PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis

Total Page:16

File Type:pdf, Size:1020Kb

PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis Jensen, Kathrine Louise; Sørensen, Gunnar; Dencker, Ditte; Owens, William Anthony; Rahbek-Clemmensen, Troels; Brett Lever, Michael; Runegaard, Annika H; Riis Christensen, Nikolaj; Weikop, Pia; Wörtwein, Gitta; Fink-Jensen, Anders; Madsen, Kenneth L; Daws, Lynette; Gether, Ulrik; Rickhag, Mattias Published in: eNeuro DOI: 10.1523/ENEURO.0422-17.2018 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Jensen, K. L., Sørensen, G., Dencker, D., Owens, W. A., Rahbek-Clemmensen, T., Brett Lever, M., Runegaard, A. H., Riis Christensen, N., Weikop, P., Wörtwein, G., Fink-Jensen, A., Madsen, K. L., Daws, L., Gether, U., & Rickhag, M. (2018). PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis. eNeuro, 5(3). https://doi.org/10.1523/ENEURO.0422-17.2018 Download date: 25. sep.. 2021 New Research Disorders of the Nervous System PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis ء ء Kathrine Louise Jensen,1, Gunnar Sørensen,1,2, Ditte Dencker,2 William Anthony Owens,3 Troels Rahbek-Clemmensen,1 Michael Brett Lever,1 Annika H. Runegaard,1 Nikolaj Riis Christensen,1 Pia Weikop,2 Gitta Wörtwein,2 Anders Fink-Jensen,2 Kenneth L. Madsen,1 Lynette Daws,3 Ulrik Gether,1 and Mattias Rickhag1 DOI:http://dx.doi.org/10.1523/ENEURO.0422-17.2018 1Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark, 2Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark, and 3Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX 78229 Abstract Protein interacting with C-kinase 1 (PICK1) is a widely expressed scaffold protein known to interact via its PSD-95/discs-large/ZO-1 (PDZ)-domain with several membrane proteins including the dopamine (DA) transporter (DAT), the primary target for cocaine’s reinforcing actions. Here, we establish the importance of PICK1 for behavioral effects observed after both acute and repeated administration of cocaine. In PICK1 knock-out (KO) mice, the acute locomotor response to a single injection of cocaine was markedly attenuated. Moreover, in support of a role for PICK1 in neuroadaptive changes induced by cocaine, we observed diminished cocaine intake in a self-administration paradigm. Reduced behavioral effects of cocaine were not associated with decreased striatal DAT distribution and most likely not caused by the ϳ30% reduction in synaptosomal DA uptake observed in PICK1 KO mice. The PICK1 KO mice demonstrated preserved behavioral responses to DA receptor agonists supporting intact downstream DA receptor signaling. Unexpectedly, we found a prominent increase in striatal DA content and levels of striatal tyrosine hydroxylase (TH) in PICK1 KO mice. Chronoamperometric recordings showed enhanced DA release in PICK1 KO mice, consistent with increased striatal DA pools. Viral-mediated knock-down (KD) of PICK1 in cultured dopaminergic neurons increased TH expression, supporting a direct cellular effect of PICK1. In summary, in addition to demonstrating a key role of PICK1 in mediating behavioral effects of cocaine, our data reveal a so far unappreciated role of PICK1 in DA homeostasis that possibly involves negative regulation of striatal TH levels. Significance Statement Cocaine addiction is a major societal problem and better treatments are needed. We demonstrate here the importance of the PSD-95/discs-large/ZO-1 (PDZ)-domain scaffold protein protein interacting with C-kinase 1 (PICK1) for both the acute reinforcing effects of cocaine and the long-term behavioral changes seen as a consequence of repeated cocaine exposure. Interestingly, our data suggest that these alterations are independent of PICK1 binding to the primary target of cocaine, the dopamine transporter (DAT). Moreover, our study reveals a novel role of PICK1 in maintenance of DA homeostasis that involves negative regulation of the levels of