WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/81 (2006.01) C07K 14/47 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/049674 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 11 September 2015 ( 11.09.201 5) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/050,045 12 September 2014 (12.09.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: WHITEHEAD INSTITUTE FOR BIOMED¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, ICAL RESEARCH [US/US]; Nine Cambridge Center, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Cambridge, Massachusetts 02142-1479 (US). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). (72) Inventors: LINDQUIST, Susan L.; 75 E. Cambridge Pkwy, Cambridge, Massachusetts 02142 (US). NARAY- Published: AN, Priyanka; 353 Harvard St., Apt. 2, Cambridge, Mas — with international search report (Art. 21(3)) sachusetts 02 138 (US). — before the expiration of the time limit for amending the (74) Agent: BRENNAN, Jack; Fish & Richardson P.C., P.O. claims and to be republished in the event of receipt of Box 1022, Minneapolis, Minnesota 55440-1022 (US). amendments (Rule 48.2(h)) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (54) Title: CELLS EXPRESSING APOLIPOPROTEIN E AND USES THEREOF ApoE comes in three isoforms that differ at 2 AA positions © © (57) Abstract: Disclosed are yeast cells expressing a polypeptide comprising a signal sequence and a human ApoE protein. In some embodiments the polypeptide comprises ApoE2. In some embodiments the polypeptide comprises ApoE3. In some embodiments the v polypeptide comprises ApoE4. Also disclosed are methods of screening yeast cells to identify compounds that prevent or suppress o Apo-induced toxicity. Compounds identified by such screens can be used to treat or prevent neurodegenerative disorders such as Alzheimer's disease. Also disclosed are methods of screening yeast cells to identify genetic suppressors or enhancers of ApoE-in - duced toxicity. Also disclosed are genetic suppressors or enhancers of ApoE-induced toxicity identified using the methods, and hu o man homologs thereof. Also disclosed are methods of identifying compounds that modulate expression or activity of genetic modifi ers of ApoE- induced toxicity. CELLS EXPRESSING APOLIPOPROTEIN E AND USES THEREOF Background [0001] Alzheimer's disease is a neurodegenerative disorder characterized by neurofibrillary tangles and plaques containing amyloid beta peptides. Patients with Alzheimer's disease (AD) exhibit progressive dementia and personality dysfunction. Proteolytic cleavage of the amyloid precursor protein (APP) results in the generation of an amyloid beta (Α β) peptide having a length ranging from 38 to 43 amino acids. The amyloid beta 1-42 peptide is particularly prone to self- aggregation and is strongly linked to development of Alzheimer's disease. [0002] Human apolipoprotein E is a 299 amino acid secreted glycoprotein that plays important roles in lipid transport and metabolism. ApoE is synthesized primarily in the liver but also in a number of other organs and tissues, including the brain. In the central nervous system, ApoE is produced mainly by astrocytes and microglia and transports cholesterol to neurons via ApoE receptors. The APOE gene has three common polymorphic alleles - ε2, ε3 and ε4 - which encode the ApoE isoforms known as ApoE2, ApoE3, and ApoE4, respectively. The most common isoform, ApoE3, contains cysteine and arginine at positions 112 and 158, respectively, whereas ApoE2 has cysteine at both positions and ApoE4 has arginine at both positions. Although these isoforms differ by only one or two amino acids, the differences have a number of implications. The ε4 allele of APOE is the most highly validated genetic risk factor for late onset Alzheimer's disease and is also associated with increased risk of early-onset AD and with a variety of other diseases that affect the central nervous system. The ε2 allele of APOE is associated with the lowest risk of developing AD, while the ε3 allele confers an intermediate risk of developing the disease. Summary [0003] The invention relates at least in part to the discovery that human Apolipoprotein E (ApoE) protein is toxic when expressed in a yeast cell. The discovery of ApoE-mediated toxicity in yeast permits the carrying out of screening assays using ApoE-expressing yeast cells to identify compounds or genetic factors that modulate ApoE-induced