The Standard Model Algebra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2009.05574V4 [Hep-Th] 9 Nov 2020 Predict a New Massless Spin One Boson [The ‘Lorentz’ Boson] Which Should Be Looked for in Experiments
Trace dynamics and division algebras: towards quantum gravity and unification Tejinder P. Singh Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India e-mail: [email protected] Accepted for publication in Zeitschrift fur Naturforschung A on October 4, 2020 v4. Submitted to arXiv.org [hep-th] on November 9, 2020 ABSTRACT We have recently proposed a Lagrangian in trace dynamics at the Planck scale, for unification of gravitation, Yang-Mills fields, and fermions. Dynamical variables are described by odd- grade (fermionic) and even-grade (bosonic) Grassmann matrices. Evolution takes place in Connes time. At energies much lower than Planck scale, trace dynamics reduces to quantum field theory. In the present paper we explain that the correct understanding of spin requires us to formulate the theory in 8-D octonionic space. The automorphisms of the octonion algebra, which belong to the smallest exceptional Lie group G2, replace space- time diffeomorphisms and internal gauge transformations, bringing them under a common unified fold. Building on earlier work by other researchers on division algebras, we propose the Lorentz-weak unification at the Planck scale, the symmetry group being the stabiliser group of the quaternions inside the octonions. This is one of the two maximal sub-groups of G2, the other one being SU(3), the element preserver group of octonions. This latter group, coupled with U(1)em, describes the electro-colour symmetry, as shown earlier by Furey. We arXiv:2009.05574v4 [hep-th] 9 Nov 2020 predict a new massless spin one boson [the `Lorentz' boson] which should be looked for in experiments. -
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
(Anti)Proton Mass and Magnetic Moment
FFK Conference 2019, Tihany, Hungary Precision measurements of the (anti)proton mass and magnetic moment Wolfgang Quint GSI Darmstadt and University of Heidelberg on behalf of the BASE collaboration spokesperson: Stefan Ulmer 2019 / 06 / 12 BASE – Collaboration • Mainz: Measurement of the magnetic moment of the proton, implementation of new technologies. • CERN Antiproton Decelerator: Measurement of the magnetic moment of the antiproton and proton/antiproton q/m ratio • Hannover/PTB: Laser cooling project, new technologies Institutes: RIKEN, MPI-K, CERN, University of Mainz, Tokyo University, GSI Darmstadt, University of Hannover, PTB Braunschweig C. Smorra et al., EPJ-Special Topics, The BASE Experiment, (2015) WE HAVE A PROBLEM mechanism which created the obvious baryon/antibaryon asymmetry in the Universe is not understood One strategy: Compare the fundamental properties of matter / antimatter conjugates with ultra-high precision CPT tests based on particle/antiparticle comparisons R.S. Van Dyck et al., Phys. Rev. Lett. 59 , 26 (1987). Recent B. Schwingenheuer, et al., Phys. Rev. Lett. 74, 4376 (1995). Past CERN H. Dehmelt et al., Phys. Rev. Lett. 83 , 4694 (1999). G. W. Bennett et al., Phys. Rev. D 73 , 072003 (2006). Planned M. Hori et al., Nature 475 , 485 (2011). ALICE G. Gabriesle et al., PRL 82 , 3199(1999). J. DiSciacca et al., PRL 110 , 130801 (2013). S. Ulmer et al., Nature 524 , 196-200 (2015). ALICE Collaboration, Nature Physics 11 , 811–814 (2015). M. Hori et al., Science 354 , 610 (2016). H. Nagahama et al., Nat. Comm. 8, 14084 (2017). M. Ahmadi et al., Nature 541 , 506 (2017). M. Ahmadi et al., Nature 586 , doi:10.1038/s41586-018-0017 (2018). -
Interactions of Antiprotons with Atoms and Molecules
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 1988 INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES Mitio Inokuti Argonne National Laboratory Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Inokuti, Mitio, "INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES" (1988). US Department of Energy Publications. 89. https://digitalcommons.unl.edu/usdoepub/89 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. /'Iud Tracks Radial. Meas., Vol. 16, No. 2/3, pp. 115-123, 1989 0735-245X/89 $3.00 + 0.00 Inl. J. Radial. Appl .. Ins/rum., Part D Pergamon Press pic printed in Great Bntam INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES* Mmo INOKUTI Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. (Received 14 November 1988) Abstract-Antiproton beams of relatively low energies (below hundreds of MeV) have recently become available. The present article discusses the significance of those beams in the contexts of radiation physics and of atomic and molecular physics. Studies on individual collisions of antiprotons with atoms and molecules are valuable for a better understanding of collisions of protons or electrons, a subject with many applications. An antiproton is unique as' a stable, negative heavy particle without electronic structure, and it provides an excellent opportunity to study atomic collision theory. -