striatal tyrosine hydroxylase (TH), the rate-limiting enzyme in DA synthesis. Summarized, these data provide an important framework for further exploring the role of PICK1 in addiction and as putative target for treatment of psychostimulant abuse. May/June 2018, 5(3) e0422-17.2018 1–22 New Research 2 of 22 Key words: cocaine; dopamine homeostasis; drug addiction; protein interacting with C-kinase 1; striatum; ty- rosine hydroxylase Introduction et al., 2012). The BAR-domain is dimeric and thus PICK1 Cocaine is a highly addictive and widely abused psy- contains in its functional form two separate PDZ-domains chostimulant (Karila et al., 2012; Proctor, 2012; Degen- allowing simultaneous binding of two interaction partners hardt et al., 2013; Karila et al., 2014). Treatment of cocaine (Xu and Xia, 2006; Hanley, 2008; Focant and Hermans, abuse, however, remains a major challenge and still no 2013). The PDZ-domain of PICK1 interacts with the C pharmacological agents have proven therapeutically use- termini of several receptors, channels and transporters ful (Kristensen et al., 2011; Shorter et al., 2015). The expressed in the CNS (Xia et al., 1999; Dev et al., 2000; reinforcing properties of cocaine can be attributed primar- Torres et al., 2001; Madsen et al., 2005). These include ily to its high-affinity interaction with the presynaptic DAT (Torres et al., 2001; Bjerggaard et al., 2004) and the plasma membrane dopamine (DA) transporter (DAT). DAT AMPA receptor (AMPAR) subunit ionotropic glutamate mediates rapid reuptake of DA from the extracellular receptor 2 (GluA2; Xia et al., 2000; Kim et al., 2001; Jin space (Giros et al., 1996; Kristensen et al., 2011) and is et al., 2006; Steinberg et al., 2006; Thorsen et al., 2010), thereby critical for replenishment of intracellular striatal and for both, it has been suggested that PICK1 modulates DA pools (Jones et al., 1998). Binding of cocaine to DAT their trafficking (Xia et al., 2000; Kim et al., 2001; Torres leads to a fast increase in extracellular DA, stimulation of et al., 2001; Jin et al., 2006; Steinberg et al., 2006; DA receptors and subsequent long-lasting changes in Thorsen et al., 2010). Interfering with the interaction be- synaptic plasticity, which are thought to underlie the crav- tween PICK1 and AMPA receptors has previously been ing for continuous drug intake (Chen et al., 2006; Thom- shown to blunt the synaptic plasticity induced at gluta- sen et al., 2009). matergic synapses onto ventral tegmental area (VTA) do- Protein interacting with C-kinase 1 (PICK1) is a scaffold paminergic neurons on a single cocaine exposure protein implicated in several cellular functions (Xu and Xia, (Bellone and Lüscher, 2006). Moreover, both cerebellar 2006; Hanley, 2008; Focant and Hermans, 2013). Scaffold and hippocampal long-term depression is abolished on proteins constitute a highly diverse family of proteins that disruption of the PICK1-GluA2 interaction (Xia et al., 2000; serve a key role in orchestrating neuronal signaling pro- Kim et al., 2001; Jin et al., 2006; Steinberg et al., 2006; cesses ensuring specificity in intracellular signaling net- Thorsen et al., 2010). However, the consequences of works (Kim and Sheng, 2004; Good et al., 2011). PICK1 is disrupting PICK1-DAT interactions for the behavioral ef- unique by possessing both a PSD-95/discs-large/ZO-1 fects of cocaine are unknown. (PDZ) protein interaction domain and a lipid binding BAR Here, we investigate the importance of PICK1 for the (Bin/amphiphysin/Rvs) domain (Hanley, 2008; Madsen behavioral actions of cocaine. In mice with targeted de- letion of PICK1 [PICK1 knock-out (KO) mice], the acute locomotor response to a single injection of cocaine was Received December 5, 2017; accepted April 27, 2018; First published May 14, markedly attenuated. Moreover, cocaine intake was 2018. diminished in a self-administration paradigm. These be- The authors declare no competing financial interests. Author contributions: K.L.J., G.S., G.W., A.F.