Molecular Genetics of Tooth Agenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Specialized Stem Cell Niche Enables Repetitive Renewal of Alligator Teeth
Specialized stem cell niche enables repetitive renewal PNAS PLUS of alligator teeth Ping Wua, Xiaoshan Wua,b, Ting-Xin Jianga, Ruth M. Elseyc, Bradley L. Templed, Stephen J. Diverse, Travis C. Glennd, Kuo Yuanf, Min-Huey Cheng,h, Randall B. Widelitza, and Cheng-Ming Chuonga,h,i,1 aDepartment of Pathology, University of Southern California, Los Angeles, CA 90033; bDepartment of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; cLouisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643; dEnvironmental Health Science and eDepartment of Small Animal Medicine and Surgery, University of Georgia, Athens, GA 30602; fDepartment of Dentistry and iResearch Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 70101, Taiwan; and gSchool of Dentistry and hResearch Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan Edited by Edward M. De Robertis, Howard Hughes Medical Institute/University of California, Los Angeles, CA, and accepted by the Editorial Board March 28, 2013 (received for review July 31, 2012) Reptiles and fish have robust regenerative powers for tooth renewal. replaced from the dental lamina connected to the lingual side of However, extant mammals can either renew their teeth one time the deciduous tooth (15). Human teeth are only replaced one time; (diphyodont dentition) or not at all (monophyodont dentition). however, a remnant of the dental lamina still exists (16) and may Humans replace their milk teeth with permanent teeth and then become activated later in life to form odontogenic tumors (17). lose their ability for tooth renewal. -
Cell Proliferation Study in Human Tooth Germs
Cell proliferation study in human tooth germs Vanesa Pereira-Prado1, Gabriela Vigil-Bastitta2, Estefania Sicco3, Ronell Bologna-Molina4, Gabriel Tapia-Repetto5 DOI: 10.22592/ode2018n32a10 Abstract The aim of this study was to determine the expression of MCM4-5-6 in human tooth germs in the bell stage. Materials and methods: Histological samples were collected from four fetal maxillae placed in paraffin at the block archive of the Histology Department of the School of Dentistry, UdelaR. Sections were made for HE routine technique and for immunohistochemistry technique for MCM4-5-6. Results: Different regions of the enamel organ showed 100% positivity in the intermediate layer, a variation from 100% to 0% in the inner epithelium from the cervical loop to the incisal area, and 0% in the stellar reticulum as well as the outer epithelium. Conclusions: The results show and confirm the proliferative action of the different areas of the enamel organ. Keywords: MCM4, MCM5, MCM6, tooth germ, cell proliferation. 1 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0001- 7747-671 2 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0002- 0617-1279 3 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0003- 1137-6866 4 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0001- 9755-4779 5 Histology Department, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0003-4563-9142 78 Odontoestomatología. Vol. XX - Nº 32 - Diciembre 2018 Introduction that all the DNA is replicated (12), and prevents DNA from replicating more than once in the Tooth organogenesis is a process involving a same cell cycle (13). -
Longitudinal Studies on Tooth Replacement in the Leopard
LONGITUDINAL STUDIES ON TOOTH REPLACEMENT IN THE LEOPARD GECKO by Andrew Carlton Edward Wong BMSc, DDS, The University of Alberta, 2011 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Craniofacial Science) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2015 © Andrew Carlton Edward Wong, 2015 Abstract The leopard gecko is an emerging reptilian model for the molecular basis of indefinite tooth replacement. Here we characterize the tooth replacement frequency and pattern of tooth loss in the normal adult gecko. We chose to perturb the system of tooth replacement by activating the Wingless signaling pathway (Wnt). Misregulation of Wnt leads to supernumerary teeth in mice and humans. We hypothesized by activating Wnt signaling with LiCl, tooth replacement frequency would increase. To measure the rate of tooth loss and