Introduction to Supersymmetry(1)
Introduction to Supersymmetry(1) J.N. Tavares Dep. Matem¶aticaPura, Faculdade de Ci^encias,U. Porto, 4000 Porto TQFT Club 1Esta ¶euma vers~aoprovis¶oria,incompleta, para uso exclusivo nas sess~oesde trabalho do TQFT club CONTENTS 1 Contents 1 Supersymmetry in Quantum Mechanics 2 1.1 The Supersymmetric Oscillator . 2 1.2 Witten Index . 4 1.3 A fundamental example: The Laplacian on forms . 7 1.4 Witten's proof of Morse Inequalities . 8 2 Supergeometry and Supersymmetry 13 2.1 Field Theory. A quick review . 13 2.2 SuperEuclidean Space . 17 2.3 Reality Conditions . 18 2.4 Supersmooth functions . 18 2.5 Supermanifolds . 21 2.6 Lie Superalgebras . 21 2.7 Super Lie groups . 26 2.8 Rigid Superspace . 27 2.9 Covariant Derivatives . 30 3 APPENDIX. Cli®ord Algebras and Spin Groups 31 3.1 Cli®ord Algebras . 31 Motivation. Cli®ord maps . 31 Cli®ord Algebras . 33 Involutions in V .................................. 35 Representations . 36 3.2 Pin and Spin groups . 43 3.3 Spin Representations . 47 3.4 U(2), spinors and almost complex structures . 49 3.5 Spinc(4)...................................... 50 Chiral Operator. Self Duality . 51 2 1 Supersymmetry in Quantum Mechanics 1.1 The Supersymmetric Oscillator i As we will see later the \hermitian supercharges" Q®, in the N extended SuperPoincar¶eLie Algebra obey the anticommutation relations: i j m ij fQ®;Q¯g = 2(γ C)®¯± Pm (1.1) m where ®; ¯ are \spinor" indices, i; j 2 f1; ¢ ¢ ¢ ;Ng \internal" indices and (γ C)®¯ a bilinear form in the spinor indices ®; ¯. When specialized to 0-space dimensions ((1+0)-spacetime), then since P0 = H, relations (1.1) take the form (with a little change in notations): fQi;Qjg = 2±ij H (1.2) with N \Hermitian charges" Qi; i = 1; ¢ ¢ ¢ ;N. -
Color Breaking in the Quantum Leaped Stop Decay
Color breaking in the quantum leaped stop decay Imre Czövek [email protected] Abstract. The superfield propagator contains a measurable quantum leap, which comes from the definition of SUSY. In the sfermion -> Goldstino + fermion vertex change: 1. the spin of sparticle with discrete 1/2, 2. the Grassman superspace with the Goldstino shift operator. 3. the spacetime as the result of extra dimensional leap. The leap nature of SUSY transformations appears in the squark decay, it is the analog definition of SUSY. The quantum leaped outgoing propagators are determined and break locally the energy and the charge. Like to the teleportation the entangled pairs are here the b quark and the Goldstino. The dominant stop production is from gluons. The stop-antistop pair decay to quantum leaped b (c or t) quark, and the decay break the color. I get for the (color breaking) quantum leap: 10^-18 m. 10^-11 m color breaking would be needed for a color breaking chain reaction. The open question is: Are the colliders producing supersymmetry charge? Because some charges in QGP can make long color breaking and a chain reaction. A long color broken QGP state in the re-Big Bang theory could explain the near infinite energy and the near infinite mass of the universe: - at first was random color QGP in the flat space-time, - at twice the color restoration in the curved space-time, which eats the Goldstinos, - and finally the baryon genesis. The re Big Bang make a supernova like collapse and a flat explosion of Universe. This explanation of SUSY hides the Goldstone fermion in the extra dimensions, the Goldstino propagate only in superspace and it is a not observable dark matter. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
BOTTOM, STRANGE MESONS (B = ±1, S = ∓1) 0 0 ∗ Bs = Sb, Bs = S B, Similarly for Bs ’S
Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) BOTTOM, STRANGE MESONS (B = ±1, S = ∓1) 0 0 ∗ Bs = sb, Bs = s b, similarly for Bs ’s 0 P − Bs I (J ) = 0(0 ) I , J, P need confirmation. Quantum numbers shown are quark-model predictions. Mass m 0 = 5366.88 ± 0.14 MeV Bs m 0 − mB = 87.38 ± 0.16 MeV Bs Mean life τ = (1.515 ± 0.004) × 10−12 s cτ = 454.2 µm 12 −1 ∆Γ 0 = Γ 0 − Γ 0 = (0.085 ± 0.004) × 10 s Bs BsL Bs H 0 0 Bs -Bs mixing parameters 12 −1 ∆m 0 = m 0 – m 0 = (17.749 ± 0.020) × 10 ¯h s Bs Bs H BsL = (1.1683 ± 0.0013) × 10−8 MeV xs = ∆m 0 /Γ 0 = 26.89 ± 0.07 Bs Bs χs = 0.499312 ± 0.000004 0 CP violation parameters in Bs 2 −3 Re(ǫ 0 )/(1+ ǫ 0 )=(−0.15 ± 0.70) × 10 Bs Bs 0 + − CKK (Bs → K K )=0.14 ± 0.11 0 + − SKK (Bs → K K )=0.30 ± 0.13 0 ∓ ± +0.10 rB(Bs → Ds K )=0.37−0.09 0 ± ∓ ◦ δB(Bs → Ds K ) = (358 ± 14) −2 CP Violation phase βs = (2.55 ± 1.15) × 10 rad λ (B0 → J/ψ(1S)φ)=1.012 ± 0.017 s λ = 0.999 ± 0.017 A, CP violation parameter = −0.75 ± 0.12 C, CP violation parameter = 0.19 ± 0.06 S, CP violation parameter = 0.17 ± 0.06 L ∗ 0 ACP (Bs → J/ψ K (892) ) = −0.05 ± 0.06 k ∗ 0 ACP (Bs → J/ψ K (892) )=0.17 ± 0.15 ⊥ ∗ 0 ACP (Bs → J/ψ K (892) ) = −0.05 ± 0.10 + − ACP (Bs → π K ) = 0.221 ± 0.015 0 + − ∗ 0 ACP (Bs → [K K ]D K (892) ) = −0.04 ± 0.07 HTTP://PDG.LBL.GOV Page1 Created:6/1/202008:28 Citation: P.A. -
Clifford Algebra and the Interpretation of Quantum
In: J.S.R. Chisholm/A.K. Commons (Eds.), Cliord Algebras and their Applications in Mathematical Physics. Reidel, Dordrecht/Boston (1986), 321–346. CLIFFORD ALGEBRA AND THE INTERPRETATION OF QUANTUM MECHANICS David Hestenes ABSTRACT. The Dirac theory has a hidden geometric structure. This talk traces the concep- tual steps taken to uncover that structure and points out signicant implications for the interpre- tation of quantum mechanics. The unit imaginary in the Dirac equation is shown to represent the generator of rotations in a spacelike plane related to the spin. This implies a geometric interpreta- tion for the generator of electromagnetic gauge transformations as well as for the entire electroweak gauge group of the Weinberg-Salam model. The geometric structure also helps to reveal closer con- nections to classical theory than hitherto suspected, including exact classical solutions of the Dirac equation. 1. INTRODUCTION The interpretation of quantum mechanics has been vigorously and inconclusively debated since the inception of the theory. My purpose today is to call your attention to some crucial features of quantum mechanics which have been overlooked in the debate. I claim that the Pauli and Dirac algebras have a geometric interpretation which has been implicit in quantum mechanics all along. My aim will be to make that geometric interpretation explicit and show that it has nontrivial implications for the physical interpretation of quantum mechanics. Before getting started, I would like to apologize for what may appear to be excessive self-reference in this talk. I have been pursuing the theme of this talk for 25 years, but the road has been a lonely one where I have not met anyone travelling very far in the same direction. -
A Clifford Dyadic Superfield from Bilateral Interactions of Geometric Multispin Dirac Theory
A CLIFFORD DYADIC SUPERFIELD FROM BILATERAL INTERACTIONS OF GEOMETRIC MULTISPIN DIRAC THEORY WILLIAM M. PEZZAGLIA JR. Department of Physia, Santa Clam University Santa Clam, CA 95053, U.S.A., [email protected] and ALFRED W. DIFFER Department of Phyaia, American River College Sacramento, CA 958i1, U.S.A. (Received: November 5, 1993) Abstract. Multivector quantum mechanics utilizes wavefunctions which a.re Clifford ag gregates (e.g. sum of scalar, vector, bivector). This is equivalent to multispinors con structed of Dirac matrices, with the representation independent form of the generators geometrically interpreted as the basis vectors of spacetime. Multiple generations of par ticles appear as left ideals of the algebra, coupled only by now-allowed right-side applied (dextral) operations. A generalized bilateral (two-sided operation) coupling is propoeed which includes the above mentioned dextrad field, and the spin-gauge interaction as partic ular cases. This leads to a new principle of poly-dimensional covariance, in which physical laws are invariant under the reshuffling of coordinate geometry. Such a multigeometric su perfield equation is proposed, whi~h is sourced by a bilateral current. In order to express the superfield in representation and coordinate free form, we introduce Eddington E-F double-frame numbers. Symmetric tensors can now be represented as 4D "dyads", which actually are elements of a global SD Clifford algebra.. As a restricted example, the dyadic field created by the Greider-Ross multivector current (of a Dirac electron) describes both electromagnetic and Morris-Greider gravitational interactions. Key words: spin-gauge, multivector, clifford, dyadic 1. Introduction Multi vector physics is a grand scheme in which we attempt to describe all ba sic physical structure and phenomena by a single geometrically interpretable Algebra. -
1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials. -
First Determination of the Electric Charge of the Top Quark
First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge.