 13806 (2017), expressed concerns regarding the U.S.
    [Show full text]
  • Podiform Chromite Deposits—Database and Grade and Tonnage Models
    Podiform Chromite Deposits—Database and Grade and Tonnage Models Scientific Investigations Report 2012–5157 U.S. Department of the Interior U.S. Geological Survey COVER View of the abandoned Chrome Concentrating Company mill, opened in 1917, near the No. 5 chromite mine in Del Puerto Canyon, Stanislaus County, California (USGS photograph by Dan Mosier, 1972). Insets show (upper right) specimen of massive chromite ore from the Pillikin mine, El Dorado County, California, and (lower left) specimen showing disseminated layers of chromite in dunite from the No. 5 mine, Stanislaus County, California (USGS photographs by Dan Mosier, 2012). Podiform Chromite Deposits—Database and Grade and Tonnage Models By Dan L. Mosier, Donald A. Singer, Barry C. Moring, and John P. Galloway Scientific Investigations Report 2012-5157 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This report and any updates to it are available online at: http://pubs.usgs.gov/sir/2012/5157/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Mosier, D.L., Singer, D.A., Moring, B.C., and Galloway, J.P., 2012, Podiform chromite deposits—database and grade and tonnage models: U.S.
    [Show full text]
  • Handbook of Iron Meteorites, Volume 3
    Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu­ DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given.
    [Show full text]
  • A New Occurrence of Terrestrial Native Iron in the Earth's Surface
    geosciences Article A New Occurrence of Terrestrial Native Iron in the Earth’s Surface: The Ilia Thermogenic Travertine Case, Northwestern Euboea, Greece Christos Kanellopoulos 1,2,* ID , Eugenia Valsami-Jones 3,4, Panagiotis Voudouris 1, Christina Stouraiti 1 ID , Robert Moritz 2, Constantinos Mavrogonatos 1 ID and Panagiotis Mitropoulos 1,† 1 Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15784 Athens, Greece; [email protected] (P.V.); [email protected] (C.S.); [email protected] (C.M.); [email protected] (P.M.) 2 Section of Earth and Environmental Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland; [email protected] 3 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 4 Department of Earth Sciences, Natural History Museum London, Cromwell Road, London SW7 5BD, UK * Correspondence: [email protected] † Professor Panagiotis Mitropoulos has passed away in 2017. Received: 6 April 2018; Accepted: 23 July 2018; Published: 31 July 2018 Abstract: Native iron has been identified in an active thermogenic travertine deposit, located at Ilia area (Euboea Island, Greece). The deposit is forming around a hot spring, which is part of a large active metallogenetic hydrothermal system depositing ore-bearing travertines. The native iron occurs in two shapes: nodules with diameter 0.4 and 0.45 cm, and angular grains with length up to tens of µm. The travertine laminae around the spherical/ovoid nodules grow smoothly, and the angular grains are trapped inside the pores of the travertine.
    [Show full text]
  • Heazlewooditeand Awaruite in Serpentinites of The
    HEAZLEWOODITEANDAWARUITE IN SERPENTINITESOF THE EASTERN TOWNSHIPS,QUEBEC J. A. CnaUBERLATN Geological,Suraey of Canail,a,Ottawa Awaruite of composition approximately NiaFe was shown by Nickel (1959) to be a common accessory phase in most serpentinites of the asbestos-producing belt in the Eastern Townships, Quebec. Nickel demonstrated that awaruite developed during the serpentinization process from nickel and iron already present in these rocks. Work on the distribution and genesis of native metals in the Muskox intrusion (Chamberlain, et aI, 1965) indicated that native metals could form by the decomposition of earlier-formed sulphides. For example, pentlandite was shown to decomposeto form avraruite plus iron sulphide, and chalcopyrite to native copper plus pyrrhotite. Some native iron may have been formed by the reduction of magnetite. Such reactions suggested that awaruite in the Eastern Townships could also have been formed by the decomposition of primary sulphides. This theory was checked by examination of 44 polished sections made from samples donated by A. S. Maclaren of the Geological Survey, and from samples collected during the 1965 field season*. The observed distribution of awaruite, heazle- woodite and magnetite in these sections is summarized in Table 1. Magnetite is present in g4 per cent of the sections in amounts exceeding 0.1 per cent. Most sections contain 1 per cent or more. It occurs as threads between ghost olivine or pyroxene crystals, as discrete, weakly euhedral grains, or as rims around primary chromite crystals. It is invariably in contact with serpentine. Magnetite is believed to have formed by reaction of magnesium-iron olivine or pyroxene with water to give magnesium serpentine plus magnetite at temperatures below 550o C.
    [Show full text]
  • LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, and COBALT ARSENIDE and SULFIDE ORE FORMATION Nicholas Allin
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2019 EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION Nicholas Allin Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geotechnical Engineering Commons EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION by Nicholas C. Allin A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option Montana Technological University 2019 ii Abstract Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges.
