Harmonia Axyridis As a Case Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi. -
Genetically Modified Baculoviruses for Pest
INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7. -
Bionomics of Chilocorus Infernalis Mulsant, 1853 (Coleoptera
doi:10.14720/aas.2019.113.1.07 Original research article / izvirni znanstveni članek Bionomics of Chilocorus infernalis Mulsant, 1853 (Coleoptera: Coccinellidae), a predator of San Jose scale, Diaspidiotus perniciosus (Comstock, 1881) under laboratory conditions Razia RASHEED1*, A.A. BUHROO1 and Shaziya GULL1 Received July 23, 2018; accepted January 03, 2019. Delo je prispelo 23. julija 2018, sprejeto 03. januarja 2019. ABSTRACT IZVLEČEK The bionomics of Chilocorus infernalis Mulsant, 1853, a BIONOMIJA VRSTE Chilocorus infernalis Mulsant, 1853 natural enemy of San Jose scale, was studied under laboratory (Coleoptera: Coccinellidae), PLENILCA AMERIŠKEGA conditions (26 ± 2˚C, and 65 ± 5% relative humidity). The KAPARJA (Diaspidiotus perniciosus (Comstock, 1881)) V eggs were deposited in groups and on average 45.68 ± 24.70 LABORATORIJSKIH RAZMERAH eggs were laid by female. Mean observed incubation period was 6.33 ± 1.52 days. Four instar grubs were observed, and Bionomija vrste Chilocorus infernalis Mulsant, 1853, mean duration of all four grubs was found to be 19.98 days. naravnega sovražnika ameriškega kaparja, je bila preučevana The pupal stage lasted for 8.00 ± 0.50 days and after adults v laboratorijskih razmerah (26 ± 2˚C in 65 ± 5 % relativne emerged out. zračne vlažnosti). Samice plenilca so jajčeca odlagale v skupinah, v poprečju 45,68 ± 24,70 jajčec na samico. V Key words: bionomics; natural enemies; San Jose scale; povprečju so se ličinke razvile iz jajčec v 6,33 ± 1,52 dneh. incubation period; larval instars Ugotovljene so bile štiri larvalne stopnje, katerih povprečna življenska doba je bila 19,98 dni. Razvojni štadij bube je trajal 8,00 ± 0,50 dni, nakar so se izlegli imagi. -
Genus Coccinella (Coccinellidae: Coleoptera)
Sarhad J. Agric. Vol.29, No.2, 2013 GENUS COCCINELLA (COCCINELLIDAE: COLEOPTERA) FROM GILGIT- BALTISTAN WITH TWO NEW RECORDS FROM PAKISTAN MUHAMMAD ASHFAQUE1*, FARMAN ULLAH2 and MUHAMMAD ATHER RAFI1 1 Institute of Plant and Enviromental Protection, National Agriculture Research Centre, Islamabad – Pakistan. 2 Department of Plant Protection, The University of Agriculture, Peshawar – Pakistan. *Email: [email protected] ABSTRACT The genus Coccinella from Gilgit-Baltistan was revised and four species were confirmed. Coccinella iranica and C. redemita are reported here as new records for Pakistan. Diagnostic characters of each species are given along with colour markings of elytra and detail structure of genitalia. Remarks pertaining to taxonomic discussion, history, taxonomy status and regional record of distribution are given for each species. Keywords: Coccinella, Coccinellid beetles, ladybird beetles, Coccinellinae, Coccinellidae, New records, Gilgit-Baltistan, Pakistan Citation: Ashfaque. M.., F. Ullah and M. A. Rafi. 2013. Genus coccinella (coccinellidae: coleoptera) from gilgit-baltistan with two new records from Pakistan. Sarhad J. Agric. 29(2): 239-247 INTRODUCTION It is interesting that Linnaeus – the great naturalist’s first zoological contribution to the nomenclature was on Coccinella. He described this genus in 1758 with its 36 European representatives. Laterille put this genus under newly established Coccinellidae. Later on, Europen taxonomists did intensive work on this group of insects, notably Mulsant (1846, 1850 and 1866); Redtenbacher (1843); LeConte (1852); Crotch (1874); Weise (1885a,b; 1892 and 1900) and Ganglbauer (1899). The members of genus Coccinella Linnaeus, 1758 are aphidophagous and principally distributed in the Holarctic region with only a few species in the Oriental and/or Australian regions (Kovar, 1997). -
