Role of Satb1 and Satb2 Transcription Factors in the Glutamate Receptors Expression and Ca2+ Signaling in the Cortical Neurons in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

Role of Satb1 and Satb2 Transcription Factors in the Glutamate Receptors Expression and Ca2+ Signaling in the Cortical Neurons in Vitro International Journal of Molecular Sciences Article Role of Satb1 and Satb2 Transcription Factors in the Glutamate Receptors Expression and Ca2+ Signaling in the Cortical Neurons In Vitro Egor A. Turovsky 1,2,* , Maria V. Turovskaya 1, Evgeniya I. Fedotova 1, Alexey A. Babaev 2, Victor S. Tarabykin 2,3 and Elena G. Varlamova 1,* 1 Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; [email protected] (M.V.T.); [email protected] (E.I.F.) 2 Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; [email protected] (A.A.B.); [email protected] (V.S.T.) 3 Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Charitéplatz 1, 10117 Berlin, Germany * Correspondence: [email protected] or [email protected] (E.A.T.); [email protected] or [email protected] (E.G.V.) Abstract: Transcription factors Satb1 and Satb2 are involved in the processes of cortex development and maturation of neurons. Alterations in the expression of their target genes can lead to neurode- generative processes. Molecular and cellular mechanisms of regulation of neurotransmission by these transcription factors remain poorly understood. In this study, we have shown that transcription Citation: Turovsky, E.A.; Turovskaya, factors Satb1 and Satb2 participate in the regulation of genes encoding the NMDA-, AMPA-, and M.V.; Fedotova, E.I.; Babaev, A.A.; KA- receptor subunits and the inhibitory GABA(A) receptor. Deletion of gene for either Satb1 or Tarabykin, V.S.; Varlamova, E.G. Role Satb2 homologous factors induces the expression of genes encoding the NMDA receptor subunits, of Satb1 and Satb2 Transcription thereby leading to higher amplitudes of Ca2+-signals in neurons derived from the Satb1-deficient Factors in the Glutamate Receptors (Satb1fl/+ * NexCre/+) and Satb1-null mice (Satb1fl/fl * NexCre/+) in response to the selective agonist Expression and Ca2+ Signaling in the reducing the EC50 for the NMDA receptor. Simultaneously, there is an increase in the expression of Cortical Neurons In Vitro. Int. J. Mol. 2+ Sci. 2021, 22, 5968. https://doi.org/ the Gria2 gene, encoding the AMPA receptor subunit, thus decreasing the Ca -signals of neurons 10.3390/ijms22115968 in response to the treatment with a selective agonist (5-Fluorowillardiine (FW)). The Satb1 deletion increases the sensitivity of the KA receptor to the agonist (domoic acid), in the cortical neurons of Academic Editors: Elek Molnár and the Satb1-deficient mice but decreases it in the Satb1-null mice. At the same time, the Satb2 deletion Julie Perroy decreases Ca2+-signals and the sensitivity of the KA receptor to the agonist in neurons from the Satb1-null and the Satb1-deficient mice. The Satb1 deletion affects the development of the inhibitory Received: 12 May 2021 system of neurotransmission resulting in the suppression of the neuron maturation process and Accepted: 28 May 2021 switching the GABAergic responses from excitatory to inhibitory, while the Satb2 deletion has a Published: 31 May 2021 similar effect only in the Satb1-null mice. We show that the Satb1 and Satb2 transcription factors are involved in the regulation of the transmission of excitatory signals and inhibition of the neuronal Publisher’s Note: MDPI stays neutral network in the cortical cell culture. with regard to jurisdictional claims in published maps and institutional affil- Keywords: Satb1; Satb2; calcium; glutamate receptors; GABA-receptors; gene deletion; neurons; iations. cortex; signal transduction Copyright: © 2021 by the authors. 