    [Show full text]
  • Syntectonic Mobility of Supergene Nickel Ores of New Caledonia (Southwest Pacific)
    Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). Evidence from faulted regolith and garnierite veins. Dominique Cluzel, Benoit Vigier To cite this version: Dominique Cluzel, Benoit Vigier. Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). Evidence from faulted regolith and garnierite veins.. Resource Geology, Wiley- Blackwell publishing, 2008, 58 (2), pp.161 - 170. 10.1111/j.1751-3928.2008.00053.x. hal-00161201 HAL Id: hal-00161201 https://hal.archives-ouvertes.fr/hal-00161201 Submitted on 10 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). Evidence from faulted regolith and garnierite veins. Dominique CLUZEL and Benoit VIGIER Institut des Sciences de la Terre d'Orléans, ISTO, UMR 6113, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France. [email protected] Running title: Syntectonic mobility of supergene nickel ores Abstract Supergene nickel deposits of New Caledonia that have been formed in the Neogene by weathering of obducted ultramafic rocks are tightly controlled by fracture development. The relationship of tropical weathering and tectonic structures, faults and tension gashes, have been investigated in order to determine whether fractures have play a passive role only, as previously thought; or alternatively, if brittle tectonics was acting together with alteration.
    [Show full text]
  • Nanomagnetic Properties of the Meteorite Cloudy Zone
    Nanomagnetic properties of the meteorite cloudy zone Joshua F. Einslea,b,1, Alexander S. Eggemanc, Ben H. Martineaub, Zineb Saghid, Sean M. Collinsb, Roberts Blukisa, Paul A. J. Bagote, Paul A. Midgleyb, and Richard J. Harrisona aDepartment of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom; bDepartment of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom; cSchool of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom; dCommissariat a` l’Energie Atomique et aux Energies Alternatives, Laboratoire d’electronique´ des Technologies de l’Information, MINATEC Campus, Grenoble, F-38054, France; and eDepartment of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom Edited by Lisa Tauxe, University of California, San Diego, La Jolla, CA, and approved October 3, 2018 (received for review June 1, 2018) Meteorites contain a record of their thermal and magnetic history, field, it has been proposed that the cloudy zone preserves a written in the intergrowths of iron-rich and nickel-rich phases record of the field’s intensity and polarity (5, 6). The ability that formed during slow cooling. Of intense interest from a mag- to extract this paleomagnetic information only recently became netic perspective is the “cloudy zone,” a nanoscale intergrowth possible with the advent of high-resolution X-ray magnetic imag- containing tetrataenite—a naturally occurring hard ferromagnetic ing methods, which are capable of quantifying the magnetic state mineral that
    [Show full text]
  • Overview of the Nickel Market in Latin America and the Caribbean
    INSG SECRETARIAT BRIEFING PAPER April 2021 – No.35 Overview of the Nickel market in Latin America and the Caribbean Ricardo Ferreira, Director of Market Research and Statistics Francisco Pinto, Manager of Statistical Analysis 1. Introduction At the suggestion of the Group’s Brazilian delegation, it was agreed by members that a report, based on INSG Insight No. 26, published in November 2015 entitled “An overview of the nickel industry in Latin America”, be prepared by the secretariat. This would include an update of the operations that resumed production (e.g. Falcondo in the Dominican Republic), and also discuss how the emerging battery market might influence nickel usage in the region as well as the possibility of nickel scrap usage. This detailed and comprehensive Insight report, the 35th in the series of INSG Insight briefing reports, provides members with the results of that research work. In Latin America and the Caribbean, the nickel producing countries are Brazil, Colombia, Cuba, Dominican Republic, Guatemala and Venezuela. The Dominican Republic stopped nickel mining and smelting in October 2013 but resumed production at the beginning of 2016. Venezuela has not produced since mid-2015. All of these countries mine nickel and process it further to produce intermediate or primary nickel – mainly ferronickel. Most of the mined ore is processed within each country, and then exported to overseas markets, but Brazil and Guatemala also export nickel ore. In terms of usage only Brazil and Mexico are relevant regarding the global nickel market. The first section of this report briefly describes existing nickel deposits in the region.