toxicity. Compounds identified by such screens can be used for the treatment or prevention of diseases in which one or more isoforms of ApoE plays a pathological role. For example, compounds identified by such screens can be used for the treatment of diseases and disorders affecting the nervous system in which ApoE4 plays a role, e.g., neurodegenerative diseases such as Alzheimer's disease. [0004] In some aspects, described herein is a yeast cell comprising an expression construct comprising a promoter operably linked to a nucleic acid encoding a polypeptide comprising a human ApoE protein, wherein expression of the nucleic acid and production of the polypeptide in the cell results in a decrease in growth or viability of the cell. In some embodiments, expression of the nucleic acid and production of the polypeptide renders the yeast cell non viable. In some embodiments the human ApoE protein is a human ApoE2 protein. In some embodiments the human ApoE protein is a human ApoE3 protein. In some embodiments the human ApoE protein is a human ApoE4 protein. [0005] In some embodiments the expression construct comprises a promoter operably linked to a nucleic acid encoding a polypeptide comprising a signal sequence and a human ApoE protein, wherein expression of the nucleic acid and production of the polypeptide in the cell results in a decrease in growth or viability of the cell. In some embodiments, expression of the nucleic acid and production of the polypeptide renders the yeast cell non-viable. A signal sequence causes a polypeptide to be targeted to the endoplasmic reticulum within a cell, whence it enters the secretory pathway. In some embodiments, the signal sequence is located at the amino terminus of the polypeptide encoded by the expression construct. In some embodiments, the signal sequence is one that directs co-translational transport of the encoded polypeptide. The signal sequence can be identical to a naturally occurring signal sequence or can be an artificial (non-naturally occurring) signal sequence. In some embodiments, the signal sequence is identical to the signal sequence of a naturally occurring yeast protein (e.g., identical to the yeast Kar2p signal sequence. In some embodiments, the signal sequence is identical to the signal sequence of a naturally occurring mammalian protein (e.g., a human protein). [0006] In some embodiments, the polypeptide encoded by an expression construct described herein comprises or consists of a signal sequence and a human ApoE protein. In some embodiments, the polypeptide encoded by an expression construct described herein comprises or consists of a signal sequence, a linker peptide sequence, and a human ApoE protein. [0007] In some embodiments, cleavage of the polypeptide comprising a human ApoE protein, thus removing the signal sequence, may occur before translation of the entire polypeptide is complete. This phenomenon is encompassed by the phrase "production of the polypeptide in the cell results in a decrease in growth or viability of the cell," so long as at least the human ApoE protein portion of the polypeptide is translated and results in a decrease in growth or viability of the cell. [0008] In some embodiments, a polypeptide encoded by an expression construct described herein may contain a human ApoE protein and one or more heterologous peptide sequences. In some embodiments, a polypeptide encoded by an expression construct described herein may contain a signal sequence, a human ApoE protein, and one or more heterologous peptide sequences. A "heterologous peptide sequence" refers to any polypeptide sequence that is not an ApoE protein sequence or a signal sequence. A heterologous peptide sequence can be present at the amino terminus of the polypeptide, between the signal sequence and the human ApoE protein, at the carboxy terminus of the human ApoE protein, and/or at the carboxy terminus of the polypeptide. In some embodiments the heterologous peptide sequence comprises a "detection protein," which term refers to a protein that serves as a detectable label (e.g., a fluorescent protein, an enzyme, or an epitope tag). In some embodiments the polypeptide is a fusion protein containing a human ApoE protein and a detection protein (e.g., a fluorescent protein, an enzyme, or an epitope tag).
Recommended publications
  • Gene Expression Polarization
    Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O.
    [Show full text]
  • A Novel Approach to Identify Driver Genes Involved in Androgen-Independent Prostate Cancer
    Schinke et al. Molecular Cancer 2014, 13:120 http://www.molecular-cancer.com/content/13/1/120 RESEARCH Open Access A novel approach to identify driver genes involved in androgen-independent prostate cancer Ellyn N Schinke1, Victor Bii1, Arun Nalla1, Dustin T Rae1, Laura Tedrick1, Gary G Meadows1 and Grant D Trobridge1,2* Abstract Background: Insertional mutagenesis screens have been used with great success to identify oncogenes and tumor suppressor genes. Typically, these screens use gammaretroviruses (γRV) or transposons as insertional mutagens. However, insertional mutations from replication-competent γRVs or transposons that occur later during oncogenesis can produce passenger mutations that do not drive cancer progression. Here, we utilized a replication-incompetent lentiviral vector (LV) to perform an insertional mutagenesis screen to identify genes in the progression to androgen-independent prostate cancer (AIPC). Methods: Prostate cancer cells were mutagenized with a LV to enrich for clones with a selective advantage in an androgen-deficient environment provided by a dysregulated gene(s) near the vector integration site. We performed our screen using an in vitro AIPC model and also an in vivo xenotransplant model for AIPC. Our approach identified proviral integration sites utilizing a shuttle vector that allows for rapid rescue of plasmids in E. coli that contain LV long terminal repeat (LTR)-chromosome junctions. This shuttle vector approach does not require PCR amplification and has several advantages over PCR-based techniques. Results: Proviral integrations were enriched near prostate cancer susceptibility loci in cells grown in androgen- deficient medium (p < 0.001), and five candidate genes that influence AIPC were identified; ATPAF1, GCOM1, MEX3D, PTRF, and TRPM4.
    [Show full text]
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Coupling of Spliceosome Complexity to Intron Diversity
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coupling of spliceosome complexity to intron diversity Jade Sales-Lee1, Daniela S. Perry1, Bradley A. Bowser2, Jolene K. Diedrich3, Beiduo Rao1, Irene Beusch1, John R. Yates III3, Scott W. Roy4,6, and Hiten D. Madhani1,6,7 1Dept. of Biochemistry and Biophysics University of California – San Francisco San Francisco, CA 94158 2Dept. of Molecular and Cellular Biology University of California - Merced Merced, CA 95343 3Department of Molecular Medicine The Scripps Research Institute, La Jolla, CA 92037 4Dept. of Biology San Francisco State University San Francisco, CA 94132 5Chan-Zuckerberg Biohub San Francisco, CA 94158 6Corresponding authors: [email protected], [email protected] 7Lead Contact 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY We determined that over 40 spliceosomal proteins are conserved between many fungal species and humans but were lost during the evolution of S. cerevisiae, an intron-poor yeast with unusually rigid splicing signals. We analyzed null mutations in a subset of these factors, most of which had not been investigated previously, in the intron-rich yeast Cryptococcus neoformans.
    [Show full text]
  • Biochemical Characterization of DDX43 (HAGE) Helicase
    Biochemical Characterization of DDX43 (HAGE) Helicase A Thesis Submitted to the College of Graduate Studies and Research In Fulfillment of the Requirements For the Degree of Master of Science In the Department of Biochemistry University of Saskatchewan Saskatoon By Tanu Talwar © Copyright Tanu Talwar, March, 2017. All rights reserved PERMISSION OF USE STATEMENT I hereby present this thesis in partial fulfilment of the requirements for a postgraduate degree from the University of Saskatchewan and agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, either in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised this thesis or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts of it for any financial gain will not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Biochemistry University of Saskatchewan 107 Wiggins Road Saskatoon, Saskatchewan, Canada S7N 5E5 i ABSTRACT DDX43, DEAD-box polypeptide 43, also known as HAGE (helicase antigen gene), is a member of the DEAD-box family of RNA helicases.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Location Analysis of Estrogen Receptor Target Promoters Reveals That
    Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17␤-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand.