1. Introduction Licensee MDPI, Basel, Switzerland. This article is an open access article Neuronal transcription factors regulate the expression of many receptors and intracel- distributed under the terms and lular signaling molecules involved in excitatory neurotransmission [1,2]. Great attention conditions of the Creative Commons has been paid to transcription factors Satb1 and Satb2 in terms of their contribution to 2+ Attribution (CC BY) license (https:// embryonic brain development. However, the effect of these factors on the Ca -signaling creativecommons.org/licenses/by/ of neurons has not been practically investigated. The special AT-rich sequence-binding pro- 4.0/). teins 1 and 2 (Satb1/2) are nuclear matrix-associated proteins that exert multiple functions Int. J. Mol. Sci. 2021, 22, 5968. https://doi.org/10.3390/ijms22115968 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, 5968 2 of 31 by influencing the structural organization of chromatin and interacting with several co- activators and co-repressors of transcription. Satb1 was first cloned from a cDNA library of the human cell line and found in thymocytes [3]. Further, this factor was discovered in other tissues and cells. Satb1 ((MIM) 602075) gene resides on chromosome 3p24.3. The protein consists of 763 amino acids (~86 kDa molecular weight, migrates as 103 kDa on SDS gels) and includes six domains: nuclear localization signal, PDZ, BUR-binding domain, two Cut repeats (CUT1 and CUT2), and homeodomain (HD). Satb1 functions as a highly pleiotropic regulator of gene expression which dynamically alters the organization and epigenetic status of the chromatin [4]. Changes in Satb1 expression are associated with human tumors, including rectal cancer, cutaneous malignant melanoma, breast and prostate epithelia [5–7]. Satb1 is associated with highly metastatic breast cancer [4]. Most of the Satb1-regulated genes such as errb2, abl1, mmp2, e-cadherin, vegfb, tgfb1, and kiss1 play an important role in the induction of carcinogenesis [8,9]. Satb1 via MAR-mediated interactions with DNA- regulatory elements is a transcriptional repressor [10]. Moreover, Satb1 may function as a “docking site” for several chromatin-modifier proteins that suppress gene expression [11]. Satb1 is more abundant in the brain and expressed exclusively in the neurons. Significant expression is observed in the neocortex, nucleus of the diagonal band, amygdala, and tegmental area. In contrast, in the case of the ventral midbrain, Satb1-positive neurons were observed only in the small part of the substantia nigra, ventral tegmental area, and retrorubral field, but no Satb1-positive neurons were found in the inferior colliculus. Thus, Satb1-positive neurons were predominantly dopaminergic [12]. The transcription factor Satb1 is extensively expressed in SST+-, CR+-, and NPY+-interneurons, while the expression was not observed in VIP+-interneurons [13,14]. Mice with Satb1 mutation are characterized by incomplete eye-opening and the clasping reflex [15]. The Satb2 ((MIM) 608148) gene localizes in chromosome 2q32–q33, spans 191 kb, and contains 11 exons. Its open reading frame begins in exon 2, with the first stop codon in exon 11, predicting a 733 amino acid protein. The protein contains a Pfam-B_10016 domain required for dimerization (residues 57–231), two CUT domains (352–437 and 482–560), and a homeodomain (614–677) [16]. Satb2 is highly conserved (99.6%) among the members of the transcription-factor gene families which members bind to nuclear matrix attachment regions and appear to be involved in the regulation of the tissue-specific organization of chromatin [17,18]. Furthermore, Satb2 is a target for SUMOylation—a reversible modification of the protein that modulates its activity [18]. A single case of a de novo nonsense mutation in Satb2 has been described in individuals with cleft palate, osteoporosis, profound mental retardation, epilepsy, a jovial personality, and craniofacial dysmorphism including gum hyperplasia, mandibular hypoplasia, and anterior pointing incisors [19]. Satb2 is a genetic risk locus for schizophrenia and a regulator of several miRNAs responsible for the translation of proteins that control certain aspects of synaptic plasticity and memory formation: miR-124, miR-125b, miR-132, miR-212, miR-381, miR- 326, and miR-19b [20,21]. Alterations in the expression and activity of Satb2 cause Satb2- associated syndrome in humans. SAS (OMIM 612313) is a clinically recognizable syndrome characterized by neurodevelopmental and behavioral abnormalities, palatal and