RAB39B-Mediated Trafficking of the Glua2-AMPAR Subunit Controls
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Reframing Psychiatry for Precision Medicine
Reframing Psychiatry for Precision Medicine Elizabeth B Torres 1,2,3* 1 Rutgers University Department of Psychology; [email protected] 2 Rutgers University Center for Cognitive Science (RUCCS) 3 Rutgers University Computer Science, Center for Biomedicine Imaging and Modelling (CBIM) * Correspondence: [email protected]; Tel.: (011) +858-445-8909 (E.B.T) Supplementary Material Sample Psychological criteria that sidelines sensory motor issues in autism: The ADOS-2 manual [1, 2], under the “Guidelines for Selecting a Module” section states (emphasis added): “Note that the ADOS-2 was developed for and standardized using populations of children and adults without significant sensory and motor impairments. Standardized use of any ADOS-2 module presumes that the individual can walk independently and is free of visual or hearing impairments that could potentially interfere with use of the materials or participation in specific tasks.” Sample Psychiatric criteria from the DSM-5 [3] that does not include sensory-motor issues: A. Persistent deficits in social communication and social interaction across multiple contexts, as manifested by the following, currently or by history (examples are illustrative, not exhaustive, see text): 1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, or affect; to failure to initiate or respond to social interactions. 2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, for example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye contact and body language or deficits in understanding and use of gestures; to a total lack of facial expressions and nonverbal communication. -
The C9orf72-Interacting Protein Smcr8 Is a Negative Regulator of Autoimmunity and Lysosomal Exocytosis
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press The C9orf72-interacting protein Smcr8 is a negative regulator of autoimmunity and lysosomal exocytosis Yingying Zhang,1,2,3 Aaron Burberry,1,2,3 Jin-Yuan Wang,1,2,3 Jackson Sandoe,1,2,3 Sulagna Ghosh,1,2,3 Namrata D. Udeshi,4 Tanya Svinkina,4 Daniel A. Mordes,1,2,3,5 Joanie Mok,1,2,3 Maura Charlton,1,2,3 Quan-Zhen Li,6,7 Steven A. Carr,4 and Kevin Eggan1,2,3 1Department of Stem Cell and Regenerative Biology, 2Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA; 3Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA; 4Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; 5Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; 6Department of Immunology, 7Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA While a mutation in C9ORF72 is the most common genetic contributor to amyotrophic lateral sclerosis (ALS), much remains to be learned concerning the function of the protein normally encoded at this locus. To elaborate further on functions for C9ORF72, we used quantitative mass spectrometry-based proteomics to identify interacting proteins in motor neurons and found that its long isoform complexes with and stabilizes SMCR8, which further enables interaction with WDR41. To study the organismal and cellular functions for this tripartite complex, we generated Smcr8 loss-of-function mutant mice and found that they developed phenotypes also observed in C9orf72 loss-of- function animals, including autoimmunity. -
Autosomal Recessive Ataxias and with the Early-Onset Parkinson’S Disease That We Identified Here As Overlapping with the SFARI Autism Gene
Roadmap to Help Develop Personalized Targeted Treatments for Autism as a Disorder of the Nervous Systems Elizabeth B Torres 1,2,3* 1 Rutgers University Department of Psychology; [email protected] 2 Rutgers University Center for Cognitive Science (RUCCS) 3 Rutgers University Computer Science, Center for Biomedicine Imaging and Modelling (CBIM) * Correspondence: [email protected]; Tel.: (011) +858-445-8909 (E.B.T) 1 | P a g e Supplementary Material Sample Psychological criteria that sidelines sensory motor issues in autism: The ADOS-2 manual [1, 2], under the “Guidelines for Selecting a Module” section states (emphasis added): “Note that the ADOS-2 was developed for and standardized using populations of children and adults without significant sensory and motor