Taxonomic Redescription of the Species of Sub- Family Chilocorinae
International Journal of Chemical Studies 2018; 6(6): 1465-1469 P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(6): 1465-1469 Taxonomic redescription of the species of sub- © 2018 IJCS Received: 26-09-2018 family Chilocorinae (Coleoptera: Coccinellidae) Accepted: 30-10-2018 from Jammu and Kashmir, India Ajaz Ahmad Kundoo Division of Entomology, Sher-e-Kashmir University of Ajaz Ahmad Kundoo, Akhtar Ali Khan, Ishtiyaq Ahad, NA Bhat, MA Agricultural Sciences and Chatoo and Khalid Rasool Technology of Kashmir, Wadura Campus, Baramullah, Jammu and Kashmir, India Abstract Ladybugs are diverse group of living organisms. They belong to family Coccinellidae of order Akhtar Ali Khan Coleoptera. The family has been subdivided into six subfamilies: Sticholotidinae, Chilochorinae, Division of Entomology, Scymninae, Coccidulinae, Coccinellinae and Epilachninae. These are universal predators and occupy Sher-e-Kashmir University of important place in biological control. In this paper four species of the subfamily Chilocorinae have been Agricultural Sciences and collected and rediscribed as no taxonomic work has been done on this group in Kashmir, India. This Technology of Kashmir, paper provides a detailed taxonomy of Chilocorus infernalis, Chilocorus rubidus, Pricibrumus Shalimar Campus, Jammu and uropygialis and Platynaspidius saundersi on the basis of advanced taxonomic character that is male Kashmir, India genitalia. Detailed description of adults, male genitalia and taxonomic keys are provided for each species Ishtiyaq Ahad along with color plates. Division of Entomology, Sher-e-Kashmir University of Keywords: Chilocorinae, Kashmir, male genitalia, taxonomy, taxonomic keys. Agricultural Sciences and Technology of Kashmir, Wadura Introduction Campus, Baramullah, Jammu Coccinellids are commonly known as ladybird beetles. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
International Conference Integrated Control in Citrus Fruit Crops
IOBC / WPRS Working Group „Integrated Control in Citrus Fruit Crops“ International Conference on Integrated Control in Citrus Fruit Crops Proceedings of the meeting at Catania, Italy 5 – 7 November 2007 Edited by: Ferran García-Marí IOBC wprs Bulletin Bulletin OILB srop Vol. 38, 2008 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2008 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Julius Kuehn Institute (JKI), Federal University of Gent Research Centre for Cultivated Plants Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: [email protected] Address General Secretariat: Dr. Philippe C. Nicot INRA – Unité de Pathologie Végétale Domaine St Maurice - B.P. 94 F-84143 Montfavet Cedex (France) ISBN 978-92-9067-212-8 http://www.iobc-wprs.org Organizing Committee of the International Conference on Integrated Control in Citrus Fruit Crops Catania, Italy 5 – 7 November, 2007 Gaetano Siscaro1 Lucia Zappalà1 Giovanna Tropea Garzia1 Gaetana Mazzeo1 Pompeo Suma1 Carmelo Rapisarda1 Agatino Russo1 Giuseppe Cocuzza1 Ernesto Raciti2 Filadelfo Conti2 Giancarlo Perrotta2 1Dipartimento di Scienze e tecnologie Fitosanitarie Università degli Studi di Catania 2Regione Siciliana Assessorato Agricoltura e Foreste Servizi alla Sviluppo Integrated Control in Citrus Fruit Crops IOBC/wprs Bulletin Vol. -
Phylogeny of Ladybirds (Coleoptera: Coccinellidae): Are the Subfamilies Monophyletic?