dental anomalies, dysmorphic features, and frequent skeletal pathology [22–24]. Patients with SAS are characterized by deep mental retardation, and learning difficulties [22,25]. Both of these transcription factors are involved in the regulation of the growth and development of various types of brain neurons, both in the embryonic and postnatal periods [17]. We have previously shown that mutations of the Sip1 or MeCP2 transcription factor cause a disturbance of Ca2+-signaling in neurons and astrocytes [26,27]. Changes in the expression level and activity of glutamate receptors upon deletion of transcription factors Satb1 and Satb2 may be considered one of the key fundamental mechanisms that determine the triggering of the neural network to a hyperexcitation state. Despite a sufficient number of works devoted to the role of Satb1 and Satb2 in neurogenesis and brain development, there are no studies demonstrating the changes in intracellular calcium signaling when these transcription factors are impaired in neurons. In our paper, Int. J. Mol. Sci. 2021, 22, 5968 3 of 31 we found that the expression of Satb1 and Satb2 is necessary for the development of excita- tory and inhibitory neurotransmission, and conditional knockout of these
Recommended publications
  • Single Nucleotide Variants in Metastasis-Related Genes Are
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE HHS Public Access provided by CDC Stacks Author manuscript Author ManuscriptAuthor Manuscript Author Mol Carcinog Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 March 01. Published in final edited form as: Mol Carcinog. 2017 March ; 56(3): 1000–1009. doi:10.1002/mc.22565. Single nucleotide variants in metastasis-related genes are associated with breast cancer risk, by lymph node involvement and estrogen receptor status, in women with European and African ancestry Michelle R. Roberts1,2,3, Lara E. Sucheston-Campbell4, Gary R. Zirpoli5, Michael Higgins6, Jo L. Freudenheim3, Elisa V. Bandera7, Christine B. Ambrosone2, and Song Yao2 1Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 2Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 3Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 4Division of Pharmacy Practice and Science, The Ohio State University, Columbus, OH 5Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 6Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 7Rutgers Cancer Institute of New Jersey, New Brunswick, NJ Abstract Background—Single nucleotide polymorphisms (SNPs) in pathways influencing lymph node (LN) metastasis and estrogen receptor (ER) status in breast cancer may partially explain inter- patient variability in prognosis. We examined 154 SNPs in 12 metastasis-related genes for associations with breast cancer risk, stratified by LN and ER status, in European-American (EA) and African-American (AA) women. Methods—2,671 women enrolled in the Women’s Circle of Health Study were genotyped.
    [Show full text]
  • Anti-GRIK1 / Glur5 Antibody (ARG59676)
    Product datasheet [email protected] ARG59676 Package: 50 μg anti-GRIK1 / GluR5 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes GRIK1 / GluR5 Tested Reactivity Hu, Ms, Rat Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name GRIK1 / GluR5 Species Human Immunogen Recombinant protein corresponding to R271-I450 of Human GRIK1. Conjugation Un-conjugated Alternate Names GluR5; GluK1; GLUR5; EEA3; GluR-5; Excitatory amino acid receptor 3; Glutamate receptor ionotropic, kainate 1; EAA3; Glutamate receptor 5; GLR5 Application Instructions Application table Application Dilution IHC-P 1:200 - 1:1000 WB 0.1 - 0.5 µg/ml Application Note IHC-P: Antigen Retrieval: Heat mediation was performed in Citrate buffer (pH 6.0) for 20 min. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Properties Form Liquid Purification Affinity purification with immunogen. Buffer 0.9% NaCl, 0.2% Na2HPO4, 0.05% Sodium azide and 5% BSA. Preservative 0.05% Sodium azide Stabilizer 5% BSA Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/4 Bioinformation Gene Symbol GRIK1 Gene Full Name glutamate receptor, ionotropic, kainate 1 Background Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes.