    [Show full text]
  • Thermal Annealing and Phase Transformation of Serpentine-Like Garnierite
    minerals Article Thermal Annealing and Phase Transformation of Serpentine-Like Garnierite Arun Kumar 1,2 , Michele Cassetta 1, Marco Giarola 3, Marco Zanatta 4 , Monique Le Guen 5, Gian Domenico Soraru 6 and Gino Mariotto 1,* 1 Department of Computer Science, University of Verona, 37134 Verona, Italy; [email protected] (A.K.); [email protected] (M.C.) 2 CNR-Institute for Microelectronics and Microsystems, Agrate Brianza, 20864 Agrate, Italy 3 Centro Piattaforme Tecnologiche (CPT), University of Verona, 37134 Verona, Italy; [email protected] 4 Department of Physics, University of Trento, 38123 Povo, Italy; [email protected] 5 Innovation Technology Direction, ERAMET IDEAS, 78190 Trappes, France; [email protected] 6 Department of Industrial Engineering, University of Trento, 38123 Povo, Italy; [email protected] * Correspondence: [email protected] Abstract: This study is focused on the vibrational and microstructural aspects of the thermally induced transformation of serpentine-like garnierite into quartz, forsterite, and enstatite occur- ring at about 620 ◦C. Powder specimens of garnierite were annealed in static air between room temperature and 1000 ◦C. The kinetic of the transformation was investigated by means of thermo- gravimetric and differential thermal analysis, and the final product was extensively characterized via micro-Raman spectroscopy and X-ray diffraction. Our study shows that serpentine-like garnierite consists of a mixture of different mineral species. Furthermore, these garnierites and their compo- sition can provide details based on the mineralogy and the crystalline phases resulting from the thermal treatment. Citation: Kumar, A.; Cassetta, M.; Giarola, M.; Zanatta, M.; Le Guen, M.; Keywords: garnierite; phase transformation; TGA/DSC; XRD; micro-Raman spectroscopy Soraru, G.D.; Mariotto, G.
    [Show full text]
  • Polymetallic Mineralization in Ediacaran Sediments in the Żarki-Kotowice Area, Poland
    MINERALOGIA, 43, No 3-4: 199-212 (2012) DOI: 10.2478/v10002-012-0008-0 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Polymetallic mineralization in Ediacaran sediments in the Żarki-Kotowice area, Poland Łukasz KARWOWSKI1*, Marek MARKOWIAK2 1University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland; e-mail: [email protected] 2Polish Geological Institute - Research and Development Unit, Upper Silesian Branch, ul. Królowej Jadwigi 1, 41-200 Sosnowiec, Poland; e-mail: [email protected] * Corresponding author Received: September 5, 2012 Received in revised form: February 20, 2013 Accepted: March 17, 2013 Available online: March 30, 2013 Abstract. In one small mineral vein in core from borehole 144-Ż in the Żarki-Kotowice area, almost all of the ore minerals known from related deposits in the vicinity occur. Some of the minerals in the vein described in this paper, namely, nickeline, hessite, native silver and minerals of the cobaltite-gersdorffite group, have not previously been reported from elsewhere in the Kraków-Lubliniec tectonic zone. The identified minerals are chalcopyrite, pyrite, marcasite, sphalerite, Co-rich pyrite, tennantite, tetrahedrite, bornite, galena, magnetite, hematite, cassiterite, pyrrhotite, wolframite (ferberite), scheelite, molybdenite, nickeline, minerals of the cobaltite- gersdorffite group, carrollite, hessite and native silver. Moreover, native bismuth, bismuthinite, a Cu- and Ag-rich sulfosalt of Bi (cuprobismutite) and Ni-rich pyrite also occur in the vein. We suggest that, the ore mineralization from the borehole probably reflects post-magmatic hydrothermal activity related to an unseen granitic intrusion located under the Mesozoic sediments in the Żarki-Pilica area.
    [Show full text]
  • Nickeline Nias C 2001-2005 Mineral Data Publishing, Version 1
    Nickeline NiAs c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 6/m 2/m 2/m. Commonly in granular aggregates, reniform masses with radial structure, and reticulated and arborescent growths. Rarely as distorted, horizontally striated, {1011} terminated crystals, to 1.5 cm. Twinning: On {1011} producing fourlings; possibly on {3141}. Physical Properties: Fracture: Conchoidal. Tenacity: Brittle. Hardness = 5–5.5 VHN = n.d. D(meas.) = 7.784 D(calc.) = 7.834 Optical Properties: Opaque. Color: Pale copper-red, tarnishes gray to blackish; white with strong yellowish pink hue in reflected light. Streak: Pale brownish black. Luster: Metallic. Pleochroism: Strong; whitish, yellow-pink to pale brownish pink. Anisotropism: Very strong, pale greenish yellow to slate-gray in air. R1–R2: (400) 39.2–45.4, (420) 38.0–44.2, (440) 36.8–43.5, (460) 36.2–43.2, (480) 37.2–44.3, (500) 39.6–46.4, (520) 42.3–48.6, (540) 45.3–50.7, (560) 48.2–52.8, (580) 51.0–54.8, (600) 53.7–56.7, (620) 55.9–58.4, (640) 57.8–59.9, (660) 59.4–61.3, (680) 61.0–62.5, (700) 62.2–63.6 Cell Data: Space Group: P 63/mmc. a = 3.621(1) c = 5.042(1) Z = 2 X-ray Powder Pattern: Unknown locality. 2.66 (100), 1.961 (90), 1.811 (80), 1.071 (40), 1.328 (30), 1.033 (30), 0.821 (30) Chemistry: (1) (2) Ni 43.2 43.93 Co 0.4 Fe 0.2 As 55.9 56.07 Sb 0.1 S 0.1 Total 99.9 100.00 (1) J´achymov, Czech Republic; by electron microprobe, corresponds to (Ni0.98Co0.01 Fe0.01)Σ=1.00As1.00.
    [Show full text]