impairments. Standardized use of any ADOS-2 module presumes that the individual can walk independently and is free of visual or hearing impairments that could potentially interfere with use of the materials or participation in specific tasks.” Sample Psychiatric criteria from the DSM-5 [3] that does not include sensory-motor issues: A. Persistent deficits in social communication and social interaction across multiple contexts, as manifested by the following, currently or by history (examples are illustrative, not exhaustive, see text): 1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, or affect; to failure to initiate or respond to social interactions. 2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, for example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye contact and body language or deficits in understanding and use of gestures; to a total lack of facial expressions and nonverbal communication. -
PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis
PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis Jensen, Kathrine Louise; Sørensen, Gunnar; Dencker, Ditte; Owens, William Anthony; Rahbek-Clemmensen, Troels; Brett Lever, Michael; Runegaard, Annika H; Riis Christensen, Nikolaj; Weikop, Pia; Wörtwein, Gitta; Fink-Jensen, Anders; Madsen, Kenneth L; Daws, Lynette; Gether, Ulrik; Rickhag, Mattias Published in: eNeuro DOI: 10.1523/ENEURO.0422-17.2018 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Jensen, K. L., Sørensen, G., Dencker, D., Owens, W. A., Rahbek-Clemmensen, T., Brett Lever, M., Runegaard, A. H., Riis Christensen, N., Weikop, P., Wörtwein, G., Fink-Jensen, A., Madsen, K. L., Daws, L., Gether, U., & Rickhag, M. (2018). PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis. eNeuro, 5(3). https://doi.org/10.1523/ENEURO.0422-17.2018 Download date: 25. sep.. 2021 New Research Disorders of the Nervous System PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis ء ء Kathrine Louise Jensen,1, Gunnar Sørensen,1,2, Ditte Dencker,2 William Anthony Owens,3 Troels Rahbek-Clemmensen,1 Michael Brett Lever,1 Annika H. Runegaard,1 Nikolaj Riis Christensen,1 Pia Weikop,2 Gitta Wörtwein,2 Anders Fink-Jensen,2 Kenneth L. Madsen,1 Lynette Daws,3 Ulrik Gether,1 and Mattias Rickhag1 DOI:http://dx.doi.org/10.1523/ENEURO.0422-17.2018 1Molecular Neuropharmacology and Genetics -
AMPA Receptor Dysregulation and Therapeutic Interventions in a Mouse Model of CDKL5 Deficiency Disorder
4814 • The Journal of Neuroscience, June 12, 2019 • 39(24):4814–4828 Neurobiology of Disease AMPA Receptor Dysregulation and Therapeutic Interventions in a Mouse Model of CDKL5 Deficiency Disorder Madhumita Yennawar,1 XRachel S. White,2 and XFrances E. Jensen2 1Department of Systems Pharmacology and Translational Therapeutics, and 2Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104 Pathogenic mutations in cyclin-dependent kinase-like 5 (CDKL5) result in CDKL5 deficiency disorder (CDD), a rare disease marked by early-life seizures, autistic behaviors, and intellectual disability. Although mouse models of CDD exhibit dendritic instability and alter- ations in synaptic scaffolding proteins, studies of glutamate receptor levels and function are limited. Here we used a novel mouse model of CDD, the Cdkl5R59X knock-in mouse (R59X), to investigate changes in synaptic glutamate receptor subunits and functional conse- quences. Male mice were used for all experiments to avoid the confounding effects of X-inactivation that would be present in female heterozygous mice. We showed that adult male R59X mice recapitulated the behavioral outcomes observed in other mouse models of CDD, including social deficits and memory and learning impairments, and exhibited decreased latency to seizure upon pentylenetetrazol administration. Furthermore, we observed a specific increase in GluA2-lacking ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)-type glutamate receptors (AMPARs) in the adult R59X hippocampus, which is accompanied electrophysiologically by increased rectification ratio of AMPAR EPSCs and elevated early-phase long term potentiation (LTP). Finally, we showed that acute treatment with the GluA2-lacking AMPAR blocker IEM-1460 decreased AMPAR currents, and rescued social deficits, working memory impairments, and seizure behavior latency in R59X mice. -