replacement, weekly dental wax bites of 3 leopard geckos were taken over a 35-week period. The present/absent tooth positions were recorded. During the experimental period, the palate was injected bilaterally with NaCl (control) and then with LiCl. The geckos were to be biological replicates. Symmetry was analyzed with parametric tests (repeated measures ANOVA, Tukey’s post-hoc), while time for emergence and total absent teeth per week were analyzed with non- parametric tests (Kruskal-Wallis ANOVA, Mann-Whitney U post-hoc and Bonferroni Correction). The average replacement frequency was 6-7 weeks and posterior-to-anterior waves of replacement were formed. Right to left symmetry between individual tooth positions was high (>80%) when all teeth were included but dropped to 50% when only absent teeth were included. -
Autocrine and Paracrine Shh Signaling Are Necessary for Tooth Morphogenesis, but Not Tooth Replacement in Snakes and Lizards (Squamata)
Developmental Biology 337 (2010) 171–186 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Evolution of Developmental Control Mechanisms Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata) Gregory R. Handrigan, Joy M. Richman ⁎ Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada article info abstract Article history: Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes Received for publication 30 August 2009 and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing Revised 12 October 2009 dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing Accepted 12 October 2009 gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth Available online 20 October 2009 bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling Keywords: Reptile induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine Evolution signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental Development explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the Odontogenesis morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. Sonic hedgehog vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates Patched1 that Shh is needed for the normal development of teeth in snakes and lizards. -
Proces Wymiany Zębów U Wybranych Grup Ssaków W Ujęciu Ewolucyjnym
Tom 70 2021 Numer 1 (330) Strony 83–93 Paweł Muniak Wydział Biologii Uniwersytet Jagielloński Gronostajowa 7, 30-387 Kraków E-mail: [email protected] PROCES WYMIANY ZĘBÓW U WYBRANYCH GRUP SSAKÓW W UJĘCIU EWOLUCYJNYM WSTĘP pod względem wymiany zębowej wyjątkowe, gdyż tylko u nich widać kształtującą się w Wymiana zębów u zwierząt kręgowych ciągu ewolucji tendencję do difiodoncji, czy- jest ważnym zjawiskiem zarówno w ska- li wytwarzania jedynie dwóch pokoleń zę- li osobnika, zwiększającym jego dostosowa- bów: mlecznych i stałych, wymienianych w nie do środowiska i co za tym idzie, szan- skoordynowany sposób w ciągu krótkiego se przeżycia, jak i w szerszej perspektywie czasu życia zwierzęcia (zazwyczaj pomiędzy ewolucyjnej, pokazując trendy ewolucyjne w ukończeniem stadium oseska a dojrzałością obrębie całych grup. płciową) (SZARSKI 1998). Wymiana uzębienia jest powszechna wśród zwierząt. Większość zwierząt posiada- TERMINOLOGIA jących zęby wymienia je na nowe, stosując różne strategie. Najczęstszym typem wymia- W niniejszej pracy będę posługiwał się ny jest polifiodoncja. Polega ona na tym, że ogólnie przyjętymi skrótami z terminolo- utracony ząb jest zastępowany przez nowy, gii anatomicznej, gdzie zęby szczęki (górne) wyrastający na jego miejscu. W taki sposób będą oznaczane wielką literą: I, C, P, M, a wymienia zęby większość gadów, u których zęby żuchwy (dolne) małą literą: i, c, p, m. wymieniane są one w sposób przypadko- I tak: wy: gdy jeden ulegnie złamaniu lub wypad- nie, na jego miejsce wyrasta nowy. U ryb I/i – siekacz, chrzęstnoszkieletowych, w tym rekinów, zna- C/c – kieł, ne są inne mechanizmy wymiany uzębienia, P/p – ząb przedtrzonowy, tzn. spirale zębowe, pozwalające na wymianę M/m – ząb trzonowy. -
Assessing Human Weaning Practices with Calcium Isotopes in Tooth Enamel