-J., K.L.M., L.D., U.G., and M.R. havioral changes were not associated with altered pre- designed research; K.L.J., G.S.,. D.D., W.A.O., T.R.-C., M.B.L., A.H.R., N.R.C., synaptic DAT expression or aberrant postsynaptic DA P.W., G.W., and M.R. performed research; K.L.J., G.S., D.D., W.A.O., T.R.-C., receptor activation. Intriguingly, we found that PICK1 KO M.B.L., A.H.R., N.R.C., P.W., G.W., K.L.M., L.D., U.G., and M.R. analyzed data; mice displayed increased striatal levels of tyrosine hy- K.L.J., G.S., G.W., L.D., U.G., and M.R. wrote the paper. droxylase (TH) and DA, relative to wild-type littermates. This work was supported by the Lundbeck Fondation (M.R.), the Danish Medical Research Council (U.G., M.R., K.L.J.), University of Copenhagen Chronoamperometric recordings in striatum revealed en- BioScaRT Program of Excellence (G.S., U.G.), Lundbeck Foundation Center hanced DA release in PICK1 KO mice further supporting for Biomembranes in Nanomedicine (U.G.), the Weimann Foundation (M.R.), increased striatal DA pools. The importance of PICK1 and the National Institutes of Health Grant R21 DA038504 (to L.C.D.). specifically in DA neurons was confirmed by lentiviral *K.L.J. and G.S. contributed equally to this work. Acknowledgements: The PICK1 KO mouse strain was kindly provided by Dr. knock-down (KD) of PICK1 in cultured midbrain dopami- Richard Huganir (Johns Hopkins University, Baltimore, MD). The lentiviral nergic neurons resulting in elevated TH expression. How- vectors (Citri et al., 2010) were kindly provided by Prof. Robert C. Malenka at ever, neither coimmunoprecipitation nor fluorescence Stanford University (Palo Alto, CA). We also thank Anna Mai Jansen for polarization experiments showed a direct interaction be- providing the dual promoter lentiviral constructs used to KD PICK1 in dopa- tween TH and PICK1.
Recommended publications
  • AMPA Receptor Dysregulation and Therapeutic Interventions in a Mouse Model of CDKL5 Deficiency Disorder
    4814 • The Journal of Neuroscience, June 12, 2019 • 39(24):4814–4828 Neurobiology of Disease AMPA Receptor Dysregulation and Therapeutic Interventions in a Mouse Model of CDKL5 Deficiency Disorder Madhumita Yennawar,1 XRachel S. White,2 and XFrances E. Jensen2 1Department of Systems Pharmacology and Translational Therapeutics, and 2Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104 Pathogenic mutations in cyclin-dependent kinase-like 5 (CDKL5) result in CDKL5 deficiency disorder (CDD), a rare disease marked by early-life seizures, autistic behaviors, and intellectual disability. Although mouse models of CDD exhibit dendritic instability and alter- ations in synaptic scaffolding proteins, studies of glutamate receptor levels and function are limited. Here we used a novel mouse model of CDD, the Cdkl5R59X knock-in mouse (R59X), to investigate changes in synaptic glutamate receptor subunits and functional conse- quences. Male mice were used for all experiments to avoid the confounding effects of X-inactivation that would be present in female heterozygous mice. We showed that adult male R59X mice recapitulated the behavioral outcomes observed in other mouse models of CDD, including social deficits and memory and learning impairments, and exhibited decreased latency to seizure upon pentylenetetrazol administration. Furthermore, we observed a specific increase in GluA2-lacking ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)-type glutamate receptors (AMPARs) in the adult R59X hippocampus, which is accompanied electrophysiologically by increased rectification ratio of AMPAR EPSCs and elevated early-phase long term potentiation (LTP). Finally, we showed that acute treatment with the GluA2-lacking AMPAR blocker IEM-1460 decreased AMPAR currents, and rescued social deficits, working memory impairments, and seizure behavior latency in R59X mice.