PICK1 Is Implicated in Organelle Motility in an Arp2/3 Complex–Independent Manner
M BoC | ARTICLE PICK1 is implicated in organelle motility in an Arp2/3 complex–independent manner Yadaiah Madasua, Changsong Yangb, Malgorzata Boczkowskaa, Kelley A. Bethoneya, Adam Zwolaka, Grzegorz Rebowskia, Tatyana Svitkinab, and Roberto Domingueza aDepartment of Physiology, Perelman School of Medicine, and bDepartment of Biology, University of Pennsylvania, Philadelphia, PA 19104 ABSTRACT PICK1 is a modular scaffold implicated in synaptic receptor trafficking. It features Monitoring Editor a PDZ domain, a BAR domain, and an acidic C-terminal tail (ACT). Analysis by small- angle x- Thomas D. Pollard ray scattering suggests a structural model that places the receptor-binding site of the PDZ Yale University domain and membrane-binding surfaces of the BAR and PDZ domains adjacent to each other Received: Oct 14, 2014 on the concave side of the banana-shaped PICK1 dimer. In the model, the ACT of one subunit Revised: Dec 23, 2014 of the dimer interacts with the PDZ and BAR domains of the other subunit, possibly account- Accepted: Jan 26, 2015 ing for autoinhibition. Consistently, full-length PICK1 shows diffuse cytoplasmic localization, but it clusters on vesicle-like structures that colocalize with the trans-Golgi network marker TGN38 upon deletion of either the ACT or PDZ domain. This localization is driven by the BAR domain. Live-cell imaging further reveals that PICK1-associated vesicles undergo fast, nondi- rectional motility in an F-actin–dependent manner, but deleting the ACT dramatically reduces vesicle speed. Thus the ACT links PICK1-associated vesicles to a motility factor, likely myosin, but, contrary to previous reports, PICK1 neither binds nor inhibits Arp2/3 complex. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in -
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis Ugo Ala1., Rosario Michael Piro1., Elena Grassi1, Christian Damasco1, Lorenzo Silengo1, Martin Oti2, Paolo Provero1*, Ferdinando Di Cunto1* 1 Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy, 2 Department of Human Genetics and Centre for Molecular and Biomolecular Informatics, University Medical Centre Nijmegen, Nijmegen, The Netherlands Abstract Background: Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings: We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion: Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. Citation: Ala U, Piro RM, Grassi E, Damasco C, Silengo L, et al. -
The Glutamate Receptor Ion Channels
0031-6997/99/5101-0007$03.00/0 PHARMACOLOGICAL REVIEWS Vol. 51, No. 1 Copyright © 1999 by The American Society for Pharmacology and Experimental Therapeutics Printed in U.S.A. The Glutamate Receptor Ion Channels RAYMOND DINGLEDINE,1 KARIN BORGES, DEREK BOWIE, AND STEPHEN F. TRAYNELIS Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia This paper is available online at http://www.pharmrev.org I. Introduction ............................................................................. 8 II. Gene families ............................................................................ 9 III. Receptor structure ...................................................................... 10 A. Transmembrane topology ............................................................. 10 B. Subunit stoichiometry ................................................................ 10 C. Ligand-binding sites located in a hinged clamshell-like gorge............................. 13 IV. RNA modifications that promote molecular diversity ....................................... 15 A. Alternative splicing .................................................................. 15 B. Editing of AMPA and kainate receptors ................................................ 17 V. Post-translational modifications .......................................................... 18 A. Phosphorylation of AMPA and kainate receptors ........................................ 18 B. Serine/threonine phosphorylation of NMDA receptors .................................. -
Systematic Elucidation of Neuron-Astrocyte Interaction in Models of Amyotrophic Lateral Sclerosis Using Multi-Modal Integrated Bioinformatics Workflow