Assessing human weaning practices with calcium isotopes in tooth enamel Théo Tacaila,1, Béatrice Thivichon-Princeb,c,d, Jeremy E. Martina, Cyril Charlesb, Laurent Viriotb, and Vincent Baltera aLaboratoire de Géologie de Lyon: Terre, Planètes, et Environnement, Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5276, 69364 Lyon, France; bTeam Evolution of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Université Claude Bernard Lyon 1, 69364 Lyon, France; cFaculté d’Odontologie, Université Claude Bernard Lyon 1, 69372 Lyon, France; and dService d’Odontologie, Hospices Civils de Lyon, 69008 Lyon, France Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved April 26, 2017 (received for review March 16, 2017) Weaning practices differ among great apes and likely diverged at first female reproduction, shorter intervals between births, ex- during the course of human evolution, but behavioral inference from tended postmenopausal longevity, and a longer lifespan (5, 16, 21). the fossil record is hampered by a lack of unambiguous biomarkers. Study of past human populations including health, demography, Here, we show that early-life dietary transitions are recorded in and evolution is partly hampered by a lack of direct evidence of human deciduous tooth enamel as marked variations in Ca isotope weaning behavior in archaeological and fossil settings. Predictions ratios (δ44/42Ca). Using a sequential microsampling method along the from life-history theory and indirect morphological or histological enamel growth axis, we collected more than 150 enamel microsam- markers bring little solid insight into past weaning practices (9). -
Crocodile Specialist Group Newsletter
CROCODILE SPECIALIST GROUP NEWSLETTER VOLUME 36 No. 1 • JANUARY 2017 - MARCH 2017 IUCN • Species Survival Commission CSG Newsletter Subscription The CSG Newsletter is produced and distributed by the Crocodile CROCODILE Specialist Group of the Species Survival Commission (SSC) of the IUCN (International Union for Conservation of Nature). The CSG Newsletter provides information on the conservation, status, news and current events concerning crocodilians, and on the SPECIALIST activities of the CSG. The Newsletter is distributed to CSG members and to other interested individuals and organizations. All Newsletter recipients are asked to contribute news and other materials. The CSG Newsletter is available as: • Hard copy (by subscription - see below); and/or, • Free electronic, downloadable copy from “http://www.iucncsg. GROUP org/pages/Publications.html”. Annual subscriptions for hard copies of the CSG Newsletter may be made by cash ($US55), credit card ($AUD55) or bank transfer ($AUD55). Cheques ($USD) will be accepted, however due to increased bank charges associated with this method of payment, cheques are no longer recommended. A Subscription Form can be NEWSLETTER downloaded from “http://www.iucncsg.org/pages/Publications. html”. All CSG communications should be addressed to: CSG Executive Office, P.O. Box 530, Karama, NT 0813, Australia. VOLUME 36 Number 1 Fax: +61.8.89470678. E-mail: [email protected]. JANUARY 2017 - MARCH 2017 PATRONS IUCN - Species Survival Commission We thank all patrons who have donated to the CSG and its conservation program over many years, and especially to CHAIRMAN: donors in 2015-2016 (listed below). Professor Grahame Webb PO Box 530, Karama, NT 0813, Australia Big Bull Crocs! ($15,000 or more annually or in aggregate donations) Japan, JLIA - Japan Leather & Leather Goods Industries EDITORIAL AND EXECUTIVE OFFICE: Association, CITES Promotion Committee & Japan Reptile PO Box 530, Karama, NT 0813, Australia Leather Industries Association, Tokyo, Japan. -
Publications.Html”
CROCODILE SPECIALIST GROUP NEWSLETTER VOLUME 34 No. 4 • OCTOBER 2015 - DECEMBER 2015 IUCN • Species Survival Commission CSG Newsletter Subscription The CSG Newsletter is produced and distributed by the Crocodile CROCODILE Specialist Group of the Species Survival Commission (SSC) of the IUCN (International Union for Conservation of Nature). The CSG Newsletter provides information on the conservation, status, news and current events concerning crocodilians, and on the SPECIALIST activities of the CSG. The Newsletter is distributed to CSG members and to other interested individuals and organizations. All Newsletter recipients are asked to contribute news and other materials. The CSG Newsletter is available as: • Hard copy (by subscription - see below); and/or, • Free electronic, downloadable copy from “http://www.iucncsg. GROUP org/pages/Publications.html”. Annual subscriptions for hard copies of the CSG Newsletter may be made by cash ($US55), credit card ($AUD55) or bank transfer ($AUD55). Cheques ($USD) cannot be accepted, due to high bank charges associated with this method of payment. A Subscription Form can be downloaded from “http://www.iucncsg.org/pages/ NEWSLETTER Publications.html”. All CSG communications should be addressed to: CSG Executive Office, P.O. Box 530, Karama, NT 0813, Australia. VOLUME 34 Number 4 Fax: +61.8.89470678. E-mail: [email protected]. OCTOBER 2015 - DECEMBER 2015 PATRONS IUCN - Species Survival Commission We thank all patrons who have donated to the CSG and its conservation program over many years, and especially to CHAIRMAN: donors in 2014-2015 (listed below). Professor Grahame Webb PO Box 530, Karama, NT 0813, Australia Big Bull Crocs! ($15,000 or more annually or in aggregate donations) Japan, JLIA - Japan Leather & Leather Goods Industries EDITORIAL AND EXECUTIVE OFFICE: Association, CITES Promotion Committee & Japan Reptile PO Box 530, Karama, NT 0813, Australia Leather Industries Association, Tokyo, Japan. -
Journal of Archaeological Science: Reports 24 (2019) 350–362
Journal of Archaeological Science: Reports 24 (2019) 350–362 Contents lists available at ScienceDirect Journal of Archaeological Science: Reports journal homepage: www.elsevier.com/locate/jasrep Reconstructing the origins of the Perrins Ledge cremains using strontium ☆ T isotope analysis ⁎ Deborah D. Grahama, , Jonathan D. Bethardb a Department of Sociology and Anthropology, Weber State University, 3772 N Campus Dr, Ogden, UT 84408, USA b Department of Anthropology, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA ARTICLE INFO ABSTRACT Keywords: Strontium isotope (87Sr/86Sr) analyses have been used effectively to reconstruct the origin of osteological re- Strontium isotope analysis mains that have not been exposed to increasing temperatures. However, previous research has shown that no Perrins Ledge thermally induced changes occur to original strontium isotope values (87Sr/86Sr) of bone and tooth specimens Late woodland that have been subjected to temperatures between 100 and 1000 degrees Celsius, though the published literature Cremains regarding strontium isotope ratio stability and survivorship in thermally altered bone and teeth is limited. This is Burned bone surprising given the potential implications for geolocation inquiries of cremains. This research demonstrates the Calcined bone 87 86 Reconstructing origins utility and potential of strontium isotope analysis ( Sr/ Sr) in the contexts of thermally altered osteoarch- aeological materials with the focus to reconstruct the geographic origins of the prehistoric cremated human remains from the Late Woodland period (600–850 CE) Perrins Ledge crematory, located in the Lower Illinois River Valley of the American Midwest. This mortuary site is unique in both regional and temporal contexts as an isolated crematorium structure containing at least 13 individuals (ten adults and three non-adults) represented by burned human skeletal remains of unknown origins. -
Teeth Mammalian Teeth Differ from Teeth of Earlier Vertebrates
Skull_Skeleton_Lab3.doc 09/15/09 page 8 of 48 Laboratory 2 Worksheet: Teeth Mammalian teeth differ from teeth of earlier vertebrates, including most living “reptiles” in three general characteristics: Characteristic Early Vertebrate Mammal Toothrow Homodont Heterodont Mammal teeth differ from front to back, early vertebrate teeth tended to be similar in all parts of the jaw. Tooth Acrodont Thecodont Mammal teeth are set in sockets (see placement a skull with missing teeth) while in reptiles the teeth are close to the surface of bone Tooth Polyphyodont Diphyodont Mammals have 2 sets of teeth, replacement deciduous "milk teeth" and the permanent teeth. Milk teeth are lost as the permanent teeth move into place in the jaws. There are four kinds of teeth in mammals: (1) incisors (for nipping), (2) canines for grasping prey, and cheekteeth of two kinds--(3) premolars ("bicuspids" in humans) and (4) molars--for shearing or grinding the food. Molars are only present in the permanent dentition (by definition). Differentiated teeth are one of the features associated with increased metabolism and increased energy requirements in mammals. Specialization within the tooth row allows efficient processing of food. A higher surface:volume ratio increases the rate of digestion when chewed food comes into contact with digestive chemicals in the gut. Tooth shape and the number of teeth have varied over evolutionary time in mammals. Many taxonomic groups have lost teeth compared to the original condition. Herbivores, such as rodents, rabbits, and most artiodactyls have no canines and have simple incisors. Carnivores do not need grinding cheekteeth because of their diet. -