    [Show full text]
  • PICK1 Is Implicated in Organelle Motility in an Arp2/3 Complex–Independent Manner
    M BoC | ARTICLE PICK1 is implicated in organelle motility in an Arp2/3 complex–independent manner Yadaiah Madasua, Changsong Yangb, Malgorzata Boczkowskaa, Kelley A. Bethoneya, Adam Zwolaka, Grzegorz Rebowskia, Tatyana Svitkinab, and Roberto Domingueza aDepartment of Physiology, Perelman School of Medicine, and bDepartment of Biology, University of Pennsylvania, Philadelphia, PA 19104 ABSTRACT PICK1 is a modular scaffold implicated in synaptic receptor trafficking. It features Monitoring Editor a PDZ domain, a BAR domain, and an acidic C-terminal tail (ACT). Analysis by small- angle x- Thomas D. Pollard ray scattering suggests a structural model that places the receptor-binding site of the PDZ Yale University domain and membrane-binding surfaces of the BAR and PDZ domains adjacent to each other Received: Oct 14, 2014 on the concave side of the banana-shaped PICK1 dimer. In the model, the ACT of one subunit Revised: Dec 23, 2014 of the dimer interacts with the PDZ and BAR domains of the other subunit, possibly account- Accepted: Jan 26, 2015 ing for autoinhibition. Consistently, full-length PICK1 shows diffuse cytoplasmic localization, but it clusters on vesicle-like structures that colocalize with the trans-Golgi network marker TGN38 upon deletion of either the ACT or PDZ domain. This localization is driven by the BAR domain. Live-cell imaging further reveals that PICK1-associated vesicles undergo fast, nondi- rectional motility in an F-actin–dependent manner, but deleting the ACT dramatically reduces vesicle speed. Thus the ACT links PICK1-associated vesicles to a motility factor, likely myosin, but, contrary to previous reports, PICK1 neither binds nor inhibits Arp2/3 complex.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • The Glutamate Receptor Ion Channels
    0031-6997/99/5101-0007$03.00/0 PHARMACOLOGICAL REVIEWS Vol. 51, No. 1 Copyright © 1999 by The American Society for Pharmacology and Experimental Therapeutics Printed in U.S.A. The Glutamate Receptor Ion Channels RAYMOND DINGLEDINE,1 KARIN BORGES, DEREK BOWIE, AND STEPHEN F. TRAYNELIS Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia This paper is available online at http://www.pharmrev.org I. Introduction ............................................................................. 8 II. Gene families ............................................................................ 9 III. Receptor structure ...................................................................... 10 A. Transmembrane topology ............................................................. 10 B. Subunit stoichiometry ................................................................ 10 C. Ligand-binding sites located in a hinged clamshell-like gorge............................. 13 IV. RNA modifications that promote molecular diversity ....................................... 15 A. Alternative splicing .................................................................. 15 B. Editing of AMPA and kainate receptors ................................................ 17 V. Post-translational modifications .......................................................... 18 A. Phosphorylation of AMPA and kainate receptors ........................................ 18 B. Serine/threonine phosphorylation of NMDA receptors ..................................
    [Show full text]
  • Alternative Splicing of AMPA Subunits in Prefrontal Cortical Fields Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ORIGINAL RESEARCH ARTICLE published: 03 Januaryprovided 2012 by Frontiers - Publisher Connector PSYCHIATRY doi: 10.3389/fpsyt.2011.00072 Alternative splicing of AMPA subunits in prefrontal cortical fields of cynomolgus monkeys following chronic ethanol self-administration Glen Acosta1, David P.Freidman1, Kathleen A. Grant 2 and Scott E. Hemby 1,3* 1 Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC, USA 2 Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, USA 3 Department of Psychiatry and Behavioral Sciences, Wake Forest University, Winston-Salem, NC, USA Edited by: Functional impairment of the orbital and medial prefrontal cortex underlies deficits in exec- Lara Ray, University of California, USA utive control that characterize addictive disorders, including alcohol addiction. Previous Reviewed by: studies indicate that alcohol alters glutamate neurotransmission and one substrate of these Raj Sevak, University of California, USA effects may be through the reconfiguration of the subunits constituting ionotropic gluta- Shaolin Wang, University of Virginia, mate receptor (iGluR) complexes. Glutamatergic transmission is integral to cortico-cortical USA and cortico-subcortical communication and alcohol-induced changes in the abundance of *Correspondence: the receptor subunits and/or their splice variants may result in critical functional impair- Scott E. Hemby, Medical Center ments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic Boulevard, Wake Forest University School of Medicine, Winston-Salem, ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA) subunit vari- NC 27157, USA. ant and kainate (GRIK) subunit mRNA expression were studied in the orbitofrontal cortex e-mail: [email protected] (OFC), dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC) of male cynomolgus monkeys.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO the Role of PICK1 And
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The Role of PICK1 and PKC alpha in Alzheimer’s Disease A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Neurosciences by Stephanie Isabel Alfonso Committee in charge: Professor Roberto Malinow, Chair Professor Andrea Chiba Professor Todd Coleman Professor Fred Gage Professor Gentry Patrick 2016 The Dissertation of Stephanie Isabel Alfonso is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION I would like to dedicate this thesis to my son and inspiration, Alex Alfonso. Thank you for changing my life and giving me a purpose to live. It is your love and your smile that keep me going everyday and I could never imagine a life without you. This will be the beginning of a major turning point in our lives and I’m glad you’ll be there to share it with me. Tambien le dedico esta tésis a mis padres y mi hermano que siempre han estado alli para ayudarme con todo. Siempre han sido un gran apoyo y nunca les podre pagar lo que han hecho por mi. Gracias por todo el amor que me han dado a mi y a mi hijo. Los quiero mas a que a nadie en el mundo, Steph. iv TABLE OF CONTENTS Signature Page…………………………………………………………………… iii Dedication………………………………………………………………………... iv Table of Contents……………………………………………………………….... v List of Figures.…………………............................................................................ vi Acknowledgements………………………………………………………………. vii Vita………………………………………..…………………………………..….. viii Abstract of the Dissertation ……………………………………………………… ix Introduction………………………………………………………………………. 1 Chapter I- Synapto-depressive effects of Aβ require PICK1 …………………......3 Chapter II- PKCα’s role in Alzheimer’s Disease …………..……………………..20 Appendix………………………………………………………………………….
    [Show full text]
  • PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis
    New Research Disorders of the Nervous System PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis ء ء Kathrine Louise Jensen,1, Gunnar Sørensen,1,2, Ditte Dencker,2 William Anthony Owens,3 Troels Rahbek-Clemmensen,1 Michael Brett Lever,1 Annika H. Runegaard,1 Nikolaj Riis Christensen,1 Pia Weikop,2 Gitta Wörtwein,2 Anders Fink-Jensen,2 Kenneth L. Madsen,1 Lynette Daws,3 Ulrik Gether,1 and Mattias Rickhag1 DOI:http://dx.doi.org/10.1523/ENEURO.0422-17.2018 1Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark, 2Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark, and 3Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX 78229 Abstract Protein interacting with C-kinase 1 (PICK1) is a widely expressed scaffold protein known to interact via its PSD-95/discs-large/ZO-1 (PDZ)-domain with several membrane proteins including the dopamine (DA) transporter (DAT), the primary target for cocaine’s reinforcing actions. Here, we establish the importance of PICK1 for behavioral effects observed after both acute and repeated administration of cocaine. In PICK1 knock-out (KO) mice, the acute locomotor response to a single injection of cocaine was markedly attenuated. Moreover, in support of a role for PICK1 in neuroadaptive changes induced by cocaine, we observed diminished cocaine intake in a self-administration paradigm. Reduced behavioral effects of cocaine were not associated with decreased striatal DAT distribution and most likely not caused by the ϳ30% reduction in synaptosomal DA uptake observed in PICK1 KO mice.
    [Show full text]
  • Deletion of Glutamate Receptor Trafficking Proteins in the Medial Prefrontal Cortex and Their Sex-Specific Effects on Cocaine Addiction
    DELETION OF GLUTAMATE RECEPTOR TRAFFICKING PROTEINS IN THE MEDIAL PREFRONTAL CORTEX AND THEIR SEX-SPECIFIC EFFECTS ON COCAINE ADDICTION A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY by Megan Marie Wickens May 2020 Examining Committee Members: Dr. Lisa Briand, Advisory Chair, Temple University Psychology Department Dr. Debra Bangasser, Temple University Psychology Department Dr. Vinay Parikh, Temple University Psychology Department Dr. Mathieu Wimmer, Temple University Psychology Department Dr. Vishnu Murty, Temple University Psychology Department Dr. Scott Rawls, Temple University Pharmacology Department ABSTRACT Dysregulation of glutamatergic signaling mechanisms is a component of many psychiatric diseases. A number of these diseases exhibit a bias toward one sex, yet the ways in which glutamate is affected by or modulates this bias is poorly understood. In cocaine addiction, women progress from initial use of the drug to substance use disorder faster than men, and have more difficulty remaining abstinent. The same is true in female rodents. We used a mouse model of cocaine self-administration to study the role of glutamate receptor trafficking proteins in cocaine addiction-like behavior in males and females. In the first set of experiments, mice received a conditional knockout of glutamate receptor interacting protein 1 (GRIP1) in the medial prefrontal cortex (mPFC). This led to an increase in motivation for cocaine as well as enhanced likelihood of relapse behavior, as measured by a progressive ratio schedule and cue-induced reinstatement, respectively. No sex differences were seen after prefrontal deletion of GRIP1. The next set of experiments used the same behavioral paradigm, but mice received a conditional knockout of protein interacting with C kinase 1 (PICK1) in the mPFC.
    [Show full text]
  • Ampa Receptor Dysregulation and Therapeutic Interventions in a Mouse Model of Cdkl5 Deficiency Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2018 Ampa Receptor Dysregulation And Therapeutic Interventions In A Mouse Model Of Cdkl5 Deficiency Disorder Madhumita Yennawar University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Neuroscience and Neurobiology Commons Recommended Citation Yennawar, Madhumita, "Ampa Receptor Dysregulation And Therapeutic Interventions In A Mouse Model Of Cdkl5 Deficiency Disorder" (2018). Publicly Accessible Penn Dissertations. 3209. https://repository.upenn.edu/edissertations/3209 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3209 For more information, please contact [email protected]. Ampa Receptor Dysregulation And Therapeutic Interventions In A Mouse Model Of Cdkl5 Deficiency Disorder Abstract CDKL5 Deficiency Disorder (CDD) is a rare disease that presents as a set of neurological deficits including early-life epilepsy, intellectual disability, and autistic-like behaviors. It results from pathogenic mutations in the gene for cyclin-dependent kinase-like 5 (CDKL5), a protein that is highly expressed in brain. There is no cure for CDD and seizures in this disorder are typically resistant to traditional anti-epileptic drugs, although some patients respond well to cannabidiol. However, underlying mechanisms of what causes hyperexcitability and neurological deficits in CDD is poorly understood. We investigated the novel Cdkl5R59X mouse (R59X), and observed that mutant mice have social interaction and memory deficits, and decreased latency to seizure after administration of pentylenetetrazol. Given the observed behavioral alterations and hyperexcitability in R59X mice, we hypothesized that mutant mice would exhibit underlying molecular and functional alterations in proteins involved in regulating the E:I balance.
    [Show full text]
  • Trafficking of Kainate Receptors
    Membranes 2014, 4, 565-595; doi:10.3390/membranes4030565 OPEN ACCESS membranes ISSN 2077-0375 www.mdpi.com/journal/membranes Review Trafficking of Kainate Receptors Steffen Pahl 1;2;3, Daniel Tapken 1, Simon C. Haering 1;3;4 and Michael Hollmann 1;2;* 1 Department of Biochemistry I, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany; E-Mails: [email protected] (S.P.); [email protected] (D.T.); [email protected] (S.C.H.) 2 International Graduate School of Neuroscience, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany 3 Ruhr University Research School, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany 4 Graduate School of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-234-32-28225; Fax: +49-234-32-14244. Received: 6 July 2014; in revised form: 4 August 2014 / Accepted: 12 August 2014 / Published: 20 August 2014 Abstract: Ionotropic glutamate receptors (iGluRs) mediate the vast majority of excitatory neurotransmission in the central nervous system of vertebrates. In the protein family of iGluRs, kainate receptors (KARs) comprise the probably least well understood receptor class. Although KARs act as key players in the regulation of synaptic network activity, many properties and functions of these proteins remain elusive until now. Especially the precise pre-, extra-, and postsynaptic localization of KARs plays a critical role for neuronal function, as an unbalanced localization of KARs would ultimately lead to dysregulated neuronal excitability. Recently, important advances in the understanding of the regulation of surface expression, function, and agonist-dependent endocytosis of KARs have been achieved.
    [Show full text]
  • SUSD4 Controls Activity-Dependent Degradation of AMPA Receptor GLUA2 and Synaptic Plasticity
    bioRxiv preprint doi: https://doi.org/10.1101/859587; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUSD4 Controls Activity-Dependent Degradation of AMPA Receptor GLUA2 and Synaptic Plasticity I. González-Calvo1,2,†, K. Iyer1,†, M. Carquin1, A. Khayachi1, F.A. Giuliani2, J. Vincent3, M. Séveno4, S.M. Sigoillot1, M. Veleanu1, S. Tahraoui1, M. Albert1, O. Vigy5, Y. Nadjar6, A. Dumoulin6, A. Triller6, J.-L. Bessereau7, L. Rondi-Reig3, P. Isope2, F. Selimi1* Affiliations: 1 Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France. 2 Institut de Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, , Strasbourg, France. 3 Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France. 4 BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France. 5 Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France. 6 École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France. 7 Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut Neuromyogène, 69008, Lyon, France. * Correspondence to: [email protected] † Equal contribution. Summary At excitatory synapses, the choice between recycling or degradation of glutamate AMPA receptors controls the direction of synaptic plasticity. In this context, how the degradation machinery is targeted to specific synaptic substrates in an activity-dependent manner is not understood. Here we show that SUSD4, a complement-related transmembrane protein, is a tether for HECT ubiquitin ligases of the NEDD4 subfamily, which promote the degradation of a large number of cellular substrates.
    [Show full text]
  • Role of Satb1 and Satb2 Transcription Factors in the Glutamate Receptors Expression and Ca2+ Signaling in the Cortical Neurons in Vitro
    International Journal of Molecular Sciences Article Role of Satb1 and Satb2 Transcription Factors in the Glutamate Receptors Expression and Ca2+ Signaling in the Cortical Neurons In Vitro Egor A. Turovsky 1,2,* , Maria V. Turovskaya 1, Evgeniya I. Fedotova 1, Alexey A. Babaev 2, Victor S. Tarabykin 2,3 and Elena G. Varlamova 1,* 1 Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; [email protected] (M.V.T.); [email protected] (E.I.F.) 2 Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; [email protected] (A.A.B.); [email protected] (V.S.T.) 3 Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Charitéplatz 1, 10117 Berlin, Germany * Correspondence: [email protected] or [email protected] (E.A.T.); [email protected] or [email protected] (E.G.V.) Abstract: Transcription factors Satb1 and Satb2 are involved in the processes of cortex development and maturation of neurons. Alterations in the expression of their target genes can lead to neurode- generative processes. Molecular and cellular mechanisms of regulation of neurotransmission by these transcription factors remain poorly understood. In this study, we have shown that transcription Citation: Turovsky, E.A.; Turovskaya, factors Satb1 and Satb2 participate in the regulation of genes encoding the NMDA-, AMPA-, and M.V.; Fedotova, E.I.; Babaev, A.A.; KA- receptor subunits and the inhibitory GABA(A) receptor. Deletion of gene for either Satb1 or Tarabykin, V.S.; Varlamova, E.G.
    [Show full text]