Molecular Phylogenetics and Evolution 54 (2010) 833–848 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of ladybirds (Coleoptera: Coccinellidae): Are the subfamilies monophyletic? A. Magro a,b,1, E. Lecompte b,c,*,1, F. Magné b,c, J.-L. Hemptinne a,b, B. Crouau-Roy b,c a Université de Toulouse, ENFA, EDB (Laboratoire Evolution et Diversité Biologique), 2 route de Narbonne, F-31320 Castanet Tolosan, France b CNRS, EDB (Laboratoire Evolution et Diversité Biologique), F-31062 Toulouse, France c Université de Toulouse, UPS, EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France article info abstract Article history: The Coccinellidae (ladybirds) is a highly speciose family of the Coleoptera. Ladybirds are well known Received 20 April 2009 because of their use as biocontrol agents, and are the subject of many ecological studies. However, little Revised 15 October 2009 is known about phylogenetic relationships of the Coccinellidae, and a precise evolutionary framework is Accepted 16 October 2009 needed for the family. This paper provides the first phylogenetic reconstruction of the relationships Available online 10 November 2009 within the Coccinellidae based on analysis of five genes: the 18S and 28S rRNA nuclear genes and the mitochondrial 12S, 16S rRNA and cytochrome oxidase subunit I (COI) genes. The phylogenetic relation- Keywords: ships of 67 terminal taxa, representative of all the subfamilies of the Coccinellidae (61 species, 37 genera), Phylogeny and relevant outgroups, were reconstructed using multiple approaches, including Bayesian inference Coccinellidae Partitioned analyses with partitioning strategies. The recovered phylogenies are congruent and show that the Coccinellinae Evolution is monophyletic but the Coccidulinae, Epilachninae, Scymninae and Chilocorinae are paraphyletic. -
Status Report on Arthropod Predators of the Asian Citrus Psyllid in Mexico
Status report on arthropod predators of the Asian Citrus Psyllid in Mexico Esteban Rodríguez-Leyva Colegio de Postgraduados, Montecillo, Texcoco, MEXICO. Importance of Citrus in Mexico 525 000 ha 23 States Citrus production 6.7 million ton/year 68% Orange, 20% Mexican lime, 5% Persian lime 2.5% Grapefruit , 2.5% Tangerine The insect problem Diaphorina citri in Mexico (www.senasica.gob.mx) Searching for natural enemies of ACP on citrus trees and orange jessamine Coccinellidae Azya orbigera Brachiacantha decora Chilocorus cacti Cycloneda sanguinea Harmonia axyridis Hippodamia convergens Olla v-nigrum López- Arroyo et al. 2008 Marín 2009, personal com. Sánchez-González & Arredondo-Bernal 2009, personal com. Gaona-García et al. 2009 Chrysopidae Chrysoperla rufilabris C. comanche C. externa Ceraeochrysa sp. nr. cincta C. valida López- Arroyo et al. 2008 Cortez-Mondaca et al. 2008 Syrphidae Allographa obliqua Pseudodoros clavatus Toxomerus marginatus Toxomerus politus Miscelaneous predators of ACP Spiders, Wasps (Vespidae), Ants (Ponerinae) López- Arroyo et al. 2008 Sánchez-González & Arredondo-Bernal 2009, personal com. Abundance of ladybirds (Coccinellidae) predators on citrus trees, at Nuevo Leon (northeast), Mexico. (Insect net, two sides of each mature tree, n=30). López-Arroyo, 2010, personal com. Abundance of lacewings (Chrysopidae) predators on citrus trees, at Nuevo Leon (northeast), Mexico. (Insect net two sides of each mature tree, n=30). López-Arroyo, 2010, personal com. Abundance of lacewings (Chrysopidae) predators on citrus trees, at Nuevo Leon (northeast), Mexico. (Insect net two sides of each mature tree, n=30). López-Arroyo, 2010, personal com. Abundance of predators (specially C. rufilabris) on Diaphorina citri on citrus trees at Nuevo Leon (northeast), Mexico. -
Coleoptera: Coccinellidae) As a Biocontrol Agent
CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 046 Review Factors affecting utility of Chilocorus nigritus (F.) (Coleoptera: Coccinellidae) as a biocontrol agent D.J. Ponsonby* Address: Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent. CT1 1QU, UK. *Correspondence: Email: [email protected] Received: 30 March 2009 Accepted: 25 June 2009 doi: 10.1079/PAVSNNR20094046 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2009 (Online ISSN 1749-8848) Abstract Chilocorus nigritus (F.) has been one of the most successful coccidophagous coccinellids in the history of classical biological control. It is an effective predator of many species of Diaspididae, some Coccidae and some Asterolecaniidae, with an ability to colonize a relatively wide range of