    [Show full text]
  • Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis
    Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis Deepti Verma, Anna-Karin Ekman, Cecilia Bivik Eding and Charlotta Enerbäck The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-147791 N.B.: When citing this work, cite the original publication. Verma, D., Ekman, A., Bivik Eding, C., Enerbäck, C., (2018), Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis, Journal of Investigative Dermatology, 138(5), 1088-1093. https://doi.org/10.1016/j.jid.2017.11.036 Original publication available at: https://doi.org/10.1016/j.jid.2017.11.036 Copyright: Elsevier http://www.elsevier.com/ Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis Deepti Verma*a, Anna-Karin Ekman*a, Cecilia Bivik Edinga and Charlotta Enerbäcka *Authors contributed equally aIngrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden Corresponding author: Charlotta Enerbäck Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Linköping University SE-581 85 Linköping, Sweden Phone: +46 10 103 7429 E-mail: [email protected] Short title Differential methylation in psoriasis Abbreviations CGI, CpG island; DMS, differentially methylated site; RRBS, reduced representation bisulphite sequencing Keywords (max 6) psoriasis, epidermis, methylation, Wnt, susceptibility, expression 1 ABSTRACT Psoriasis is a chronic inflammatory skin disease with both local and systemic components. Genome-wide approaches have identified more than 60 psoriasis-susceptibility loci, but genes are estimated to explain only one third of the heritability in psoriasis, suggesting additional, yet unidentified, sources of heritability.
    [Show full text]
  • And Embryo-Expressed KHDC1/DPPA5/ECAT1/OOEP Gene Family
    Available online at www.sciencedirect.com Genomics 90 (2007) 583–594 www.elsevier.com/locate/ygeno Atypical structure and phylogenomic evolution of the new eutherian oocyte- and embryo-expressed KHDC1/DPPA5/ECAT1/OOEP gene family Alice Pierre a, Mathieu Gautier b, Isabelle Callebaut c, Martine Bontoux a, Eric Jeanpierre a, ⁎ Pierre Pontarotti d, Philippe Monget a, a Physiologie de la Reproduction et des Comportements, UMR 6175 INRA–CNRS–Université F. Rabelais de Tours Haras Nationaux, 37380 Nouzilly, France b Laboratoire de Génétique Biochimique et de Cytogénétique, Domaine de Vilvert, INRA, 78352 Jouy-en-Josas, France c Département de Biologie Structurale, Institut de Minéralogie et de Physique des Milieux Condensés, UMR CNRS 7590, Université Pierre et Marie Curie–Paris 6, Université Denis Diderot–Paris 7, IPGP, 140 Rue de Lourmel, 75015 Paris, France d EA 3781 Evolution Biologique, Université d’Aix Marseille I, 13331 Marseille Cedex 3, France Received 12 April 2007; accepted 12 June 2007 Available online 3 October 2007 Abstract Several recent studies have shown that genes specifically expressed by the oocyte are subject to rapid evolution, in particular via gene duplication mechanisms. In the present work, we have focused our attention on a family of genes, specific to eutherian mammals, that are located in unstable genomic regions. We have identified two genes specifically expressed in the mouse oocyte: Khdc1a (KH homology domain containing 1a, also named Ndg1 for Nur 77 downstream gene 1, a target gene of the Nur77 orphan receptor), and another gene structurally related to Khdc1a that we have renamed Khdc1b. In this paper, we show that Khdc1a and Khdc1b belong to a family of several members including the so-called developmental pluripotency A5 (Dppa5) genes, the cat/dog oocyte expressed protein (cat OOEP and dog OOEP) genes, and the ES cell- associated transcript 1 (Ecat1) genes.