    [Show full text]
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • Chr21 Protein-Protein Interactions: Enrichment in Products Involved in Intellectual Disabilities, Autism and Late Onset Alzheimer Disease
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.11.872606; this version posted December 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Chr21 protein-protein interactions: enrichment in products involved in intellectual disabilities, autism and Late Onset Alzheimer Disease Julia Viard1,2*, Yann Loe-Mie1*, Rachel Daudin1, Malik Khelfaoui1, Christine Plancon2, Anne Boland2, Francisco Tejedor3, Richard L. Huganir4, Eunjoon Kim5, Makoto Kinoshita6, Guofa Liu7, Volker Haucke8, Thomas Moncion9, Eugene Yu10, Valérie Hindie9, Henri Bléhaut11, Clotilde Mircher12, Yann Herault13,14,15,16,17, Jean-François Deleuze2, Jean- Christophe Rain9, Michel Simonneau1, 18, 19, 20** and Aude-Marie Lepagnol- Bestel1** 1 Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France 2 Laboratoire de génomique fonctionnelle, CNG, CEA, Evry 3 Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez-Campus de San Juan 03550 San Juan (Alicante), Spain 4 Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA 5 Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea 6 Department of Molecular Biology, Division of Biological Science, Nagoya University Graduate School of Science, Furo, Chikusa, Nagoya, Japan 7 Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA 8 Leibniz Forschungsinstitut für Molekulare Pharmakologie
    [Show full text]
  • Association Between Obsessive-Compulsive Disorder and Glutamate N-Methyl-D-Aspartate 2B Subunit Receptor Gene
    Association between obsessive-compulsive disorder and glutamate n-methyl-d-aspartate 2b subunit receptor gene Syung Shick Hwang The Graduate School Yonsei University Department of Medicine Association between obsessive-compulsive disorder and glutamate n-methyl-d-aspartate 2b subunit receptor gene A Master’s Thesis submitted to the Department of Medicine and the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Master of Medicine Syung Shick Hwang December 2006 This certifies that the Master’s Thesis of Syung Shick Hwang is approved . ----------------------------------------------------------------------------------------------------------------------------------------- Thesis Supervisor: Chan-Hyung Kim ----------------------------------------------------------------------------------------------------------------------------------------- [ Jin-Sung Lee : Thesis Committee Member#1] ----------------------------------------------------------------------------------------------------------------------------------------- [ Se Joo Kim : Thesis Committee Member#2] The Graduate School Yonsei University December 2006 Acknowledgements I am very fortunate to complete this master’s dissertation. I have prospered from the critical feedback, support, and assistance from supervisors, teachers, friends, colleagues, and family members. In this regard, I am most grateful to Professor Chan-Hyung Kim who has provided unwavering intellectual and moral support. He has helped and encouraged my academic and ethical
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Kainate Receptors in Health and Disease
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neuron Review Kainate Receptors in Health and Disease Juan Lerma1,* and Joana M. Marques1 1Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, 03550 Spain *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2013.09.045 Our understanding of the molecular properties of kainate receptors and their involvement in synaptic phys- iology has progressed significantly over the last 30 years. A plethora of studies indicate that kainate receptors are important mediators of the pre- and postsynaptic actions of glutamate, although the mechanisms under- lying such effects are still often a topic for discussion. Three clear fields related to their behavior have emerged: there are a number of interacting proteins that pace the properties of kainate receptors; their activity is unconventional since they can also signal through G proteins, behaving like metabotropic recep- tors; they seem to be linked to some devastating brain diseases. Despite the significant progress in their importance in brain function, kainate receptors remain somewhat puzzling. Here we examine discoveries linking these receptors to physiology and their probable implications in disease, in particular mood disorders, and propose some ideas to obtain a deeper understanding of these intriguing proteins. A Historical Overview The absence of specific antibodies against different KAR Most excitatory synapses in the brain use the amino acid gluta- subunits has been a significant limitation in terms of exploring re- mate as a neurotransmitter. Since the excitatory properties of ceptor distribution. Thus, most of the information regarding their glutamate were postulated nearly 40 years ago, an extraordinary tissue expression comes from in situ hybridization studies that, wealth of data has accumulated on the types of synaptic re- although informative, cannot reveal the subcellular distribution sponses triggered by this neurotransmitter.