ARTICLE https://doi.org/10.1038/s41467-020-19177-y OPEN Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow Vartika Mishra et al.# 1234567890():,; Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Net- works (SEARCHIN) to identify ligand-mediated interactions between distinct cellular com- partments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication -
Rab39a and Rab39b Display Different Intracellular Distribution and Function in Sphingolipids and Phospholipids Transport
International Journal of Molecular Sciences Article Rab39a and Rab39b Display Different Intracellular Distribution and Function in Sphingolipids and Phospholipids Transport Julián Gambarte Tudela 1, Julio Buonfigli 1, Agustín Luján 1,†, Mariano Alonso Bivou 1,†, Ignacio Cebrián 2, Anahí Capmany 1 and María Teresa Damiani 1,* 1 Biochemistry and Immunity Laboratory, School of Medicine, University of Cuyo, IMBECU-CONICET, Centro Universitario, Ciudad de Mendoza, Mendoza 5500, Argentina; [email protected] (J.G.T.); juliobuonfi[email protected] (J.B.); [email protected] (A.L.); [email protected] (M.A.B.); [email protected] (A.C.) 2 Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas, Mendoza 5500, Argentina; [email protected] * Correspondence: [email protected]; Tel.: +54-261-4135000 (ext. 2642) † These authors contributed equally to this work. Received: 21 December 2018; Accepted: 27 March 2019; Published: 4 April 2019 Abstract: Rab GTPases define the identity and destiny of vesicles. Some of these small GTPases present isoforms that are expressed differentially along developmental stages or in a tissue-specific manner, hence comparative analysis is difficult to achieve. Here, we describe the intracellular distribution and function in lipid transport of the poorly characterized Rab39 isoforms using typical cell biology experimental tools and new ones developed in our laboratory. We show that, despite their amino acid sequence similarity, Rab39a and Rab39b display non-overlapping intracellular distribution. Rab39a localizes in the late endocytic pathway, mainly at multivesicular bodies. In contrast, Rab39b distributes in the secretory network, at the endoplasmic reticulum/cis-Golgi interface. Therefore, Rab39a controls trafficking of lipids (sphingomyelin and phospholipids) segregated at multivesicular bodies, whereas Rab39b transports sphingolipids biosynthesized at the endoplasmic reticulum-Golgi factory. -
Alternative Splicing of AMPA Subunits in Prefrontal Cortical Fields Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE ORIGINAL RESEARCH ARTICLE published: 03 Januaryprovided 2012 by Frontiers - Publisher Connector PSYCHIATRY doi: 10.3389/fpsyt.2011.00072 Alternative splicing of AMPA subunits in prefrontal cortical fields of cynomolgus monkeys following chronic ethanol self-administration Glen Acosta1, David P.Freidman1, Kathleen A. Grant 2 and Scott E. Hemby 1,3* 1 Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC, USA 2 Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, USA 3 Department of Psychiatry and Behavioral Sciences, Wake Forest University, Winston-Salem, NC, USA Edited by: Functional impairment of the orbital and medial prefrontal cortex underlies deficits in exec- Lara Ray, University of California, USA utive control that characterize addictive disorders, including alcohol addiction. Previous Reviewed by: studies indicate that alcohol alters glutamate neurotransmission and one substrate of these Raj Sevak, University of California, USA effects may be through the reconfiguration of the subunits constituting ionotropic gluta- Shaolin Wang, University of Virginia, mate receptor (iGluR) complexes. Glutamatergic transmission is integral to cortico-cortical USA and cortico-subcortical communication and alcohol-induced changes in the abundance of *Correspondence: the receptor subunits and/or their splice variants may result in critical functional impair- Scott E. Hemby, Medical Center ments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic Boulevard, Wake Forest University School of Medicine, Winston-Salem, ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA) subunit vari- NC 27157, USA. ant and kainate (GRIK) subunit mRNA expression were studied in the orbitofrontal cortex e-mail: [email protected] (OFC), dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC) of male cynomolgus monkeys.