    [Show full text]
  • Resumenedwidekoct13post.Pdf 89.9 KB
    Maria Nicole Nedwidek, Ph.D. Maria Nicole Nedwidek, Ph.D. E-mail: [email protected] web: http://d-ned.com EDUCATION City College of New York at the City University of New York New York, NY 10031 NYC Teaching Fellows: Master of Arts, Biology Science Education; GPA 3.97, w/honors: 6/2007. Harvard University School of Medicine - Massachusetts General Hospital Boston, MA 02114 Research Fellowship in Cancer Biology-Dept. of Medicine: appointed to faculty September, 1999. Princeton University Princeton, NJ 08544 Doctor of Philosophy degree in Molecular Biology awarded January, 1999. Princeton University Princeton, NJ 08544 Master of Arts degree in Molecular Biology awarded June, 1994. Massachusetts Institute of Technology Cambridge, MA 02139 Bachelor of Science degree in Biology awarded June, 1992. Grade Point Average: 4.4 out of 5.0 Stuyvesant High School New York, NY 10009 High School Diploma awarded June, 1988. Grade Point Average: 95.45% PUBLICATIONS AND PRESENTATIONS Nedwidek, M. N. and Hecht, M. H. (1997). Minimized protein structures: A little goes a long way. Proceedings of the National Academy of Sciences USA 94 (19), 10010-10011. Nedwidek, M. N. (1999). Rational Combinatorial Design Suggests an Evolutionary Approach for Building Proteins. Ph.D. Dissertation, Department of Molecular Biology, Princeton University, Princeton, NJ, 08544. Avruch, J. (presenter), Khokhlatchev, A., Nedwidek, M., Tzivion, G., Vavvas, D., Zhang, X-f. (2000) Ras Regulation of Protein Kinases. 25th European Symposium on Hormones and Cell Regulation: Protein Kinase Cascades in Signal Transduction; Nunez Lecture, September 2000, Alsace, France. web: http://www.dcb-glostrup.dk/kinase/symposium_2000/abstr_4.htm Ortiz-Vega, S., Khokhlatchev, A., Nedwidek, M., Zhang, X-f., Dammann, R., Pfeifer, G.P., and Avruch, J.
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • The Flagellar Arginine Kinase in Trypanosoma Brucei Is Important for Infection in Tsetse Flies
    RESEARCH ARTICLE The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies Cher-Pheng Ooi1¤, Brice Rotureau1, Simonetta Gribaldo2, Christina Georgikou1, Daria Julkowska1, Thierry Blisnick1, Sylvie Perrot1, Ines Subota1, Philippe Bastin1* 1 Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France, 2 Molecular Biology of Gene in Extremophiles Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France ¤ Current address: Department of Life Sciences, Sir Alexander Fleming Building, Imperial College-South Kensington, London, SW7 2AZ, United Kingdom * [email protected] Abstract OPEN ACCESS African trypanosomes are flagellated parasites that cause sleeping sickness. Parasites are Citation: Ooi C-P, Rotureau B, Gribaldo S, Georgikou C, Julkowska D, Blisnick T, et al. (2015) transmitted from one mammalian host to another by the bite of a tsetse fly. Trypanosoma The Flagellar Arginine Kinase in Trypanosoma brucei brucei possesses three different genes for arginine kinase (AK) including one (AK3) that Is Important for Infection in Tsetse Flies. PLoS ONE encodes a protein localised to the flagellum. AK3 is characterised by the presence of a 10(7): e0133676. doi:10.1371/journal.pone.0133676 unique amino-terminal insertion that specifies flagellar targeting. We show here a phyloge- Editor: Frank Voncken, University of Hull, UNITED netic analysis revealing that flagellar AK arose in two independent duplication events in KINGDOM T. brucei and T. congolense, the two species of African trypanosomes that infect the tsetse Received: April 11, 2015 midgut. In T. brucei, AK3 is detected in all stages of parasite development in the fly (in the Accepted: June 29, 2015 midgut and in the salivary glands) as well as in bloodstream cells, but with predominance at Published: July 28, 2015 insect stages.
    [Show full text]