    [Show full text]
  • Oegtp - Epilepsy Test Requisition Lab Use Only: Patient Information
    OEGTP - EPILEPSY TEST REQUISITION LAB USE ONLY: PATIENT INFORMATION: Received date: Name: Notes: Address: Date of Birth: YY/MM/DD Sex: M F Health Card No: TEST REQUEST: See page 2 for gene list for each of the panels below Epilepsy Comprehensive panel: 167 genes Childhood Onset Epilepsy panel: 45 genes Focal Epilepsy panel: 14 genes Brain Malformation Epilepsy panel: 44 genes London Health Sciences Centre – (Molecular Genetics) London Health Sciences Centre Progressive Myoclonic Epilepsy panel: 20 genes Actionable Gene Epilepsy panel: 22 genes Early Infantile Epilepsy panel: 51 genes Single gene test: Carrier Testing/ KnownFamily Mutation SAMPLE COLLECTION: Name of index case in the family (include copy of report) Date drawn: YY/MM/DD EDTA blood (lavender top) (5ml at room temp) Affected Unaffected Date of Birth: Relationship to patient: REFERRING PHYSICIAN: Authorized Signature is Required Gene: RefSeq:NM Physician Name (print): Mutation: Signature: Email: REASON FOR REFERRAL: Clinic/Hospital: Diagnostic Testing Address: Clinical Diagnosis: Telephone: Fax: CC report to: Name: Clinical Presentation: Address: Telephone: Fax: Molecular Genetics Laboratory Victoria Hospital, Room B10-123A 800 Commissioners Rd. E. London, Ontario | N6A 5W9 Pathology and Laboratory Medicine Ph: 519-685-8122 | Fax: 519-685-8279 Page 1 of 6 Page OEGTP (2021/05/28) OEGTP - EPILEPSY TEST PANELS Patient Identifier: COMPREHENSIVE EPILEPSY PANEL: 167 Genes ACTB, ACTG1, ADSL, AKT3, ALDH7A1, AMT, AP3B2, ARFGEF2, ARHGEF9, ARV1, ARX, ASAH1, ASNS, ATP1A3, ATP6V0A2, ATP7A,
    [Show full text]
  • Genetic and Neurodevelopmental Spectrum Of
    Cognitive and behavioural genetics J Med Genet: first published as 10.1136/jmedgenet-2015-103451 on 17 March 2016. Downloaded from ORIGINAL ARTICLE Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy Cyril Mignot,1,2,3 Celina von Stülpnagel,4,5 Caroline Nava,1,6 Dorothée Ville,7 Damien Sanlaville,8,9,10 Gaetan Lesca,8,9,10 Agnès Rastetter,6 Benoit Gachet,6 Yannick Marie,6 G Christoph Korenke,11 Ingo Borggraefe,12 Dorota Hoffmann-Zacharska,13 Elżbieta Szczepanik,14 Mariola Rudzka-Dybała,14 Uluç Yiş,15 Hande Çağlayan,16 Arnaud Isapof,17 Isabelle Marey,1 Eleni Panagiotakaki,18 Christian Korff,19 Eva Rossier,20 Angelika Riess,21 Stefanie Beck-Woedl,21 Anita Rauch,22 Christiane Zweier,23 Juliane Hoyer,23 André Reis,23 Mikhail Mironov,24 Maria Bobylova,24 Konstantin Mukhin,24 Laura Hernandez-Hernandez,25 Bridget Maher,25 Sanjay Sisodiya,25 Marius Kuhn,26 Dieter Glaeser,26 Sarah Weckhuysen,6,27 Candace T Myers,28 Heather C Mefford,28 Konstanze Hörtnagel,29 Saskia Biskup,29 EuroEPINOMICS-RES MAE working group, Johannes R Lemke,30 Delphine Héron,1,2,3,4 Gerhard Kluger,4,5 Christel Depienne1,6 ▸ Additional material is ABSTRACT INTRODUCTION published online only. To view Objective We aimed to delineate the neurodevelopmental The human SYNGAP1 gene on chromosome please visit the journal online (http://dx.doi.org/10.1136/ spectrum associated with SYNGAP1 mutations and to 6p21.3 encodes the synaptic RAS-GTPase-activating jmedgenet-2015-103451). investigate genotype–phenotype correlations. protein 1, a protein of the post-synaptic density Methods We sequenced the exome or screened the exons (PSD) of glutamatergic neurons.12SYNGAP1 inter- For numbered affiliations see end of article.
    [Show full text]
  • Sex Differences in Glutamate Receptor Gene Expression in Major Depression and Suicide
    Molecular Psychiatry (2015) 20, 1057–1068 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp IMMEDIATE COMMUNICATION Sex differences in glutamate receptor gene expression in major depression and suicide AL Gray1, TM Hyde2,3, A Deep-Soboslay2, JE Kleinman2 and MS Sodhi1,4 Accumulating data indicate that the glutamate system is disrupted in major depressive disorder (MDD), and recent clinical research suggests that ketamine, an antagonist of the N-methyl-D-aspartate (NMDA) glutamate receptor (GluR), has rapid antidepressant efficacy. Here we report findings from gene expression studies of a large cohort of postmortem subjects, including subjects with MDD and controls. Our data reveal higher expression levels of the majority of glutamatergic genes tested in the dorsolateral prefrontal cortex (DLPFC) in MDD (F21,59 = 2.32, P = 0.006). Posthoc data indicate that these gene expression differences occurred mostly in the female subjects. Higher expression levels of GRIN1, GRIN2A-D, GRIA2-4, GRIK1-2, GRM1, GRM4, GRM5 and GRM7 were detected in the female patients with MDD. In contrast, GRM5 expression was lower in male MDD patients relative to male controls. When MDD suicides were compared with MDD non-suicides, GRIN2B, GRIK3 and GRM2 were expressed at higher levels in the suicides. Higher expression levels were detected for several additional genes, but these were not statistically significant after correction for multiple comparisons. In summary, our analyses indicate a generalized disruption of the regulation of the GluRs in the DLPFC of females with MDD, with more specific GluR alterations in the suicides and in the male groups.
    [Show full text]
  • Cytokine-Enhanced Cytolytic Activity of Exosomes from NK Cells
    Cancer Gene Therapy https://doi.org/10.1038/s41417-021-00352-2 ARTICLE Cytokine-enhanced cytolytic activity of exosomes from NK Cells 1 1 2 3 2 3 Yutaka Enomoto ● Peng Li ● Lisa M. Jenkins ● Dimitrios Anastasakis ● Gaelyn C. Lyons ● Markus Hafner ● Warren J. Leonard 1 Received: 4 February 2021 / Revised: 9 May 2021 / Accepted: 18 May 2021 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. This article is published with open access Abstract Natural killer (NK) cells play key roles in immune surveillance against tumors and viral infection. NK cells distinguish abnormal cells from healthy cells by cell–cell interaction with cell surface proteins and then attack target cells via multiple mechanisms. In addition, extracellular vesicles (EVs) derived from NK cells (NK-EVs), including exosomes, possess cytotoxic capacity against tumor cells, but their characteristics and regulation by cytokines remain unknown. Here, we report that EVs derived from human NK-92 cells stimulated with IL-15 + IL-21 show enhanced cytotoxic capacity against tumor cells. Major cytolytic granules, granzyme B and granzyme H, are enriched by IL-15 + IL-21 stimulation in NK-EVs; however, knockout experiments reveal those cytolytic granules are independent of enhanced cytotoxic capacity. To find out the key molecules, mass spectrometry analyses were 1234567890();,: 1234567890();,: performed with different cytokine conditions, no cytokine, IL-15, IL-21, or IL-15 + IL-21. We then found that CD226 (DNAM-1) on NK-EVs is enriched by IL-15 + IL-21 stimulation and that blocking antibodies against CD226 reduced the cytolytic activity of NK-EVs.
    [Show full text]
  • Cross-Subunit Interactions That Stabilize Open States Mediate Gating in NMDA Receptors
    Cross-subunit interactions that stabilize open states mediate gating in NMDA receptors Gary J. Iacobuccia,1, Han Wenb,1, Matthew Heloua, Beiying Liua, Wenjun Zhengb,2,3, and Gabriela K. Popescua,2,3 aDepartment of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY 14203; and bDepartment of Physics, College of Arts and Sciences, University at Buffalo, SUNY, Buffalo, NY 14260 Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved December 1, 2020 (received for review April 19, 2020) NMDA receptors are excitatory channels with critical functions in helices (M1, M3, and M4) and an internally facing P-loop (M2). the physiology of central synapses. Their activation reaction The external portion of each subunit consists of two stacked proceeds as a series of kinetically distinguishable, reversible steps, globular domains, the N-terminal (NTD) and ligand-binding whose structural bases are currently under investigation. Very (LBD) domains, for which several atomic-resolution structures ex- likely, the earliest steps include glutamate binding to glycine-bound ist (10, 11). In contrast, the cytoplasmic C-terminal domain (CTD), receptors and subsequent constriction of the ligand-binding do- which is least conserved across subunits, appears largely disor- main. Later, three short linkers transduce this movement to open dered. Although critically important for the receptor’s cellular the gate by mechanical pulling on transmembrane helices. Here, functions, the
    [Show full text]