A Masterful Orchestration of Functional Redundancy Or What Makes Tooth Bioengineering an Intrinsically Difficult Concept
Journal of Stem Cell Research & Therapeutics Mini Review Open Access Odontogenesis - a masterful orchestration of functional redundancy or what makes tooth bioengineering an intrinsically difficult concept Abstract Volume 1 Issue 3 - 2016 Rapid increase of knowledge in stem cell research, bioengineering technology and Darko Kero,1 Mirna Saraga Babic2 molecular basis of odontogenesis has finally lead us to the point where it is possible 1Study Programme of Dental Medicine, University of Split, to develop approaches for treatment of tooth loss with bioengineered teeth, which Croatia one day might completely replace conventional prosthodontics and dental implants. 2Department of Anatomy, Histology and Embryology, University By holding onto the premise that in order to bioengineer teeth, full understanding of of Split, Croatia how teeth develop is required, it must be acknowledged that there are certain features of odontogenesis which create obstacles in gaining that understanding. One such Correspondence: Darko Kero, Study Programme of Dental feature is the functional redundancy in genetic networks responsible for molecular Medicine, School of Medicine, University of Split, Soltanska 2, control of odontogenesis. Abundant data imply that having functional redundancy of 21000 Split, Croatia, Tel +385 21 557 846, Fax +385 21 557 811, various elements in regulatory genetic networks is more than just a failsafe built into Email [email protected] the odontogenic sequence in order to secure unhindered development of teeth. This phenomenon plays important roles in determination of tooth numbers and positioning, Received: July 02, 2016 | Published: August 05, 2016 and is increasingly recognized as important for enabling sufficient plasticity of regulatory genetic networks through which the appearance of tooth-type specific and species-specific diversity of mammalian tooth morphology can be explained. -
Manatees, Take a Few Minutes to Write Down What You Know About These Animals
The Florida Fish and Wildlife Conservation Commission (FWC) is a state government agency in Florida. Its mission is to manage fish and wildlife resources for their long-term well-being and the benefit of people. This mission statement means that the FWC is responsible for conserving and managing fish, wildlife and their habitats, which include the state’s many imperiled species. The FWC meets this challenge with a combination of law enforcement, research, management and outreach services. The FWC issues hunting and fishing licenses and makes sure the public has the information it needs to be responsible hunters, anglers, boaters and wildlife watchers. In addition to enforcing rules and regulations, FWC provides many programs that ensure healthy resources for both wildlife and people. When you participate in any of FWC’s programs to learn outdoor skills, or learn about Florida’s fish, wildlife and the environment, you are helping to preserve Florida’s natural resources, too. What do you want to be when you grow up? Here are a few of FWC’s job categories to consider. You can see that it takes a team of people with a variety of skills to make a difference and to run an agency: Accountant Fish/Wildlife Technician Marine Science Administrative Secretary/Assistant Fisheries & Wildlife Scientist Park Manager Aircraft Mechanic/Inspector/Pilot Geographic Information System Personnel Services Art Editor/Graphic Consultant Government Consultant Planner (Variety of Positions) Attorney Grants Specialist Property Administration Biologist (Management/Research)