tropical and sub-tropical environments. It appears to have few natural enemies, a rapid numerical response and an excellent capacity to coexist in stable relationships with parasitoids. A great deal of literature relating to its distribution, biology, ecology, mass rearing and prey preferences exists, but there is much ambiguity and the beetle sometimes inexplicably fails to establish, even when conditions are apparently favourable. This review brings together the key research relating to factors that affect its utility in biocontrol programmes, including its use in indoor landscapes and temperate glasshouses. Data are collated and interpreted and areas where knowledge is lacking are identified. Recommendations are made for prioritizing further research and improving its use in biocontrol programmes. -
(Malus Domostica Borkhis) One of the -..::Egyptian Journal of Plant
Egypt. J. Plant Prot. Res. Inst. (2020), 3 (4): 1218-1240 Egyptian Journal of Plant Protection Research Institute www.ejppri.eg.net Survey and population dynamics of scale insects (Hemiptera :Coccoidea) infesting apple trees and thier natural enemies in Egypt EL-Amir, S. M.; Yomna, N. M. Abd Allah; Mona, Moustafa and Shaaban, Abd-Rabou Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt. ARTICLE INFO Abstract : Article History Apple (Malus domostica Borkhis) one of the most important Received: 5/ 10 /2020 deciduous fruit trees in Egypt. Scale insects (Hemiptera : Coccoidea) Accepted: 24/11 /2020 are the most important pests infested orchard trees including apple . The present work dealt with the survey of scale insects infested apple trees and their natural enemies in different locations in Egypt as well Keywords as population dynamics of the dominant species infested apple of Apple trees, survey , these pests. The results indicated that 21 species of scale insects were population dynamics , recorded infested apple trees in Egypt. The dominant species were scale insects , natural Hemiberlesia lataniae (Signoret), Lepidosaphes beckii (Newman) , enemies and Egypt. Lepidosaphes pallidula (Williams), Parlatoria oleae (Colvée) ((Hemiptera :Coccoidea: Diaspididae) , Planococcus citri (Risso), Planococcus ficus (Signoret) (Hemiptera :Coccoidea: Pseudococcidae) and Russellaspis pustulans pustulans (Cockerell) (Hemiptera :Coccoidea: Asterolecaniidae). Also, in the present work 19 parasitoids and 2 hyperparasitiods and 33 predators were recorded associated with scale insects infesting apple trees. The dominant species were, the parasitoids Aphytis chrysomphali (Mercet), Aphytis maculicornis (Masi), Aphytis lepidosaphes Compere, Encarsia citrina (Craw) (Hymenoptera: Aphelinidae), Leptomastidea abnormis (Girault) , Metaphycus asterolecanii (Mercet) and Zaplatycerus kemticus (Trjapitzin and Triapitsyn) (Hymenoptera : Encyrtidae) and the predators Chilocorus bipustulatus L. -
Beneficial Insects of Utah Guide
BENEFICIAL INSECTS OF UTAH beneficial insects & other natural enemies identification guide PUBLICATION COORDINATORS AND EDITORS Cami Cannon (Vegetable IPM Associate and Graphic Design) Marion Murray (IPM Project Leader) AUTHORS Cami Cannon Marion Murray Ron Patterson (insects: ambush bug, collops beetle, red velvet mite) Katie Wagner (insects: Trichogramma wasp) IMAGE CREDITS All images are provided by Utah State University Extension unless otherwise noted within the image caption. CONTACT INFORMATION Utah State University IPM Program Dept. of Biology 5305 Old Main Hill Logan, UT 84322 (435) 797-0776 utahpests.usu.edu/IPM FUNDING FOR THIS PUBLICATION WAS PROVIDED BY: USU Extension Grants Program CONTENTS PREFACE Purpose of this Guide ................................................................6 Importance of Natural Enemies ..................................................6 General Practices to Enhance Natural Enemies ...........................7 Plants that will Enhance Natural Enemy Populations ..................7 PREDATORS Beetles .....................................................................................10 Flies .........................................................................................24 Lacewings/Dustywings .............................................................32 Mites ........................................................................................36 Spiders .....................................................................................42 Thrips ......................................................................................44